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Abstract. A railway turnout is an element of the railway infrastructure that influences the reliability
of a railway traffic operation the most. The growing necessity for the reliability and availability in
the railway transportation promotes a wide use of condition monitoring systems. These systems are
typically based on the measurement of the dynamic response during operation. The inertial dynamic
response measurement with on-board systems is the simplest and reliable way of monitoring the railway
infrastructure. However, the new possibilities of condition monitoring are faced with new challenges of
the measured information utilization. The paper deals with the condition monitoring of the most critical
part of turnouts - the common crossing. The application of an on-board inertial measurement system
ESAH-F for a crossing condition monitoring is presented and explained. The inertial measurements are
characterized with the low correlation of maximal vertical accelerations to the lifetime. The data mining
approach is used to recover the latent relations in the measurement’s information. An additional time
domain and spectral feature sets are extracted from axle-box acceleration signals. The popular spectral
kurtosis features are used additionally to the wavelet ones. The feature monotonicity ranking is carried
out to select the most suited features for the condition indicator. The most significant features are fused
in a one condition indicator with a principal component analysis. The proposed condition indicator
delivers an almost two-time higher correlation to the lifetime as the maximal vertical accelerations. The
regression analysis of the indicator to the lifetime with an exponential fit proves its good applicability
for the crossing residual useful life prognosis.

Keywords: Common crossing, on-board inertial measurement, condition indicator, feature ranking,
data fusion, principal component analysis.

1. Introduction
The competitiveness of the railway transportation
comparing to other transportation systems is signifi-
cantly influenced with the renewal and maintenance
costs of the railway infrastructure. The major part
of the infrastructure maintenance costs are the track
maintenance costs [1]. The railway turnout is a com-
paratively low-cost part of the railway superstructure
that shares about 10 % of the superstructure invest-
ment costs [1]. Nevertheless, at the same time, the
renewal and maintenance costs of turnouts share up
50% of the track maintenance costs because of the
disproportionately short lifecycle of turnouts. An or-
dinary track has up to 5-10 times higher lifetime than
railway turnouts. Another cost driver of the turnout
maintenance is relatively expensive inspection works.
According to [2] 50 %, of the overall maintenance costs
for switches and crossings (S&C) on Deutsche Bahn
(DB) are the costs for inspection, service and test
measures. These are thus the main cost drivers due

to comparative frequent inspections with a relatively
low automatisation. The inspection of a common
crossing is usually executed by a visual inspection
and manual geometry measurements of the frog nose
and wing rail. Therefore, the diagnostic systems with
automated measurement and monitoring of S&C are
a promising way towards the reduction of the cost
driver, and therefore, the increase of competitiveness
of the railway transportation overall. Different track-
side and on-board systems for railway track condition
monitoring are used nowadays. On-board systems
have the advantage to monitor the long track distance
and large number of track turnouts, etc., with a one
measurement system. Moreover, on-board systems
on operational trains provide the additional benefit
that consists in the replacement of cost expensive
measurement trains. The most of on-board measure-
ment systems are based on inertial measurements of
accelerations on axle-box or car bodies [3].
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Figure 1. On-board inertial measurement system ESAH-F [4]

At present, there are a lot of studies related to the
application of track condition monitoring systems [5–
9]. The paper deals with the inertial measurements
of the system ESAH-F (Electronic Analysis System
of Crossing – Portable) that is tested on German rail-
ways (DB AG). The ESAH-F (Figure 1) on-board
system is used for the common crossing monitoring
of turnouts [4]. The main parts of the system are 3D
acceleration sensors (ACC) that are located on axle-
boxes of one bogie of passenger operational trains.
A proximity sensor is used for an additional GPS
accurate positioning of common crossings and con-
trolling the ACC sensor measurement. The measured
acceleration and proximity signals are preprocessed,
digitalized and stored in a cloud.

A rail discontinuity on common crossing causes the
increased accelerations that appear while trains pass
on crossing. Figure 2 explains the formation of the
geometrical irregularities due to the rail discontinuity.
During the movement of the wheel along the wing
rail, due to the wheel profile conicity, the wheel con-
tact point moves outside from the wheel longitudinal
trajectory (line 1-2). At the same time, the wheel
moves down until the contact point 3 of the wheel
profile with the frog rail appears. After that, the
wheel rolls up again on the primary level due to the
elevation of the frog rail longitudinal profile (line 3-4).
The vertical position of the wheel during the passing
consists of the crossing is influenced by the structural
and wear irregularities. The structural irregularity
is a deviation from the nominal shape and the wear
irregularity (Figure 2, points 5-6) appears during the
crossing operation. Both the structural and the wear
irregularities cause a dynamical interaction and wheel
loadings that lead to an accelerated deterioration of
rails, sleepers, fastenings and ballast layer. The prob-
lem of the crossing condition monitoring, unlike the
one of the ordinary track, is to estimate the measured
inertial impact changes upon the already high initial
values of acceleration.

Despite the obvious advantages of on-board moni-
toring systems on operational trains, there are a lot of

significant drawbacks that limit the wide applications
of the systems in the railway transportation. The
main one is the low quality of the measured informa-
tion. The measured axle-box accelerations depend
not only on the track state but also on the wheel
state, stiffness in track and train suspension, train
velocity, axle of sensor position, etc. Additionally,
the operational trains with on-board measurement
systems are usually limited to light passenger trains
that could not depict the real loading of freight trains
in mixed traffic. The low information quality of the
measurements makes it difficult to utilise them for the
track condition monitoring. The conventional analysis
method of a maximal acceleration consideration shows
a relatively low relation to the lifetime. Figure 3 shows
the change of maximal vertical accelerations during
the crossing lifecycle. The random variation of the
maximal vertical acceleration is compared with the
systematic change of the measured parameter. The
correlation coefficient is relatively low and is much
lower in the region until the first rail contact fatigue
(RCF) damages occur, since about a half of the sys-
tematic acceleration growth is caused by the damages
itself.
The application of advanced information process-

ing and analysis methods could solve the problem.
The modern signal processing and statistical learning
science provides a wide range of methods for deeper
information exploration and recovering of hidden re-
lations in the same information. Indeed, the maximal
accelerations or similar analysis measures contain a
tiny amount of information compared to the informa-
tion volume of raw measured signals. Many recent
studies in transportation are focused on the problem
of the structural health and condition monitoring with
machine and deep learning information processing. A
widespread overview of the theoretical and practical
techniques of a contemporary data science analysis
with application to railway track engineering is pre-
sented in [10]. The application of sequential feature
selection within the machine learning approach for on-
board axle-box inertial measurements of operational
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Figure 2. Geometrical irregularities in common crossing

Figure 3. The progress of measured maximal vertical accelerations during crossing lifecycle

trains is proposed in [11]. The parameters for the
turnout monitoring with the application track-side in-
ertial measurements were considered in the study [12].
The monitoring of a railway superstructure in transi-
tion zones from ballast to ballast-less track with a pre-
diction of quality development is presented in [13, 14].
The statistics based feature selection for an evaluation
of railway ballast consolidation is proposed in [15].
The application of supervised and unsupervised ma-
chine learning techniques within the track geometry
big data analysis is discussed in [16]. A combination
of statistical and mechanical approach for a common
crossing fault prediction with track-side inertial mea-
surements is shown in [17]. The reinforcement learning
for the improvement of the disturbance parameters
determination in the railway operational simulation is
proposed in [18]. A physical modelling of an on-board
inertial measurement system for a detection of track
geometry failures is presented in [19]. Prediction of
RCF on the frog rail using machine learning methods

and image processing of magnet particle inspections
is demonstrated in [20]. The studies of track and
switches component damages due to different failure
modes are presented in [21, 22]. A cause analysis of
the RCF damage on a frog rail of a common cross-
ing is demonstrated in [23]. The analysis is based on
track-side acceleration and profile measurements of
the common crossing during its overall lifecycle. A
crossing structural health analysis and lifecycle pre-
diction using the track-side monitoring and machine
learning methods is presented in [24]. The goal of the
present paper consists in a development of a common
crossing indicator that is based on the measured ver-
tical acceleration of axle-box and could best describe
the relation to the crossing lifetime. The multiple
feature extraction from time and frequency domains,
feature ranking and fusion with the principal compo-
nent analysis (PCA) are used to reach the goal.
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2. Data exploration and feature
extraction

The axle-box acceleration measurements of the on-
board system ESAH-F are analysed for the common
crossing with a 1/12 crossing angle and rails UIC60
steel R350HT. The system was installed at 2 axle-
boxes of one bogie of operational passenger double-
decker trains. The spatial 3D accelerations were mea-
sured with a sampling rate of 50 kHz. The overall
number of measurements is 528 together with 2 axle-
box sensors on 2 axles. The crossing monitoring is
carried out over the full lifecycle of the turnout of
282 days between two replacements. The measured
data are not continuous in the crossing’s lifetime –
wide timespans with missing data are present. The
measurement system ESAH-F has no exact longitu-
dinal position measurement, therefore, the accelera-
tion maximal points are used to synchronise different
measurements. The measured signals are analysed
in time and frequency domains with a continuous
wavelet transform of the type “morlet”. Figure 4 de-
picts the time series of the vertical acceleration and
their wavelet diagram along the track coordinate for
one measurement axle passing.
To utilise the measurement information more effi-

ciently, the 3 groups of different features are extracted:
(1.) time domain features;
(2.) wavelet spectral features;
(3.) spectral kurtosis features

The maximal acceleration was conventionally used as
a condition indicator of a common crossing in many
studies [25]. However, the acceleration signal form is
also changing during the lifetime of the crossing. The
additional potential time domain features [26], [27] are
extracted to quantify the signal form. The features
are extracted from the signal window that includes
the main part of vibrations due to the wheel and
rail interaction in the crossing zone (Figure 4 above).
Table 1 shows the description of the time domain
feature set together with the abbreviations used.
Another group of features is derived from the fre-

quency domain with a wavelet analysis. The features
are determined as mean values of wavelet coefficients
in the windows of different width and frequency (Fig-
ure 4, down). The separation of features corresponds
to the local maxima zones at the wavelet diagram.
The accepted window width takes into account the
possible variation of the zones with high coefficient
values due to the problem with a poor coordinate syn-
chronisation. It could be mechanically interpreted as
axle-box oscillations due to the impact loading, wheel
irregularities, natural frequency of wheel-crossing me-
chanical system, rail wear irregularity wave, structural
crossing irregularity and ballast settlement wave. The
spectral features with their explanation are described
in Table 2. Spectral kurtosis (SK) is one of the popu-
lar methods for the analysis of vibration signals from

rotating machine parts. It is used to indicate and
isolate the nonstationary or non-Gaussian process in
the frequency domain. The advantage of the spectral
kurtosis consists in finding the optimal frequency and
bandwidth for recovering the demodulated impulsive
signature that is hidden in the raw vibration wave-
form [28]. The spectral kurtosis SK(f) is calculated
with a short-time Fourier transform (STFT) [29]:

SK (f) =

〈
|S (t, f)| 4

〉
〈
|S (t, f)| 2

〉 2 − 2 (1)

where S(t,f) - short-time Fourier transform of the
acceleration time series signal A(t) with a window
function w(t); 〈−〉 is the time-average operator.
Figure 5 shows the spectral kurtosis calculated for

two windows width of the STFT in the same spectral
range as the wavelet transform. The maximal values
are used as spectral kurtosis features. The global
maxima of the spectral kurtosis are located in the
range of 10000-15000 Hz that could correspond to
the wheel induced vibrations. The spectral kurtosis
features are analogous to those of the time domain:
mean value, standard deviation, skewness and kurtosis.
The features are shown together with the wavelet
spectral features in Table 2.

3. Feature ranking and selection
The extracted feature set is appended with the known
operational conditions: train velocity and wheelset
where the acceleration sensors are located. A prelimi-
nary analysis of the extracted feature correlation to
the lifetime is carried out. Figure 6 shows the evo-
lution of feature values and their correlation to the
crossing lifecycle as well as the corresponding oper-
ational conditions variation. The feature values are
normalized and centred to provide the comparable
values of the relation to the lifetime. The figure 6
shows that the train velocities variate in the range
of 100-160 km/h. The accelerations of bogie axles
come together except of the final points of the statis-
tics where accelerations of the second axle are not
recorded. The highest linear correlations to the life-
time have the following time domain features: Std,
P2P, Energy. The best spectral features are low fre-
quency ones spl1, spl2, middle frequency feature spm1
and high frequency feature sph2. However, many fea-
tures have a nonlinear relation to the crossing lifetime
that could make it more difficult to use them for the
crossing condition estimation. The high frequency
feature sph2 has the highest growth during the final
part of the lifecycle as well as many other features.
Apparently, it could be explained with the influence
of the additional dynamic interaction due to the RCF
damage itself.
Additionally to the estimation of the feature suit-

ability for the condition indication purpose with a
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Figure 4. Time domain and spectral features from vertical acceleration (above) and wavelet coefficients (down)

Abbr. Description Formula

Mean Mean vertical accelerations Mean = 1
N

∑N
i=1 Ai

Std Standard deviation of vertical accelerations Std =
√

1
N−1

∑N
i=1 (Ai−Mean)2

Skew Skewness - a measure of the asymetry
of the data round the mean Skew =

1
N

∑N

i=1
(Ai−Mean)3(√

1
N

∑N

i=1
(Ai−Mean)2

)3

Kurt Kurtosis - a measure of bulging or convexity Kurt =
1
N

∑N

i=1
(Ai−Mean)4(√

1
N

∑N

i=1
(Ai−Mean)2

)2

P2P Peak-to-peak value - difference between
the maximal positive and negative accelerations P2P = max (Ai)−min(Ai)

CrestF Crest factor - ratio of peak values
to the effective value of waveform CrestF = max (Ai)√

1
N

∑N

i=1
(Ai−Mean)2

)

ShapeF Shape form - ratio of variation
to the effective mean value ShapeF =

√
1
N

∑N

i=1
(Ai−Mean)2

1
N

∑N

i=1
|Ai|

)

ImpF Impulse factor - ratio of peak values
to the effective mean value ImpF = max (Ai)

1
N

∑N

i=1
|Ai|

)

MargF Margin factor - ratio of peak values
to the square effective mean value MargF = max (Ai)(

1
N

∑N

i=1
|Ai|
)2 )

Energy Signal energy Energy = 1
N

∑N
i=1 (Ai)2)

MargF Margin factor - ratio of peak values
to the square effective mean value MargF = max (Ai)(

1
N

∑N

i=1
|Ai|
)2

Table 1. Time domain features.
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Figure 5. Spectral kurtosis for measured vertical acceleration

Figure 6. The progress of feature values and their correlation to crossing lifecycle
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Abbr. Description

spl0 Wavelet power spectral density for the low frequency range 3-10 Hz near
impact point

spl1 Wavelet power spectral density for the low frequency range 10-30 Hz near
impact point

spl2 Wavelet power spectral density for the low frequency range 30-80 Hz near
impact point

spm1 Wavelet power spectral density for the middle frequency range 80-200 Hz
near impact point

spm2 Wavelet powet spectral density for the middle frequency range 200-930 Hz
near impact poinr

sph1 Wavelet power spectral densgty for the hiih frequency range 930-4000 Hz
near impact point

sph2 Wavelet power spectral density for the high frequency range
4000-16000 Hz near impact point

SKMean64(128) SK mean value fro the STFT window 64(128) points
SKStd64(128) SK staniard deviation for the STFT window 64(128) points
SKSkew64(128) SK skewhess for tne STFT window 64(128) points
SKKurt64(128) SK kurtosis for the STFT window 64(128) points

Table 2. Wide table.

correlation criterion, the quantification of the impor-
tance of the features for the prognosis purpose is
carried out. The monotonicity criterion is often used
for the aim [30]. The monotonicity is calculated with
the following formula:

MNCT = 1
M

M∑
j=1

∣∣∣∣∣∣
Nj−1∑
k=1

sgn (xj (k + 1)− xj(k))
Nj − 1

∣∣∣∣∣∣
(2)

where xj - measurement vector of the feature; N -
number of measurement points; M - number of mea-
surement sensors.

The feature ranking with the monotonicity criterion
is depicted at Figure 7. The feature set Std, Energy,
spl2, spm1, P2P and spl1 can be selected in a sep-
arate group with significantly higher monotonicity
parameters than other features. The group in sum
encloses more monotonicity parameters than all other
remaining features. Taking into account that the
new features with a moderate monotonicity like spm2,
Skew etc. are significantly nonlinear to the lifetime,
the threshold 0.1 is taken for the feature selection.
Thus, the 6 most significant features are selected for
the following condition indicator development. The
features Std and Energy are of the same physical back-
ground, they could be considered as permutable, and
therefore, one feature Energy is taken into account for
the following feature fusion.

4. Feature fusion with principal
component analysis

A feature fusion is used to develop the condition in-
dicator from the selected feature set. It is a process
of combining the specific extracted features, which
are transformed to one that is more informative. One
of the most popular techniques for the data fusion
or dimensionality reduction is the principal compo-
nent analysis [31, 32]. It is an unsupervised learning
technique that reduces the dimensionality of a feature
set by transforming it to a smaller one with a low
dimension representation. The PCA discovers linear
dependencies between variables and replaces groups of
correlated variables with new, uncorrelated variables
that are known as principal components. The PCA
can be formally notated as follows [33]:

X = W T ·S (3)

where X - the original feature set matrix with n-rows
or observations and p- columns containing features; S
- the principal component scores or matrix of trans-
formed features;W - principal component loads.
The objective of the PCA is to find a linear com-

bination of loadings and features with a maximum
variance [34]:

w = arg max
‖w‖2=1

n∑
i=1

(xT
i w)2 (4)

The results of the PCA are shown in Figure 8, where
the scores in a space of the first 3 most significant
variation components PC1, PC2, PC3 are presented.
Additionally, each point is highlighted with a colour
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Figure 7. Feature monotonicity ranking

Figure 8. Crossing lifetime in PC1-PC2 space (left) and PC1-PC3 space (right)

that corresponds to the crossing lifetime. Further-
more, the biplot is appended to explain the direction
of the influence of the initial feature set. The left
diagram of the Figure 8 that shows the transformed
variables in the first and second component space,
demonstrates two groups of points. The groups corre-
spond to the acceleration measurements of the first
and second axles. The second component PC2 and
the direction of the Axle feature on the biplot are
almost collinear. The highest relation to the lifetime
is in the direction of the first principal component
PC1. The second principal component PC2 has a
relatively negligible relation to the crossing lifetime.
It could be explained by the fact that the PCA is
a blind separation technique that does not take into
account the response variable.
The right diagram of the Figure 8 shows the same

relation from the viewpoint of the third principal
component PC3. Here, the PC3 component has a
lesser relation to the lifetime than the PC1, but also

a significant one. The features Energy and spl1 show
the best direction of the lifetime variation. Figure 9
depicts the weight of each feature in the first and
third components. All the features have the significant
weight in the components except of the feature Axle.
The feature is excluded from the following derivation
of the common crossing condition indicator.

The fused condition indicators follow from the linear
regression of principal components:

Y = S·B + e (5)
where Y - the response variable, or here, the lifetime
of crossing, S - the predictor variables or here the
PCA scores: S = X = W−1X; B - the regression
coefficients to be estimated; e - the errors or residuals.

Figure 10 demonstrates the progress of the condition
indicator in normalized values during the crossing
lifecycle. The correlation coefficient is almost two
times higher than the one for the maximal vertical
accelerations (Figure 3).
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Figure 9. The weights of components PC1 and PC3 for selected features

Figure 10. Crossing condition indicator variation over the measurements

The measured data are not continuously distributed
over the crossing lifetime. Figure 11 shows the con-
dition indicator of a common crossing relating to all
lifetime days. The seemingly random variations of
the indicator at Figure 10 can be fitted well with the
exponential relation. The 95% function prediction
bounds show a relatively low uncertainty of prediction
that is less than 8% when compared to the explained
indicator variation. However, the observation vari-
ation reaches up to 40% of the value, which does
not diminish the developed condition indicator. The
averaging of the indicator values to one day or week
could provide a much stable estimation of the common
crossing condition.

5. Discussion
A condition monitoring of the S&C is more compli-
cated than that of an ordinary railway track due to
high loadings of wheels already at the beginning of
the lifecycle and the relatively insignificant growth of
the loading until the first RCF damages appear. For
a more efficient utilisation of information from axle-
box acceleration measurements, more features were
extracted. The overall feature set contains 21 time-
domain and spectral features. There are more features
that could be additionally extracted from both the

time and frequency domain, but it would not avoid
the inherent problems of the extraction. The time
domain features are extracted in a constant window
to take into account only the crossing zone interaction.
However, the interaction zones at the beginning and
at the end of the lifetime have a different size. The
criteria for the optimal window size could improve
some feature results. The poor coordinate synchroni-
sation with the maximal acceleration points makes it
difficult to compare the time-spectral features from
the wavelet transform. The wider windows with the
coefficient averaging are used to avoid the problem.
However, it leads to a reduction of the feature sig-
nificance. The automated identification of a feature
location would be useful as an intermediate step be-
fore the spectral feature extraction. The relatively
poor relation of the spectral kurtosis feature set to the
lifetime could be explained with the meaningful high
local frequencies 10-15 kHz taken into account. That
does not correspond to the other spectral features,
where the main relation to the lifetime lies in the low
and middle frequency range. The means of the SK
features are low and have an almost linear relation to
the lifetime (Figure 6). It could be supposed that the
extracted SK features are rather related to the wheel
surface condition, since the application field of the SK
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Figure 11. Crossing condition regression during its lifecycle time

is traditionally used for vibration signals of rotating
machine parts, like bearing or wheels. Nevertheless,
the negative results with the SK application could po-
tentially be used in future studies for a wheel influence
separation. Another way for improving the condition
indicator is taking into account another 2 acceleration
components in the longitudinal and lateral directions
from all 4 ACC sensors. Taking into account the addi-
tional operational conditions like the train movement
direction relatively to the turnout, crossing longitudi-
nal profile, etc., could also contribute to the perfection
of the crossing condition estimation. Despite the suf-
ficient results received in the present study with the
developed condition indicator for the crossing monitor-
ing, there are two basic problems inherent to on-board
condition monitoring from operational trains:

• The measured dynamic impact on operational pas-
senger trains cannot depict the real loading of mixed
traffic, where the freight trains are the dominating
factor in the crossing deterioration.

• The change of the crossing condition indicator dur-
ing its lifetime cannot be explicitly associated with
the deterioration of separate crossing parts like the
RCF, rail wear, fastenings, sleeper deterioration or
ballast settlements.

The present study should be considered as a step
towards the solution of the considered problems as
well as the crossing remaining life prognosis.

6. Conclusions
The paper presents an approach of a common crossing
condition indicator development based on machine
learning methods. The following main results can be
concluded:

(1.) The most significant time-domain features are
Std, Energy and P2P.

(2.) The most significant spectral features are spl1,
spl2 and spm1 that correspond to a frequency range
of 10-200 Hz.

(3.) The spectral kurtosis features have an insignifi-
cant relation to the crossing lifetime.

(4.) The influence of the axle sensor location has an
insignificant influence on the condition estimation
results.

(5.) The proposed condition indicator provides an
almost twotimes higher correlation to the lifetime
as the conventional one.

List of symbols
ESAH-F Electronic Analysis System of Crossing-Vehicle
ESAH-M Electronic Analysis System of Crossing-

Portable
PCA principal components analysis
RCF rolling contact fatigue
S&C switches and crossings
DB Deutsche Bahn - German Railways
GPS Global Position System
ACC acceleration sensor
STFT short-time Fourier transform
SK spectral kurtosis
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