
Notation
AR Wing aspect ratio.
CLmax Maximum Lift coefficient of the aircraft with re-

tracted flaps.
CLmaxFF Maximum Lift coefficient of the aircraft with full

flaps.
CLmaxL Maximum Landing Lift coefficient of the

aircraft.
CLmaxTO Maximum Take Off Lift coefficient of the

aircraft.
RC, RCmax Maximum Rate of Climb.
S Wing area.
SLG, STOG Landing Ground run, Take Off Ground run.
t Time.
tmin Minimum time of climb to altitude z.
V(RCmax) Speed at maximum Rate of Climb.
Vmax, Vmin Maximum level speed, minimum level speed.
Vs, VsFF Stalling speed flaps up, stalling speed flapsdown.
WE Empty Weight.
WTO Maximum Take Off Weight.
P Power.
z Altitude.
�, �0 Density, density at sea level.

1 Introduction
The class of Ultralight (ULM) and light aircraft in general

has attracted by growing interest through Europe in recent
years. Only in Italy in the last 5–6 years, at least 10 companies

have started production of ULM aircraft. There is a very ac-
tive market for this class, used to promote flight at all levels
and for sports aircraft The maximum flight speed for ULM
aircraft has been increased in recent years through the use of
more powerful engines (100 hp instead of 64 or 80) and
better aerodynamics. It is not surprising that a maximum
level speed of about 280 km/h has been reached. Since the
weight constraints are very strict, it is important to study
ways to improve structural design, safety, flight qualities,
aeroelastic behaviour and systems reliability, without raising
costs.. Following the experience acquired in our department
in designing light and ultralight aircraft, the design of a new
composite ULM is being carried out at DPA. The design goals
established for this new design were: 1) Short Take-Off and
Landing (STOL) aircraft capable of taking off and landing
from an uprepared runway within 40 m; 2) almost complete
construction in composite material; 3) foldable wing, in order
to make the ULM very easy to use, to put on a trailer and to
hangar in a normal size garage; 4) wing with a retractable
leading edge slat and slotted/fowler flaps; 5) maximum speed
around 190–200 km/h at MTOW of 450 kg; 6) good flight
and handling qualities, to be safely flown by inexperienced
pilots; 7) low cost.

2 Market survey
All the analyzed aircraft are ULM (WTO = 450 kg =

4415 N) and equipped with an 80 hp (59.6 kW) engine;
most of them are made of aluminium alloy with a high wing
configuration, ensuring high stability and easy piloting. None
satisfies all the above-mentioned design goals. In fact, the
YUMA, the Savannah and the Zenair CH 701 are successful
STOL aircraft made of aluminium alloy; however, their de-
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Aircraft M. W.p. WE
[N]

W
W

E

TO

W
S
TO

[N/m2]

S
[m2]

AR VS
[km/h]

VSFF
[km/h]

Vmax
[km/h]

RC
[m/s]

STOG
[m]

SLG
[m]

CLmax CLmaxFF

P92 ECHO 80 a h 2757 0.62 334.43 13.20 6.55 71 61 210 5.5 110 100 1.40 1.90

P96 GOLF 80 a l 2757 0.62 361.84 12.20 5.78 71 61 225 4.5 110 100 1.52 2.06

Table 1: Weights, sizes and performances at sea level of the analyzed aircraft (M. – Material: a – aluminium alloy, c – composite; W.p. –
Wing position: h – high, l – low.)
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sign is unattractive, and they have a fixed slat on the leading
edge, which reduces maximum cruising speed. The Sky Ar-
row 450T and the REMOS G-3, on the contrary, are high cost
“non-STOL” aircraft in composite materials, advanced ULM.
They can easily by put onto a trailer, due to their removable or
foldable wing. The main characteristics of the analyzed air-
craft are shown in Table 1. Their main performance charac-

teristics in terms of landing run versus maximum level speed
at sea level are shown in Fig. 1.

3 Design point
The methodology followed during the design process is

similar to that reported in [1], but it has been expressly modi-
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Fig. 1: Landing ground run versus maximum level speed at sea level

Aircraft M. W.p. WE
[N]

W
W

E

TO

W
S
TO

[N/m2]

S
[m2]

AR VS
[km/h]

VSFF
[km/h]

Vmax
[km/h]

RC
[m/s]

STOG
[m]

SLG
[m]

CLmax CLmaxFF

REMOS G-3 c h 2757 0.62 366.65 12.04 7.98 75 63 220 6.5 80 140 1.38 1.95

DF 2000 a h 2747 0.62 367.88 12.00 8.33 66 56 215 5.5 110 100 1.79 2.48

YUMA (STOL) a h 2766 0.63 328.46 13.44 7.07 55 50 175 6.0 40 55 2.30 2.78

SAVANNAH
(STOL)

a h 2668 0.60 343.81 12.84 6.28 50 45 160 6.0 50 50 2.91 3.59

ZENAIR CH 701
(STOL)

a h 2580 0.58 387.24 11.40 5.90 53 48 153 7.0 50 50 2.92 3.56

AMIGO ! a l 2806 0.64 339.58 13.00 5.24 74 64 250 6.5 80 100 1.31 1.75

SLEPCEV
STORCH Mk4
(STOL)

a h 2649 0.60 275.91 16.00 6.76 52 46 155 4.5 50 50 2.16 2.76

SKY ARROW
450T

c h 2825 0.64 326.76 13.51 6.96 70 61 192 5.1 120 80 1.41 1.86

Allegro 2000 a h 2727 0.62 387.24 11.40 10.23 73 63 220 5.0 150 100 1.54 2.06

SINUS 912
Motoaliante

c h 2786 0.63 360.07 12.26 18.28 66 63 220 6.5 88 100 1.75 1.92

AVIO J-Jabiru c h 2649 0.60 474.17 9.31 9.49 74 64 216 6.0 100 160 1.83 2.45

EV-97 EURO
STAR Model
2001

a l 2570 0.58 448.63 9.84 6.67 75 65 225 5.5 125 90 1.69 2.25

JET FOX 97 a, c h 2845 0.64 301.95 14.62 6.54 70 60 175 6.0 100 120 1.30 1.77

TL 96 Star a l 2747 0.62 364.83 12.10 6.87 80 63 250 6.0 90 100 1.21 1.94



fied for the ULM category: in particular, new statistical rela-
tions between take off ground run STOG and Take Off Pa-
rameter for ULM TOPULM (1), landing ground run SLG
and landing stall speed VSL, power index Ip (3) and maxi-
mum speed at sea level Vmax have been calculated, as shown
in Figs. 2, 3 and 4. TOPULM is defined as:
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Ip is defined as:
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In (4) Pcr and PTO are respectively the power at cruising
and take off, kv and kz are the speed and altitude factor (for
a four-stroke engine kv � 1 and kz � �1.22), � is the engine
admission limit. The data scattering is probably due to lim-
ited reliability of the published data, and due to an unbiased
difficulty in measuring the data: for example, slight dif-
ferences in executed manouvres lead to great differences in
measured data.

For this STOL aircraft, the main restrictions are maxi-
mum speed, take off and landing run, as shown in Fig. 5.
Once these limitations have been reported in a graph re-
lating power loading (W/P)TO and wing loading (W/S)TO,
the resulting shaded area represents all the possible de-
sign point choices. Maximum power loading is fixed
( ( W/P)TO � 74 N/kW), because maximum take off weight
(450 kg � 4415 N) and power (80 hp � 59.6 kW) have been
fixed. In this way only maximum wing loading has been
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chosen, based on the criteria for keeping the wing area as
small as possible (mainly for cost reasons) and using ap-
propriate values of maximum take off and landing lift coef-
ficient ((W/S)TO � 324 N/m2, S � 13.6 m2, CLmaxTO � 2.45,
CLmaxL � 3.12).

4 Preliminary design
The conceptual loop is shown in Fig. 6. It looks simple,

but, for example, converting the geometry of sections into
CAD geometry is a complicated and delicate step: aircraft
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Fig. 6: Conceptual loop design



surfaces must be carefully defined, otherwise the aircraft
geometry will be different from the desired design. The para-
metric optimization loop is shown in Fig. 7. First of all, the
preliminary geometry was fixed, analyzing existing aircraft
and applying semi-empirical methods. The wing was sized to
minimize the required power at cruising speed. Some airfoils
were analyzed and a new airfoil was designed (modifying
NACA GAW1 airfoil) to provide a compromise between lift,
drag and pitch moment coefficients. The high lift system and
aileron sizing ensures the STOL characteristic and good lat-

eral control; this has been demonstrated by J. Roskam [2],
W. McCormick [3], C. D. Perkins and R. E. Hage [4] and by
the authors [5]. In particular, two possible high lift system
configurations are shown in Fig. 8. The horizontal and verti-
cal tails were sized by the volume method, ensuring good
stability and control also in landing. The fuselage design is
very important and it was based on aerodynamic, ergonomic
and line of sight studies, as shown in Fig. 9. A 3-view of the
aircraft is shown in Fig. 10; Table 2 reports the main dimen-
sions, weights and loadings.
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5 Numerical analysis

The design was accomplished using a code named
AEREO [5], which has been developed in recent years at
DPA to predict all aerodynamic characteristics in linear and
non-linear conditions (high angles of attack) and all flight
performances as well as dynamic behavior and flight qualities

of propeller driven aircraft. The figures below report some
aerodynamic characteristics (Figs. 11, 12, 13 and 14) and per-
formance characteristics (Fig. 15) of the aircraft calculated
with AEREO code. Table 3 reports the main performances of
the aircraft. Further optimization of the global configuration
is in progress to improve the wing aero-structural behavior as
well as the relative position of the wing and horizontal tail to
minimize downwash and induced drag.
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DIMENSIONS, EXTERNAL

WING AIRCRAFT

Span [m] 9.71 Length overall [m] 6.52

Root chord [m] 1.40 Height overall [m] 1.35

Tip chord [m] 1.40

Aspect ratio 6.93 PROPELLER (fixed-pitch)

Incidence [deg] 2.00 Blade number 3

Diameter [m] 1.66

HORIZONTAL TAIL

Span [m] 2.80 AREAS

Root chord [m] 0.72 Wing [m2] 13.60

Tip chord [m] 0.72 Ailerons [m2] 1.22

Aspect ratio 3.90 Leading edge flap [m2]: slat 2.04

Trailing edge flap [m2]: single slot 2.85

VERTICAL TAIL Horizontal tail [m2] 2.01

Span [m] 1.47 Vertical tail [m2] 1.08

Root chord [m] 0.87

Tip chord [m] 0.61 WEIGHTS AND LOADINGS

Aspect ratio 2.00 Empty weight 280 kg 2747 N

Incidence [deg] 0.00 Max T-O and landing weight 450 kg 4415 N

Leading edge sweep angle [deg] 22.20 Max wing loading 33.09 kg/m2 324 N/m2

Trailing edge sweep angle [deg] 13.00 Max power loading 5.63 kg/hp 74 N/kW

Table 2: Main dimensions, weights and loadings

PERFORMANCE (Max weight, ISA, at sea level)

Max speed [km/h] 194 Take off run to 15 m [m] 121

Cruising speed [km/h] 165 Landing run from 15 m [m] 100

Stall speed [km/h]: flaps up 65 Landing run [m] 50

flaps down: slat – single slot 48 Theoretical ceiling [m] 7908

Max rate of climb [m/s] 6.69 Service ceiling [m] 7317

Take off run [m] 55

Table 3: Performances



6 Conclusion

The preliminary design of a STOL ULM aircraft and nu-
merical performance prediction has been shown. The aircraft
shows acceptable performances that are consistent with the
desired design goals. The predicted performances were ob-

tained with AEREO code, which confirmed its usefulness as a
fast and reliable design tool for propeller-driven aircraft. The
parametric design and optimization loops have been high-
lighted. Detailed design and optimization of the high-lift sys-
tem and three-dimensional aerodynamic analysis are in prog-
ress, while wind tunnel tests (high-lift airfoil, aircraft model)
are planned in the near future.
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