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1 Introduction

Project Gama for adjustment of geodetic networks was
started at the department of mapping and cartography, Fac-
ulty of Civil Engineering, Czech TU Prague, in 1998. At first it
was planned to be only a local project with the main goal of
demonstrating to students the power of object programming
and at the same time being a free independent tool for com-
paring of adjustment results from various sources. The Gama
project received the official status of GNU software in 2001,
and now consists of a C++ library (including small C++ ma-
trix/vector template library gmatvec) and two programs
gama-local and gama-g3, which correspond to two devel-
opment branches of the project.

The stable branch of the Gama project consists of the com-
mand line program gama-local for adjustment of three-
-dimensional geodetic networks in a local coordinates system
(platform independent Qt based GUI roci-local is also
available). The new development branch of the project
(gama-g3) aims to adjust the geodetic networks in a global
geocentric system. The stable branch (gama-local) enables
common adjustment of possibly correlated horizontal direc-
tions and distances, horizontal angles, slope distances and ze-
nith angles, height differences, observed coordinates (used in
sequential adjustment, etc.) and observed coordinate difter-
ences (vectors). Although such an adjustment model has now
been made obsolete by global positioning systems, it can still
serve as an educational tool for demonstrating adjustment
procedures to students and as a starting platform for the
developing a new branch of the project (gama-g3).

Numerical solution of least squares adjustment in geodesy
is most commonly based on the solution of normal equations.
As the Gama project was also meant to be a comparison tool,
it was desirable to use a different method, and Singular Value
Decomposition (SVD) was implemented as the main numeri-
cal algorithm. As an testing alternative, Gama implements
another algorithm from the family of orthogonal decompo-
sitions based on Gram-Schmidt orthogonalization (GSO).
Practical experience with both algorithms is discussed. In the
Gama project, the geodetic input data are described in Exten-
sible Markup Language (XML). The primary motivation for
using XML was to define structured input data for adjustment
of a local geodetic network. The most important feature of
XML is probably the ease of defining a grammar for user data
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(a class of XML documents) that consequently can be vali-
dated even independently of our applications. One of the
goals of the Gama project is to build a collection of model
geodetic networks described in XML. The lack of reliable test-
ing data was one of major obstacles when testing the
implementation of the numerical solution of the geodetic net-
work adjustment.

2 Adjustment and analysis of
observations

Geodesy as a scientific discipline studies the geometry of
the Earth or, from the practical point of view, the positioning
of objects located on the Earth’s surface or in zones rela-
tively close to it. The input information consists of geodetic
observations.

The spectrum of observation types dealt with by geodesy is
very wide, and ranges from classical astro-geodetic observa-
tions (astronomical longitude and latitude, variations and
position of the Earth’s pole), measurements of geophysi-
cal quantities (gravity acceleration and its local anomalies),
through traditional geometric observables like directions,
angles and distances to photogrammetric measurements of
historical monuments. However, the main importance in geo-
desy today is given to satellite global positioning systems (first
of all NAVSTAR GPS and other complementary systems like
DORIS or GLONASS).

The key role in processing geodetic data belongs to the
sphere of applied statistics in geodesy, traditionally called
adjustment of observations. The processing of geodetic observa-
tions is determined by the choice of an appropriate mathe-
matical model, which can be symbolically expressed as

flex,1)=0, (1)
where f is a vector of functions describing the relations be-
tween constants ¢, unknown parameters ¥ and observed
quantities /. Corresponding to the three components of this
model are three mathematical spaces: parameter, observa-
tion and model space [1].

The three basic components of the mathematical model
(1) are depicted in Fig. 1, where 4, B, G and H are the matrices
of corresponding linearized relations (values of constants ¢
are not estimated in geodesy and we can consider them to be a
part of model space). Models can be direct, indirect or
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parameter space X
zeX, dmX =u

feF,

model space F
dmF =m

observation space £
bel, dmL=n

Fig. 1: Linear relations between parameter, observation and model spaces

implicit; linear or nonlinear; can occur individually or in
combinations

model explicit in x: x=g(), x=Gl+v,
model explicit in I: 1 =h(x), l=Hx +v,
implicit model: flx,1)=0, Ax+Gl+v=0.

3 Least Squares and singular systems

When adjusting geodetic observations we are relatively
often faced with models leading to singular sets of linear
equations. Typically these are models without fixed points, ie.,
no points with fixed coordinates are given, or the number of
fixed points is not sufficient (fiee networks, see [6] for more
information).

Let us take as an example the local network with observed
directions and distances from Fig. 2. The relationship be-
tween the unknown adjusted coordinates and observations
can be expressed after linearization as the project equations

403
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Fig. 2: Example of a local geodetic free network
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Ax -1l =v, (2)

where A4 is design matrix, x vector of unknowns, I vector of
reduced observations and v vector of residuals (misclosure
vector).

In geodesy, the number of observations is always higher
than the number of unknowns. Project equations (2) thus
represent an overdetermined system, and matrix 4 has more
rows than columns. Least Squares is the basic method used in
geodesy for observation adjustment. It gives us the unique
solution x of system (2) that minimizes the Euclidean norm of
the residual vector

min~v'v . (3)

A method commonly used for solving projects equa-
tions (2) (model explicit in observations) is based on normal
equations

409

N=A'4, n=A4'1,
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x=N "n.
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Apart from unknown vector x (and residuals v) we are
always interested in geodesy in estimates of the precision of
the adjusted quantities, in geodetic practice represented by
the variance-covariance matrix of adjusted unknowns C,, and
adjusted observations Cj;

C. = mbNJ, %)
C; =AC. A" (6)

The geometric shape of our adjusted network is defined
by observed directions (or angles) and directions. If we fixed
the coordinates of two or more points the network shape
would necessarily be distorted. Normal equations would lead
to an adjustment solution in which the residuals would be de-
pendent on the coordinates of the fixed points. This way we
would degrade our observations in cases when the coordi-
nates of the network points are either unknown or known with
lower precision.

On the other hand if we consider the coordinates of all
points to be free, the corresponding matrix N is inevitably
singular; the columns of matrix 4 are linearly dependent
(the network can float freely in the coordinate system) and
normal equation matrix N is positive-semidefinite

P'Np =0, p=0.

To get a unique solution we have to define additional
constraints regularizing the system, preferably without de-
forming of the network shape. In geodetic practice we most
often meet the following approaches:

o Asingular system is regularized by introducing pseudo-ob-
servations, typically with huge weights, that play a similar
role as a set of constraint equations.

o An explicit system of constraint equations is defined to
make the given system regular

Cx=C. ™)
Normal equations then become
N C\(«x l :
c o0)A) () ®)
where A is the vector of Lagrange multipliers. In this case
matrix C is problem dependent and needs to be known
explicitly in advance.

e The Euclidean norm of a certain subset of unknown pa-
rameters vector x is minimized

n;l/n fo, 1€0. 9)

The set of indices O can contain all elements, but more
often only selected elements of x.

In the case of a plane geodetic free network we can
geometrically interpret the last constraint (9) as follows. By
minimizing of the Euclidean norm of the residual vector (3)
the shape and scale (if at least one distance is available) of
the adjusted network together with the covariances of the
adjusted observations are uniquely defined. The second ad-
ditional constraint (9) then defines the localization of the
network in the coordinate system. Apart from the adjusted
network shape we simultaneously define its shift and rotation
in the coordinate system.

Another equivalent interpretation is that constraint (9)
defines the particular solution of (2) in which the trace of
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the variance-covariance submatrix corresponding to indices
1 € O is minimal.

4 Normal equations and numerical
stability

The numerical solution of the adjustment of observed
quantities based on normal equations can be numerically
unstable and in certain cases we should prefer other numeri-
cal algorithms that directly solve the project equations (2). A
possible source of troubles are the normal equations them-
selves, or more precisely the condition number of normal
equations. Let us restrict our discussion here to the simple
case when matrix 4 does not contain linearly dependent col-
umns and matrix N is positive-definite.

The condition number of matrix 4 is defined as

— A’ (AIA) max
D =)y 1o

where 1(A4'A4),, denotes the maximal and minimal eigenvalue
of matrix 4’4 . If we solve a linear set of equations then its con-
dition number represents the minimal upper estimate of ra-
tio of relative error of x and the relative error of the right

hand side /.

From equation (10) it directly follows that the condition
number of normal equation matrix N is the square of the
condition number of the project equation matrix A

K(N) =(k(A)) . (11)

We can say that when solving poorly conditioned normal
equations we lose twice as many of correct decimal digits in a
solution x as in any direct solution of project equations.

Probably the most important class of algorithms for direct
solution of project equations (2) is the family of orthogonal
decomposition algorithms. Apart from other goals, GNU
project Gama has been planned to be a kind of benchmark, ie.,
a tool for checking adjustment results from other software
products. For this reason it was desirable to have the adjust-
ment based on a different numerical method other than
the traditional solution of normal equations, and Singular
Value Decomposition (SVD) was implemented as the main
numerical algorithm. As an alternative, another orthogonal
decomposition adjustment algorithm GSO (based on Gram-
-Schmidt orthogonalization) is also available. We give a brief
description of both algorithms in the following section.

5 Gram-Schmidt orthogonalization

The Gram-Schmidt orthogonal decomposition is an algo-
rithm for computing factorization

A=0R, 00-=1, (12)
where Q is the orthogonal matrix and R is the upper triangu-
lar matrix. Matrix R here is identical to the upper triangular
matrix of the Cholesky decomposition of normal equations

N=AA=RQQR=RR. (13)

Gram-Schmidt orthogonalization is a very straightfor-
ward and relatively simple algorithm that can be imple-
mented in several variants differing in the order in which the

vectors are orthogonalized. The following three algorithms
are adopted from [2, p. 300-301].

http://ctn.cvut.cz/ap/
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Algorithm 1.1
[Modified Gram-Schmidt (MGS) row version]

for k = 12,....n
o= s o =@
4 = @k/rkk;
for i=k+1,...,
S U
end
end
Algorithm 1.2
[Modified Gram-Schmidt (MGS) column version]
for k = L2,...,n
for ¢ = 1,2...,k-
o= ghays at = a) g
end
g = als o =@l
a = Gk/n
end

Algorithms 1.3
[Classical Gram—Schmidt (CGS)]

for k = 12,..,n
for ¢« = 1,2..., k-
o=
end
A k-1
Bo= a- Y
NUNNTS .
e = @Y a = Qi [7hks
end

It should not be forgotten that the variant known as Classi-
cal Gram—Schmidt has very poor numerical properties in that
there is typically a severe loss of orthogonality among the
computed ¢;. A rearrangement of the calculation, known as
Modified Gram—Schmidt, yields a much sounder computational
procedure [3, p. 230-232].

5.1 Generalized orthogonalization algorithm
(GSO)

The generalized orthogonalization algorithm (GSO),
a method based on Gram-Schmidt orthogonalization, for
numerical solution of various adjustment models in geodesy
was elaborated by FrantiSek Charamza [4, 5]. GSO was im-
plemented in GNU Gama to conserve this rarely used but
interesting method, and to offer an alternative numerical
algorithm to SVD (which we expected to give better numerical
results for numerically unstable systems).

Algorithm GSO operates on a block matrix structure

M; M.
( 1 2}_}[Q1 Q,Qj, (14)
M; My Qv Qq4
where the transition from M to Q is defined by the equations
0i0; =1, (15)
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=0QIR, (16)
Q =MR", Qy=M,-0Q,0iM;, 17)
Qs =M3R™', Q4 =M, -Q;01M,, (18)

and R is the upper triangular matrix.

Algorithm MGS is applied to block matrix M so that the
column dot products are computed only for submatrices (M,
M), the projections 1,q;, are computed for full columns of M
and the whole process is terminated after of all columns of
submatrix (M}, Ms)" have been processed. This step is called
the first orthogonalization in algorithm GSO.

Let us take as an example the linear system of project
equations (2)

Ax —l=v

and apply algorithm GSO to the block matrix

ol )

The result is directly the vector of unknown parameters
x and the vector of residuals ». The cofactors (weight coeffi-
cients) of the adjusted parameters G, are available as the
dot products of rows ¢ and j of submatrix R™!, the cofactors of
the adjusted observations ¢, ; —are computed as the dot
products of rows m and n of submatrix Q@ and the mixed
cofactors g, ; -~ similarly as the dot products of the i-th row of
R~ and the n-th row of matrix Q.

5.2 Algorithm GSO and singular systems

Let us suppose now that project equations matrix 4 con-
tains r linearly independent columns and the remaining d
linearly dependent columns. Without loss of generality we can
assume that the linearly dependent columns are located in
the right part of matrix 4. We denote linearly independent
columns 4, linearly dependent columns 45 and the matrix of
their linear combinations «

X
A=(A,Ay), Ay=Aw, « :( 1]. (19)
X2
Now we can rewrite the project equations as
—l=A1(x1+ax2)—l=A1'i—l. (20)

As matrix 4, does not contain linearly dependent columns, a
unique solution ¥ of (20) exists that minimizes the Euclidean
norm of v.

v = Alxl + AQJCQ

If we know matrix & and vector ¥ then any solution x of
X =x) +axe =1, a)x (21)

is at the same time the Least Square solution of (20) with the
same vector of residuals v.

If we apply algorithm GSO to the matrix

| gl A | 4y -1
M= MII M% =10 o0 (22)
374 0|1 0

we receive a block matrix

(23)

15



Acta Polytechnica Vol. 45 No. 1/2005

Czech Technical University in Prague

In the case of singular systems in GSO we have the first
orthogonalization, which defines a particular solution in which
the unknown parameters corresponding to the linearly de-
pendent columns of 4 are set to zero. From CGS it emerges di-
rectly that matrix « is the matrix of the linear combinations
from (19). The cofactors are computed the same way as in the
case of regular systems.

When computing GSO numerically we naturally do not
obtain exactly zero vectors on the positions of the (almost)
linearly dependent columns. We declare to be linearly de-
pendent those columns of 4 whose norms drop below a given
tolerance. During the first orthogonalization we set to zero
corresponding subvectors in the area of 4. These values can
be considered as random noise that adds no information to the
whole solution.

The result of the first orthogonalization are first of all
the vector of the residuals and cofactors of the adjusted obser-
vations. It now remains to determine the vector of the
unknown parameters x that satisfies condition (9) and its
cofactors (weight coefficients). This step of GSO is called sec-
ond orthogonalization.

By solving the system of linear equations

il

we get, according to (21), a vector x with the minimal norm.
If we select from (24) only certain rows, we obtain the solution
minimizing the corresponding subvector. This system can
naturally be solved using GSO.

If we need the cofactors of the adjusted unknowns, as is
the standard case with geodetic applications, we have to pro-
cess during the second orthogonalization the whole lower
submatrix that resulted from the first orthogonalization step.
—a| B! &'J

. (25)

1

MY — o a2
(M | i 0 o

During the first orthogonalization, the linearly dependent
columns in My are identified and are explicitly zeroed. The
result of the first orthogonalization is a particular solution in
which the unknowns corresponding to the linearly dependent
columns are all set to zero. Naturally their cofactors are zero
as well.
Durin% the second orthogonalization step only the sub-
matrix (Q3, Q}l) is influenced and the orthogonalization pro-
cess is carried out as follows
e Gram-Schmidt orthogonalization runs only through col-
umns corresponding to the linearly dependent columns of
M, asif they were numbered 1, 2, ..., d, where d is the nul-
lity of M,

o dot products are computed only for indices i€ O from the
regularization condition

. p
min E xf R
X

Linearly dependent columns are zeroed during the sec-
ond orthogonalization even in the region of submatrix (Qs,
Q,). The cofactors after the second orthogonalization are
computed in the same way as in the case of regular systems.

1€0.
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6 Singular Value Decomposition
(SVD)

For any real m X n matrix 4, m 2n, there exists the singular
value decomposition

A=UWV' (26)
Uuu-=1, vwwW =vVVv-=1,
where U is an m Xn matrix with orthogonal columns, W is
a diagonal matrix n X n with nonnegative elements and V'is a

square orthogonal matrix n X n, (this variant is referred to as
the thin SVD [3]).

Matrix W is uniquely determined up to the permutation
of its diagonal elements. The diagonal elements w; are called
singular values of matrix 4. Their squares are eigenvalues of
n X n matrix A'A. Thus, the condition number of matrix 4 can
be computed as the ratio of the maximal and minimal singu-
lar value.

w
K(A) =—max. 27)
Wmin
With singular decomposition we can directly express the
vector of unknown parameters x from the project equations

Ax =1, x=vw UL, w'=diag(l/w;). (28)

If matrix A has more rows than columns (overdetermined

system), then the Euclidean norm of the residual vector
v=Ax -1

is minimal and vector x is the Least Squares solution to the

project equations (2).

For a matrix 4 with linearly dependent columns d singular
values are zero (d is the dimension of null space of 4). Singu-
lar value decomposition explicitly constructs the orthonormal
vector basis of the null space and the range of 4. The columns
of matrix U corresponding to nonzero singular values w; form
the orthonormal base of the range of 4. Similarly, the col-
umns of matrix V corresponding to nonzero singular values
form the orthonormal basis of the null space of 4.

Ny :{x |Ax =0, xeR"}

R4 ={y‘y=Ax, xeR”}.

In the case of rank deficient systems, we set into the diago-
nal of inverse matrix W~ zeros instead of reciprocals for
elements corresponding to linearly dependent columns 4
l/w; forw; >0

wl= diag{ 0 (29)

for w; =0.

The resulting particular solution x minimizes both the Euclid-
ean norm of the residuals and at the same time the norm of
unknown parameters x.

The rather surprising replacement of reciprocal 1/0 =
by zero can be explained as follows. The solution vector x of
the overdetermined system

Ax =1
can be expressed as the linear combination of the columns of
matrix V

n
1 S
i= )
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The coefficients in parentheses are dot products of col-
umns U and right hand side I multiplied by the reciprocal
value of the singular value. The zero singular values corre-
spond to the linearly dependent columns of matrix 4 that add
no other information to the given system. Setting corre-
sponding diagonal elements of matrix w1 to zeros is equi-
valent to eliminating the linearly dependent columns from
matrix 4.

With matrix W~! defined according to (29), the cofactors
computed the same way for regular and singular systems

0. =N"'=@a ' =wywvowy)y ! =vw w1y, (31)
Q, =AQ.. A =UWVvw W v\ vwu) =UU,  (32)
Q) =AQ, =uwvvw 'w v —uw v, (33)

The cofactors (weight coefficients) for the adjusted pa-
rameters, observations and mixed cofactors are computed,
similarly as in the case of GSO, as the dot products of the rows
of matrices U and V; multiplied by the diagonal elements of
W~ in the case of cofactors of .

6.1 Algorithm SVD and singular systems

What now remains is to show how to compute the particu-
lar solution that minimizes only a given subset of subvector x
according to the second regularization condition (9). We com-
pose an overdetermined system of linear equations

Ye+x=x, (34)
where the columns of matrix i are vectors of null space basis
Y =W Vg Vi) wi, =0,
and c is the vector of the coefficients of the linear combination
of null space basis vectors that, when added to vector x, mini-
mizes the selected subvector of unknown parameters & (here
they act as residuals).

From a comparison of (34) with equations (24) and (25)
it is obvious that for computing £ we can use the second
orthogonalization of algorithm GSO. If the GSO second
orthogonalization is applied to matrix ¥ from the singular
decomposition

M" = (mf|m") =), (35)
we obtain matrix V. If we now replace the singular value de-
composition matrix ¥ by matrix V, we can compute vector &
and all cofactors according to the same formulas (30-33) as in
the case of standard SVD solution x.

7 Network adjustment in GNU Gama

Gama was started in 1998 as a local educational project,
mainly to demonstrate to our students the power and capabil-
ity of object programming (the project is written in C++), and
at the same time to show some alternatives to traditional ap-
proaches to numerical solutions of Least Squares adjustments
based on normal equations. Project Gama was released under
the terms of the GNU General Public license, and in 2001
received the official status of GNU software.

Numerical solution of geodetic network adjustment in
Gama is based on an abstract C++ class and currently two
derived classes are available implementing algorithms SVD
and GSO. SVD is the primary algorithm used in Gama (one of
our long term goals is to add more numerical solutions,

© Czech Technical University Publishing Housee

namely solutions exploiting the sparse structure of project
equations). From this perspective, algorithm GSO was imple-
mented in Gama only as an testing alternative, both for com-
paring numerical results and for testing the hierarchy of the
adjustment classes in practice.

It is generally agreed that a bad implementation of GSO
can produce disastrous results. For example, during the first
orthogonalization step of GSO we set to zeros the unknown
parameters corresponding to linearly dependent columns. In
the case of a free geodetic network adjustment these are the
coordinates of certain points — the whole network is pinned
on these points and clearly, if close points are selected the
regularization is unstable. The order of the columns in the
orthogonalization is important.

From practical experience we know that vector norms
in the GSO orthogonalization process generally tend to de-
crease. As GSO is just an alternative algorithm in Gama and
its performance is not a crucial point, we implemented it with
full pivoting, i.e., in each orthogonalization cycle the vector
with the maximal norm is selected as a pivot (with this modifi-
cation GSO is about twice as slow as SVD for large networks).

Singular Value Decomposition is a very robust method for
dealing with systems that are either singular or numerically
close to singular. Even with full pivoting we had expected GSO
to prove to be inferior to SVD, at least in cases with illcon-
ditioned matrices. Surprisingly, with all the real geodetic
networks that we have available this was not the case. Apart
from real data, we used series of randomly generated three-
-dimensional networks for testing.

Our implementation of SVD is based on a classical algo-
rithm published by Golub and Reinsch [7] (the ALGOL
procedure SVD). The decomposition is constructed in two
phases. It starts with the Householder reduction to bidiagonal
form, followed by diagonalization. Contrary to our expecta-
tions, SVD as used in Gama has not proved to give numeri-
cally better results and in some cases it has even lost conver-
gence in the diagonalization phase.

A simple and tempting explanation that comes first to
mind would be that the SVD implementation in Gama is
somehow wrong. After all testing and revisions this does not
seem to be the point. A possible explanation might be given
by the following quotation from [3]

... Finally, we mention Jacobi’s method ... for the SVD.
This transformation method repeatedly multiplies A on the
right by elementary orthogonal matrices (Jacobi rotations)
until A converges to UZ; the product of the Jacobi rotations
is I/ Jacobi is slower than any of the above transformation
methods (it can be made to run within about twice the time of
QR ... ) but has the useful property that for certain A4 it can
deliver the tiny singular values, and their singular vectors,
much more accurately than any of the above methods pro-
vided that it is properly implemented...

Surely to have more numerical methods implemented in
Gama would be helpful, for example the above mentioned
Jacobi method for SVD.

A practical problem during testing of the adjustment
methods in Gama was the relative shortage of reliable obser-
vation data and their adjustment results for testing. To enable
easy comparison with other softwares we made a description
of geodetic networks in XML (we use DTD for the definition
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of the formal syntax of our structured data). Conversion from
a well defined data format into XML is a relatively simple
task, but processing of XML is not a trivial task and can-
not be done without an XML parser. In the GNU Gama
project we use the XML parser expat by James Clark,
see http://expat.sourceforge.net/. We believe that
XML is the best data format for description and exchange
of structured data in the Gama project. One of the goals of
our project is to compile a free collection of geodetic networks
described in XML.
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