
1 Introduction

Modern point matching algorithms like SIFT (see [4, 5]),
provide a large number of point matches, even in stereo
image pairs with large changes in scale, translation and rota-
tion between the images. The only inconvenience is that there
are some wrong matches among the correspondences, espe-
cially when parts of the first image are not visible in the
second.

Algorithms for computing the fundamental matrix can
be classified into algorithms sensitive to wrong matches
and algorithms detecting and ignoring so-called outliers like
RANSAC or Least Median of Squares. In [3] and [7] algo-
rithms of both categories are described and compared.
Basically, algorithms of the first category should only be used
after preliminary outlier removal. The motivation to use them
is that some of them perform better than RANSAC or LMedS
(see [3]). Based on [3], we used RANSAC combined with the
normalized 8-point algorithm to compute a first estimation of
the fundamental matrix in order to perform outlier removal.

An observation is that using the criterion presented in [7],
i.e. the distance of a point to its corresponding epipolar line,
some true correspondences, which may be important for an
estimation of the epipolar geometry, are also eliminated. As a
consequence we have developed a new criterion to evaluate
correspondences between two images, considering the esti-
mation of the fundamental matrix and its uncertainty.

The paper is structured as follows: In section two, the
computation of the covariance matrix of the fundamental
matrix using Monte Carlo Simulation is described. Further
we describe the computation leading to the new criterion. In
section three, we show how the criterion can be used in an ef-
fective way for outlier removal, and we compare our results
with those using a conventional criterion. In section four a
brief conclusion is given.

2 Confidence measure for point
correspondences
To evaluate the quality of a single point correspondence

from a set of point correspondences, we use the only available
geometric constraint, the epipolar geometry and its algebraic
representation, the fundamental matrix. The computation of
the fundamental matrix using the Random Sample Consen-
sus combined with the normalized 8-point algorithm is de-
scribed in [3] and [7]. As the locations of point correspon-
dences are superimposed with noise, the computation of the
covariance matrix of the fundamental matrix provides fur-
ther useful information.

2.1 Computing the covariance matrix of the
fundamental matrix

To compute the covariance matrix, we assume that the
noise on the correspondence locations has normal distribu-
tion. We simulate this effect by adding Gaussian noise to the
eight correspondences selected by RANSAC during the fun-
damental matrix computation. We obtain a set of different
versions of the same eight point correspondences, and com-
pute the fundamental matrix from each version using the
normalized 8-point algorithm.

A large number of different fundamental matrices is ob-
tained, showing how the epipolar geometry varies under
slight changes in the point correspondence locations. A good
description of this effect is given by the covariance matrix of
the fundamental matrix, denoted by �F .

2.2 Epipolar line and epipolar envelope
For a given point x in the first image, the corresponding

epipolar line l in homogeneous coordinates is given by

l x� F , (1)
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where F is the fundamental matrix. Due to the uncertainty of
the fundamental matrix, the point correspondence is more
likely to be located within an area around the epipolar line.

From the covariance matrix of the fundamental matrix,
we can compute the covariance matrix of the epipolar line
with

�l � JFJ
T, (2)

where J is the Jacobian of the mapping

l
x
x

�
F

F
. (3)

The Mahalanobis distance k of a possible epipolar line m
from the estimated epipolar line l is then given by

( ) ( )l m l ml� � ��T � k2.

Thus we have an approximation of how well a certain
epipolar line m matches with the knowledge acquired so far
about the epipolar geometry and its uncertainty. For a given
value of k2 , we can compute an envelope of epipolar lines
containing all possible epipolar lines having a value less or
equal to k2. With the assumption that the elements of l have
normal distribution, k2 has a cumulative �2

2 distribution and a
probability that the true epipolar line is within this envelope
can be associated to the k2-value, as can be seen in Fig. 1. The
region can be described by a conic C defined in homogeneous
coordinates by

C � �ll l
T k2� . (4)

In [3] the epipolar envelope is used for guided matching,
i.e. searching correspondences within the epipolar band after
a first estimation of the fundamental matrix. We observed
that if the fundamental matrix is computed from correspon-
dences located only in the foreground, the uncertainty in the
background becomes very high (see Fig. 2). This is the reason

why correct matches lying in the corners of the image are of-
ten eliminated using a conventional criterion. To prevent this,
we have to develop a new criterion being less stringent for
matches in regions of high uncertainty.

2.3 Minimal Mahalanobis distance for a point
correspondence

Basic idea
The basic idea for the new criterion is to invert the prob-

lem of Wnding an epipolar band for a given likelihood (i.e. a
given k2 respectively probability �). For a given point �x in the
second view corresponding to a point x in the first view, we
want to find the conic with minimal k2 comprising the point

�x . In other terms, we are retrieving the value k2 in equation
(4) that provides a hyperbola passing through �x .

The considerations behind this idea are very simple if we
know that the epipolar line of a point x in the first image will
lie with a certain probability within an epipolar band in the
second image, the corresponding point �x , which is located
somewhere on the epipolar line, will be within the epipolar
band with the same probability.

General Problem Statement
The point �x belongs to the conic C if the following equa-

tion is verified

� � �x xT
C 0 , (5)

where C is given by:

C � �ll l
T k2� . (6)

F k2
1 2� �( ) � is the probability to find �x within C. We use

again the notation m for an epipolar line in the second image.

In fact l is here the estimated epipolar line corresponding to

the point x in the first image.

It is not possible to retrieve directly the corresponding
value k2 from a point �x using the equations above. One possi-
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Fig. 1: Envelope of epipolar lines: We computed the epipolar line
(dark) and the epipolar band (light) in the second image.
The point in the first image that we used for the computa-
tion is marked by a white point. The epipolar band shown
here represents the envelope of epipolar lines with equal
k2 599915� . . The according probability that the true epi-
polar line lies within this band is � � 095. . We see that for
this value the conic is a hyperbola with two branches.

Fig. 2: High insecurity for points in the background: In this fig-
ure the effect of choosing points only in the foreground is
demonstrated. We see that the insecurity for points in the
background is much higher than for points in the fore-
ground, as the epipolar band is much more extended.
INRIA Syntim owns the copyright of the image.



bility would consist in computing a multitude of different
conics using a range of different values for k2, and localize �x
in between the conics. An approximation for k2 would be ob-
tained by interpolation, but we found a closed-form solution
to the problem, providing an exact result.

Closed-form solution

Let us assume that the confidence, that any point �x in the

second image corresponds to a point x in the first view is in
relation with the probability of the epipolar geometry that
would explain the correspondence pair x x� � and having
at the same time the highest probability. In other terms, for
a potential point correspondence x x� �, we retrieve the

epipolar line m passing through �x having maximal probabil-
ity, i.e. minimal k2 regarding equation (14). This assumption
differs from the assumption made in [1], and we obtain a dif-
ferent criterion, which is more suitable for our purpose.

If we denote with m the unknown epipolar line and with l
the estimated line in the second image, the constrained
minimization problem can be stated as follows:

min( ) ( )l m l m
x m

l� �

� �

�
�
	

�T

T

�

0
(7)
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we obtain function f(a, b, c) to be minimized with
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and a constraint g(a, b, c) � 0 with
g a b c ax by cz( , , ) � � � . (9)

For the minimization we use the Lagrange multiplier
method to obtain an exact solution by solving the set of
equations:
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have:
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Thus we have
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As we are solving a problem with three unknown variables,
3 equations are sufficient. Using the relations from equation
(12) and the constraint that the point is on the line m, we ob-
tain the set of equations:
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Expanding equation (13) we have the set of equations
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This set of equations can be easily computed and the solu-
tion vector ( , , )a b c T is the vector m passing through �x and
having minimal k2 in terms of equation (7). Finally, we obtain
coordinates of the line m passing through �x and the corre-
sponding value k2 that would produce an epipolar band de-
limited by a hyperbola passing through �x . The value k2 will
be of special interest in applications, as we will use it as a qual-
ity criterion for point correspondences in our applications.

Example in an image pair
To summarize the algorithm, we can explain the different

steps using an example in an image pair (see Fig. 3).We start
after the fundamental matrix and its covariance have been
computed for the given image pair. We see the estimated
epipolar line in the second image, which we denoted by m,
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that corresponds to the point x in the first image which is
marked by a white point. Further we computed the epipolar
band (delimited by the hyperbola) for a value k2 59915� . , re-
spectively a probability � � 095. that the true epipolar line will
be located within this region.

Further, for points marked by a black circle in the second
image, we computed the line passing through the point and
having a minimal k2 in terms of equation (7). The lines are
dark and represent the lines previously denoted by m.

A further question to answer is the value k2 of the chosen
line m. It can be easily computed using

( ) ( )l m l ml� � ��T � k2.

In Fig. 3 we obtain a value of k2 848178� . for the central
point associated to the vertical line m, and a value of k2 607� .
for the point in the right side of the image. The fact that this
value is almost equal to 5.991 and the corresponding line m is
tangent to the hyperbola is an interesting observation, and
will be discussed later.

Properties
We want to briefly show some special cases of lines with

minimal k2. One of the reasons why we cannot use the crite-
rion from [1] is because it also contains depth information
coming from the chosen point correspondences to compute
the fundamental matrix and its covariance. In practice, this
becomes visible in the property that points lying on the esti-
mated epipolar line (which is of course the most probable
epipolar line) do not have the same probability.

In Fig. 4 we see that the line m is identical to the estimated

epipolar line l. Thus we have k2 0� for each point on the esti-

mated line. Another effect is shown in Fig. 5. We computed

the line m for a point on the hyperbola delimiting the epi-
polar band. We see that the dark line that we obtain is tangent
to the hyperbola and the value for k2 is equal to the value we
used for k2 to compute the hyperbola. In other terms, if we
want to retrieve the value k2 for a hyperbola passing through
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Fig. 3: Example of an image pair with points and their respective
line with minimal k2 : We see the estimated epipolar line
in the second image, l, that corresponds to the point x in
the first image, which is marked by a white point. The
epipolar band for a value k2 59915� . , respectively a prob-
ability � � 095. is within the hyperbola. Points marked by
a black circle in the second image are shown together with
the lines of minimal k2, denoted by m, and represented
dark.

Fig. 4: Line with minimal k2 computed for a point on the esti-
mated epipolar line: We see the epipolar band for a value
k2 59915� . , marked by the hyperbola, corresponding to
the point x in the first image, which is marked by a white
point. Obviously the epipolar line with smallest k2 for
points on the estimated epipolar line is the epipolar line
itself. Here we see that these two lines are superposed. The
corresponding value is k2 0� .

Fig. 5: Line with minimal k2 computed for a point on the hyper-
bola: We see the epipolar band for a value k2 59915� . ,
marked by the hyperbola, corresponding to the point x in
the first image which is marked by a white point. The line
m with minimal k2 for the black point on the hyperbola is
tangent to the hyperbola. The corresponding value for k2

is equal to the value we choose to compute the hyperbola,
i.e. k2 5991� . .



the point x, it is sufficient to compute the line with minimal k2

as the k2 obtained for the line will be equal to the value ob-
tained if we retrieved the hyperbola.

Results

We started from the situation that for a point x in a first
image a region in the second image, delimited by a hyper-
bola, was defined. We knew from the epipolar geometry and
its uncertainty that its correspondence �x would be located
within this region with a given probability �, which was de-
rived from the Mahalanobis distance k.

The result is that we can now compute for a pair of
corresponding points x x� � the corresponding hyperbola,
passing through �x , and the value k2 corresponding to the hy-
perbola. In the old application the probability to find the
corresponding point �x within the hyperbola was increasing
with higher values for k2, (the region bounded by the hyper-
bola increases with higher values of k2), in our application a
low value for k2 indicates that the probability that x x� � are
corresponding points is high and vice versa.

The way to find the value for k2, which is actually the
Mahalanobis distance k between the estimated epipolar line
and the line passing through �x with minimal k, is of no rele-
vance in applications. This means that in our applications, for
a point �x , we will only be interested in the Mahalanobis dis-

tance of the corresponding line m, not in the line itself.

For the purpose of illustration we generated Fig. 6, where
for each pixel �x we computed the Mahalanobis distance k2

according to the minimization problem from equation (7) and
represented it using grayscales. In particular, points in white

have values close to k2 0� , points in black, a value close to the
maximum value on the image. We used the whole range of
k2 values on the second image and divided the range into
256 levels of equal width, each one represented by its relative
grayscale level.

3 Application to outlier removal
The initial aim was to develop a new criterion for robust

outlier elimination. Existing algorithms use criteria based on
the distance of a point to its corresponding epipolar line. For
distance based algorithms, in the background, the distance to
the epipolar line will increase as the estimation of the funda-
mental matrix will be far better for points in the foreground.
The use of a threshold distance to eliminate outliers will lead
to an elimination of points further away from the central
points, as we can observe in Fig. 8 (b).

Similar to other applications, we could consider using the
epipolar band to remove outliers. This means that instead of
computing the epipolar line and the distance of a point to the
epipolar line, we just compute the epipolar band, and remove
points located outside the epipolar band. This would resolve
the problem of removing points from the background. Al-
though this application seems suitable, two parameters have
to be set. First we have to make an assumption about the vari-
ance of the point correspondences, and the value for k2 from
where we compute the epipolar band needs to be set. In the
following we present an algorithm overcoming the draw-
backs of the algorithms mentioned above by using our new
criterion.

3.1 Algorithm
The values chosen for the standard deviation � of points to

compute the covariance matrix of the fundamental matrix
are varying, and thus we first computed the value k2 of each
used point correspondence. If we consider the distribution of
the value k2 for each point in Fig. 7, we see that most of the
correspondences are very small, whereas some correspon-
dences have huge k2 values. A classification of inliers and out-
liers can be easily performed.
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Fig. 6: Image representing the Mahalanobis distance k2 over an
image: The right image shows the epipolar band for
k2 5991� . . In the left image we computed for each pixel �x
the Mahalanobis distance k2 and represented it using
grayscales. In particular, points in white have values close
to k2 0� , points in black, a value close to the maximum
value on the image. We used the whole range of k2 values
and divided the range into 256 levels of equal width, each
one represented by its relative grayscale level.

Fig. 7. Distribution of the values of k2: This figure shows a histo-
gram over the values for k2 of the point correspondences
from Fig. 8 (a)



Our proposition is to compute the median value of k2 . As
the RANSAC algorithm does not perform well in the case of
more than 50 percent outliers, we only consider the case of
having at least 50 percent inliers. As a consequence the me-
dian value for k2 will be the value of an inlier. An observation
was that the values for inlier were very similar, whereas the
values for outliers were huge. In practice we therefore elimi-
nate every point correspondence with a value of more than
ten times the median value. Another proportion may be used
but in our tests we obtained reasonably good results.

3.2 Results
The results presented here were obtained using RANSAC

for an estimation of the fundamental matrix. Further, the
covariance matrix of the fundamental matrix was computed
by adding noise to the eight point correspondences used to
compute the fundamental matrix. In fact we obtained the
same results for the outlier elimination using a standard
deviation � in the range of 0.02 to 10 pixels. Therefore no
knowledge about the quality of the image and the variance of
the correspondences is needed for the outlier removal with
the new criterion. The results are presented in Fig. 8.

4 Discussion
We have seen that the new criterion can be used for outlier

removal without side information about the image quality
and brings the advantage of providing a larger set of point
correspondences. An observation is that the points preserved
by the new algorithm are more widely spread throughout the
image than the points obtained with a conventional crite-
rion. Hence the initial fundamental matrix estimation rather
seems to suit point correspondences in the center of the
image.

Our current research is focused on comparing fundamen-
tal matrices computed from the initial set of point correspon-
dences to those obtained with the enhanced set, using image
pairs with known epipolar geometry, i.e. a comparison to
ground truth. Furthermore we try to identify different planes
spanned in space by the point correspondences, in order to
examine the influence of the depth distribution of the corre-
spondences onto the accuracy of the computed fundamental
matrix.
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Fig. 8: Results: (a) stereo image pair with SIFT correspondences,
the 8 points selected by RANSAC are dark. (b) remaining
point correspondences after outlier removal using the
distance from the epipolar line. (c) enhanced point corre-
spondence set using the new criterion. INRIA Syntim
owns the copyright of the image pair.


