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Abstract. Unobtrusive heart rate monitoring is a popular research topic in biomedical engineering.
The reason is that convential methods, e.g. the clinical gold standard electrocardiography, require
conductive contact to the human body.

Other methods such as ballistocardiography try to record these vital signs without electrodes
that are attached to the body. So far, these systems cannot replace routine procedures. Most systems
have some drawbacks that cannot be compensated, such as aging of the sensor materials or movement
artifacts. In addition, the signal form differs greatly from an ECG, which is an electrical signal. The
ballistocardiogram has a mechanical source, which makes it harder to evaluate.

We have developed a new sensor array made of near-IR-LEDs to record BCGs. IR-sensors do
not age in relevant time scales. Analog filtering was neccesary, because the signal amplitude was
very small. The digitized data was then processed by various algorithms to extract beat-to-beat or
breath-to-breath intervals. The redundancy of multiple BCG channels was used to provide a robust
estimation of beat-to-beat intervals and heart rate. We installed the system beneath a mattress topper
of a hospital bed, but any other bed would have been sufficient.

The validation of this measurement system shows that it is well suited for BCG recordings. The
use of multiple channels has proven to be superior to relying on a single BCG channel.
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1. Introduction
Vital signs such as heart rate and respiratory rate are
recorded to determine the overall state of a patient.
Typically, electrocardiograms (ECG) via Ag/AgCl
electrodes are used to monitor heart rate and to iden-
tify unusual events, such as arrhythmias. However,
before recording an ECG, the skin has to be properly
abrased, sometimes even shaved, and a conductive gel
is applied. The gel dries after a short period of time
and the signal deteriorates. This does not allow for
longer measuring periods, especially not at home.
The goal of this work was to develop sensors that

can be placed in a patient’s bed or in other everyday
objects for heart rate monitoring.

An unobtrusive method from measuring heart rate
is ballistocardiography (BCG). It involves measur-
ing rhythmical mechanical movements of the entire
body resulting from blood flow. The BCG’s shape
differs from an ECG because of its mechanical source.
A BCG has a delay of roughly 100 ms to the ECG
signal [1]. The signal shape is dependent on the mea-
surement system, specifically on where the sensor is
placed. If it is installed in a bed, the patients’ position
in the bed is a determining factor [2].

Many forms of ballistocardiographs have been pro-
posed. Traditionally, measuring systems have been
integrated into rigid tables and the longitudinal dis-
placement of the bed has been measured [3]. Addi-

tionally, BCG systems have been placed directly onto
the body [4]. Others have tried locations such as be-
neath pillows [5], mattresses [1] or embedded in other
everyday objects [6].

In addition to heart rate estimation, they have been
used, for example, to detect atrial fibrillation [7]. Ex-
isting BCG measuring systems can be made of various
kinds of force sensors, optical sensors, acceleration
sensors, position sensors, or pressure sensors. So far,
only Maki [8] has developed an infrared-based sen-
sor consisting of one emitter and a detector placed
between the springs of a spring core mattress.

2. Methods
We designed a novel optical BCG sensor system with
sensors using infrared light. The sensor is made of a
small printed circuit board (PCB) with three IR-LEDs
and one photo diode. The principle is based on light
scattering inside the mattress. The radiation emitted
by the LEDs enters the mattress, and the returning
amount of IR-light is detected by the photo diode.

The sensing units of the ballistocardiograph can be
be placed between the patient’s mattress and the mat-
tress topper at up to eight places. It is also possible to
place the sensor directly under the mattress, but our
setup yielded better results. An advantage compared
to [8] is that the mattress does not have to be taken
apart in order to install the system, see Fig. 1.
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Figure 1. Sensor-system setup in a bed.

Figure 2. Analog filter chain.

The sensor units detect localized cardiac-related
vibrations from the body. The single signals differ
depending on the location of the sensors under the
body. Breathing can be seen in the raw signal as a
superimposed oscillation with a lower frequency if the
sensor is placed below the thorax.

2.1. Measurement Setup
A block diagram of the measurement setup is depicted
in Fig. 2. The measurement system is modular, so
that multiple sensors can be connected at the same
time. The signals are filtered with analog hardware
filters for each channel individually. The resulting
signals are digitized with a NiDAQ USB6009 device
with 14 bit resolution (National Instruments, Austin,
Texas, USA). Subsequently, the data of each channel is
recorded with Labview (National Instruments, Austin,
Texas, USA). The raw data is then processed with
MATLAB (The MathWorks, Natick, Massachusetts,
USA).

2.2. Working Principle
The sensors are made of three infrared light emitting
diodes and one infrared detector centered between
the LEDs. The wavelength of the LEDs is 850 nm
(type SFH 4250, OSRAM, Munich, Germany). The
silicon PIN photo diode has its maximum sensitiv-
ity at 880 nm (type BPW 34 FAS, OSRAM, Munich,
Germany). Its radiant sensitive area dimensions are
2.65 × 2.65 mm2. Our tests have shown that a 1.5 cm
distance from emitter to detector is the best trade-off

Figure 3. Sensor PCB.

Figure 4. Sensor under a mattress.

in terms of signal quality and penetration depth of
the light into the material, see Fig 3. If the distance
between emitter and detector is larger, the result-
ing penetration depth becomes higher. However, the
greater the distance, the lower the number of photons
that reach the detector.

The working principle of the measurement setup is
shown in Fig. 4. The light is emitted into the material,
where it is scattered, absorbed or transmitted [9]. A
synthetic foam mattress topper was used. When it
is compressed by forces exerted by mechanical move-
ments of the body, the air enclosures of the foam are
deformed. Consequently, the path of the light also
altered. The number of photons that are sensed by
the detector changes according to the compression of
the material.

2.3. Analog Filtering Techniques
As the AD-conversion is conducted with 14 bit, the
quantization error equals 1.22mV. The signal-to-noise
ratio is very low, and analog filtering of the sensor sig-
nals is necessary. For our application, higher frequen-
cies can be filtered out, as the heart rate is assumed
to be between 0.67 and 3.33Hz.

The light detected by the photo diode is converted
to an electrical potential by a trans-impedance ampli-
fier. This circuit converts current into the correspond-
ing voltage. The signal is simultaneously low-pass
filtered with a corner frequency of 160Hz.
Additionally, it is high-pass filtered with a passive

1Hz RC-filter in order to remove the baseline, so
the operational amplifier does not saturate. Another
operational amplifier sets the gain of the filter chain.
High-frequency components are removed by a Sallen-
Key low-pass filter with a corner frequency of 20Hz.
In addition, a 50Hz Twin-T notch filter cancels out
the line noise. The analog filter chain is depicted in
Fig. 2.
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Figure 5. Raw BCG signal.

2.4. Multi-Channel Algorithm
Evaluating BCG signals is a challenging task. Due
to the position and the sensor-dependent signal mor-
phology, a robust algorithm has to be applied. It is
not sufficient to find the peaks, as in an ECG signal.
Analysing a BCG mostly relies on finding patterns
that are similar and repetitive. A high-pass filtered
signal with repetitive patterns of this kind is shown
in Fig. 5. While this example exhibits rather clear
deflections for each heart beat, this is not generally
the case.

Beat-to-beat and breath-to-breath intervals are es-
timated using of an algorithm provided in [10]. The
algorithm is capable of extracting intervals of signals
that have different morphologies — even in signals
that are so noisy that is not possible to find peaks
manually. These intervals are computed for a given
signal. They can be used to monitor heart rate and
to determine heart rate variability, for example.
The algorithm preprocesses the signal by filtering

with a Butterworth pass-band filter between 0.5 and
20Hz. Instead of first detecting the location of heart
beats and then computing the corresponding beat-
to-beat intervals, the algorithm estimates the time-
varying instantaneous heart rates from the raw signal
using three short-time estimators (e.g. autocorrela-
tion). These estimators are applied to an adaptive
moving analysis window and then combined using
a Bayesian approach. In addition, artifacts are de-
tected based on adaptive amplitude thresholding and
automatically discarded. The results of the algorithm
are the beat-to-beat intervals reconstructed from the
signal.
Based on the algorithm in [10], a multi-channel

version was further developed to select the channels
that perform best for beat-to-beat estimation. The
channels are selected on the basis of certain criteria
e.g. calculation of standard deviation. If the standard
deviation
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Figure 6. 2-channel BCG data (0.5–20Hz)-filtered
BCG Signal.

of a given signal is much lower than the standard de-
viation of the other channels, low information density
is expected.

The second method is kurtosis. Kurtosis expresses
the extent to which the distribution of a signal is
peaked or flattened. The kurtosis of an ECG is usually
around K = 5, so we also adapted this value for BCG
[11]. Kurtosis can be calculated as follows:

K = 1
N

N∑
i=1

(xi − µx

σx

)4
.

Finally, the estimated beat-to-beat interval of each
individual channel has to be within an accepted thresh-
old: fHR = [0.67; 3.33].

3. Results and Discussion
Signals were recorded with a prototype optical BCG
system. Simultaneously, an ECG was obtained as a
reference. The signals were recorded with a sample
rate of 400Hz.
In the following sample measurement with 2 chan-

nels, repetitive patterns can be seen (Fig. 6). The time
between the dominant peaks is equal to the heart-rate
interval. The shapes of the signals are different, as
they were taken by sensors located in two different
positions.
Fig. 7 shows the influence of respiration. The sub-

ject had a respiratory rate of approximately 9 breaths
per minute, which can also be seen in the BCG signal.
The recording was made while the test subject was
lying on his back.

3.1. Signal Morphology
According to a study mentioned in [12], eight different
sleeping positions exist.
In a trial, four different positions were analyzed:

supine, on the left side, on the right side, and prone.
The test subject lay in each position for one minute
and then turned around.
The transitions from one position to another were

clearly visible in the measured signal. That is because
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Figure 7. Band-pass filtered BCG data (0.5–20Hz)
with respiratory influence.
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Figure 8. BCG with different lying positions.

the movement artifacts have much higher amplitudes
than the normal signal, as can be seen in Fig. 8.

The patients’ contact area with the mattress topper
determines the signal shape. Different positions re-
sulted in very dissimilar signals. Some positions were
more advantageous for estimating the heart rate than
others, see Fig 9.

The peak-to-peak voltage was approximately 1.5V
in every case except for the right side where it resulted
in a peak-to-peak voltage of 0.4V. Furthermore, peri-
odic signal patterns could be identified in the supine,
left and prone positions. The left and prone positions
also showed repetitive dominant peaks. The reason
for the reduced signal quality while lying on the right
side is unclear. It may be due to the larger distance
from the contact area of the body to the heart.

3.2. Sources of Artifacts
The source of different artifacts was examined. A com-
mon problem of BCG systems is that they are suscep-
tible to external vibrations. We therefore investigated
whether these vibrations cause artifacts in the optical
BCG signal. However, our tests showed that opti-
cal BCGs are also subject to these vibrations. The
heart rate cannot be estimated if a movement artifact
occurs, because the operational amplfier saturates.
Another test was conducted to comprehend the
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Figure 9. Five close-ups of BCGs, from top to bot-
tom: supine; left; right; prone.

influence of external light sources, i.e. incandescent
light. Due to the fact that the working principle
of the sensors is based on radiation, external light
sources may cause artifacts or baseline changes. The
experiment was performed by switching on and off
the lights in a darkened lab without any test subject
in the bed. The test showed that incandescent light
had no influence on the BCG signal.
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Figure 10. Different sensor configurations.

Coverage Rel. error
Best channel 87.01% 1.46%
Worst channel 18.61% 25.7%
Multiple channels 89.16% 0.67%

Table 1. Comparison of estimations of intervals for
the best/worst channel to an estimation of intervals
using multiple channels.

3.3. Sensor-Array
Up to eight sensors can be connected to the current
system. Three different sensor configurations beneath
the mattress topper were tested with a 4-channel
setup. A diamond shaped configuration, a square,
and a line were tested, see Fig. 10. In each case,
it seems beneficial to place the sensors below the
patient’s torso, because of the proximity to the heart.
The closer the sensors are to the diaphragm, the more
dominant the breathing component becomes.

The diamond configuration was chosen, because the
largest part of the torso is covered with only 4 sensors
and the probability that the subject lies on one or
more of the sensors is higher in any chosen position.

3.4. Heart Rate Estimation
The optical BCG was evaluated with a single channel
measurement during a 15-minute trial and a simulta-
neous ECG. Compared to the ECG, the coverage of
the BCG equaled 89.35%, and the relative error of
the estimated intervals was 1.58%. Fig. 11 shows a
comparison of ECG beat-to-beat estimated intervals
(Pan-Tompkins [13]) and BCG estimated intervals
within a certain time frame. In this specific case, the
estimations overlap almost perfectly.
The multi-channel system was evaluated with a 4-

channel measurement in a 20-minute trial recorded at
200Hz. The results in Tab. 1 show that one channel
had a poor signal with only 18.61% coverage. The
channel was therefore automatically excluded from
the estimation by the algorithm most of the time.
The best signal in terms of coverage had a relative
error of 1.46% compared to the ECG. The best result
was achieved by combining multiple channels for the
estimation.

4. Conclusion
The proposed BCG system is a new method for BCG
measurements in bed. The advantage of BCG is that it
works without direct contact to the patient’s body. By
using near-IR-optical sensors, ageing of the material
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Figure 11. Comparison of BCG and ECG beat-to-
beat interval estimation.

can be excluded as a reason for deterioration of the
signal quality.
Heart rate, beat-to-beat intervals and in principle

respiration rate and breath-to-breath intervals can be
extracted from the signal, which is essentially based
on small vibrations of the body.
However, optical sensors are prone to movement

artifacts, as are other BCG sensors. When the subject
turned, it was not possible to estimatie the heart rate
or the heart beat intervals. Nevertheless, the results
are promising, because high coverage and low relative
error were achieved by optical BCG.
So far, only a single prototype is available, and

only a limited number of recordings have been ob-
tained. A larger study should be conducted to further
investigate this concept.
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