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COMPLEX COVARIANCE
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Abstract. According to some generalized correspondence principle the classical limit of a non-
Hermitian quantum theory describing quantum degrees of freedom is expected to be the well known
classical mechanics of classical degrees of freedom in the complex phase space, i.e., some phase space
spanned by complex-valued space and momentum coordinates. As special relativity was developed by
Einstein merely for real-valued space-time and four-momentum, we will try to understand how special
relativity and covariance can be extended to complex-valued space-time and four-momentum. Our
considerations will lead us not only to some unconventional derivation of Lorentz transformations for
complex-valued velocities, but also to the non-Hermitian Klein-Gordon and Dirac equations, which are
to lay the foundations of a non-Hermitian quantum theory.
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1. Introduction
As has been pointed out on various places (see e.g.
[1–10] and references therein), a simultaneous causal,
local, analytic and covariant formulation of physical
laws requires a non-Hermitian extension of quantum
theory (QT), i.e. quantum mechanics and quantum
field theory. Since causality expressed in QT by the
time-ordering operation infers some small negative
imaginary part in self-energies appearing in causal
propagators which may be represented by some (in
most cases infinitesimal) negative imaginary part in
particle masses, even field operators representing elec-
trically neutral causal particles have to be considered
non-Hermitian. This leads to the fact that their cre-
ation and annihilation operators are not Hermitian
conjugate to each other. During the attempt to find
some spatial representation of non-Hermitian creation
and annihilation operators which preserves analytic-
ity and covariance, it has turned out that the afore-
mentioned non-Hermitian causal field operators are
functions of the complex spatial variable z instead of
merely the real spatial variable x, while anticausal
field operators are functions of the complex conjugate
spatial variable z∗. Consequently a causal, local, ana-
lytic and covariant formulation of the laws of nature
separates into a holomorphic causal sector and an
antiholomorphic anticausal sector, which must not
interact on the level of causal and anticausal field-
operators in the spatial respresentation.

At least since Gregor Wentzel [11] (1926) there ex-
ists a formalism (see also [12–18]) nowadays called e.g.
the “Quantum-Hamilton-Jacobi Theory” (QHJT) or
the “Modified de Broglie-Bohm Approach”, which re-
lates a field or wave function by some correspondence
principle (see e.g. Eqs. (4.10)) to the trajectories of
some “quantum particle” in the whole complex phase

space. Wentzel’s approach has recently even been
fortified by A. Voros [19] (2012) by providing an “ex-
act WKB method” allowing to solve the Schrödinger
equation for arbitrary polynomial potentials simulta-
neously in the whole complex z-plane. Moreover, there
exists a rapidly increasing interest [23] of many theo-
retical and experimental researchers to study solutions
of the Schrödinger equation even for non-Hermitian
Hamiltonians in the whole complex plane due to a
meanwhile confirmed conjecture of D. Bessis (and J.
Zinn-Justin) in 1992 on the reality and positivity of
spectra for manifestly non-Hermitian Hamiltonians,
which was related by C.M. Bender and S. Boettcher
in 1997 [20] to the PT-symmetry [21] of these Hamil-
tonians.

Despite this enormous amount of activities to “make
sense of non-Hermitian Hamiltonians” [21, 22] and
the fact that we had managed [6] to construct even
a Lorentz-boost for complex-mass fields required to
formulate non-Hermitian spinors and Dirac-equations,
there has remained — as to our understanding — one
crucial point neglected and unclear which is in the
spirit of the QHJT and which will be the focus of
the presented results: How can the general concept
of “covariance” having been formulated by Albert Ein-
stein (1905) [24] and colleagues (see also [25, 26])
merely for a phase space of real-valued spatial and
momentum coordinates be extended to a complex (i.e.
complex-valued) phase space? An answer will be given
to some extent in the follwoing text. Certainly one
might argue that there are already approaches like e.g.
[27–31], which refer to seemingly covariant equations
within a non-Hermitian framework. Nonetheless, it
turns out that in all of the approaches there remain
open questions to the reader to what extent these
equations are consistent with some of the aspects of
causality, locality or analyticity, and to what extent
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the fourvectors formed by space-time and momentum-
energy coordinates contained in these equations will
transform consistently under Lorentz transformations,
as it seems at the first sight (e.g. [32, 33]) completely
puzzling how to extend the framework of an inertial
frame to the complex plane.

2. Space-time covariance for
complex-valued velocities

The purpose of this section is to derive generalized
Lorentz-Larmor-FitzGerald-Voigt (LLFV) [34, 35]
transformations1 relating the space-time coordinates
~z, t and ~z′, t′ of two inertial frames S and S ′, respec-
tively, which move with some constant 3-dimensional
complex-valued relative velocity ~v ∈ C×C×C. While
the 3-dimensional space vectors ~z and ~z′ are assumed
to be complex-valued, i.e. ~z, ~z′ ∈ C×C×C, our deriva-
tion will display how the preferably real-valued time
coordinates t and t′ will be complexified.
Without loss of generality we will constrain our-

selves throughout the derivation to one complex-
valued spatial dimension while the generalization
to three complex-valued spatial dimensions appears
straightforward. Hence we consider in what follows
for simplicity generalized LLFV transformations re-
lating the space-time coordinates z, t and z′, t′ (with
z, z′ ∈ C) of two inertial frames S and S ′, respec-
tively, moving with some constant one-dimensional
complex-valued relative velocity v ∈ C.
According to the standard definition, an inertial

frame in the absence of gravitation is a system in
which the first law of Newton holds. For our purposes
we will rephrase this definition in a way which may
be used even in some complexified space-time:
An inertial frame in the absence of gravitation is a

system whose trajectory in (even complexified) space-
time is a straight line.

Our definition of inertial frames implies directly that
generalized LLFV transformations relating inertial
frames must be linear. Making use of this observation
we can write down — as a first step in our derivation
— the following linear ansatz for the generalized LLFV
transformations between the inertial frames S and S ′:

z′ = γ · z + δ · t+ ε, (2.1)
t′ = κ · z + µ · t+ ν. (2.2)

Here γ, δ, ε, κ, µ, ν are yet unspecified eventually
complex-valued constants.

In a second step we will perform — without loss of
generality — a synchronization of the inertial frames
S and S ′ by imposing the following condition:

(z, t) = (0, 0) ⇐⇒ (z′, t′) = (0, 0). (2.3)
1Major steps in the LLFV-history: stepwise derivation of the

transformations by Voigt (1887), FitzGerald (1889), Lorentz
(1895, 1899, 1904), Larmor (1897, 1900); formalistic progress
afterwards: Poincaré (1900, 1905) (discovery of Lorentz-group
properties and some invariants), Einstein (1905) (derivation of
LLFV transformations from first principles), Minkowski (1907-
1908) (geometric interpretation of LLFV transformations).

Obviously the synchronisation yields ε = ν = 0. In-
serting this result in Eqs. (2.1) and (2.2) leads to the
following equations:

z′ = γ · z + δ · t = γ
(
z + δ

γ
· t
)
, (2.4)

t′ = κ · z + µ · t. (2.5)

In the 3rd step we use the relative complex-valued
velocity between inertial frames S and S ′: the spatial
orgin z′ = γ · z + δ · t = 0 of S ′ moves in S with
constant complex-valued velocity v ≡ z/t = −δ/γ
yielding for Eq. (2.4):

z′ = γ(z − v · t) with γ = γ(v). (2.6)

In writing γ = γ(v) we point out that the constant γ
could be a function of the complex-valued velocity v.
The fourth step is the application of the principle

of relativity which states that — in the absence of
gravity — there does not exist any preferred inertial
frame of reference implying in particular that the laws
of physics take the same mathematical form in all
inertial frames. This provides an essentially unique
prescription of how to construct inverse generalized
LLFV transformations: interchange the space-time
coordinates z, t and z′, t′, respectively, and replace the
complex-valued velocity v by −v. As a consequence
we obtain for the corresponding “inverse” of Eq. (2.6):

z = γ(z′ + v · t′) with γ ≡ γ(−v). (2.7)

In order to determine the yet unknown eventually
complex-valued constants κ and µ in Eq. (2.4), we
solve Eq. (2.7) for t′ and apply to the result the identity
Eq. (2.6), i.e.:

t′ = 1
v

( z
γ
− z′

)
= 1
v

( z
γ
− γ(z − v · t)

)
(2.8)

or — after some rearrangement —

t′ = γ

(
t− 1

v

(
1− 1

γγ

)
z

)
. (2.9)

Comparison of Eq. (2.9) with Eq. (2.5) yields κ =
−γv
(

1− 1
γγ

)
and µ = γ. By the same procedure

leading from Eq. (2.6) to Eq. (2.7) the principle of
relativity can be used to obtain the corresponding
“inverse” of Eq. (2.9), i.e.:

t = γ

(
t′ + 1

v

(
1− 1

γγ

)
z′
)
. (2.10)

Hence, the previous considerations result in the fol-
lowing four identities (with γ ≡ γ(v), γ ≡ γ(−v)):

z′ = γ(z − v · t), (2.11)

t′ = γ

(
t− 1

v

(
1− 1

γγ

)
z

)
, (2.12)

z = γ
(
z′ + v · t′

)
, (2.13)

t = γ

(
t′ + 1

v

(
1− 1

γγ

)
z′
)
. (2.14)
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In dividing Eq. (2.11) by Eq. (2.12) and Eq. (2.13) by
Eq. (2.14) we obtain a generalized velocity addition
law Eq. (2.15) and its inverse Eq. (2.16), respectively,
i.e.:

z′

t′
=

z
t − v

1− 1
v

(
1− 1

γγ

)
z
t

, (2.15)

z

t
=

z′

t′ + v

1 + 1
v

(
1− 1

γγ

)
z′

t′

. (2.16)

A final fifth step makes use of the principle of con-
stancy inferred by Albert Einstein stating that light in
vacuum is propagating in all inertial frames with the
same speed independent of the movement of the light
source and the propagation direction. For our purposes
we will generalize and simplify this principle of con-
stancy by simply claiming that the velocity addition
law and its inverse possess an eventually complex-
valued fixed point c whose modulus |c| coincides with
the vacuum speed of light. Or, in other words: there ex-
ists some eventually complex-valued velocity c which is
not modified by the application of the velocity addition
law and its inverse while the modulous |c| coincides
with the vacuum speed of light. Application of this
generalized principle of constancy to the addition laws
Eq. (2.15) and Eq. (2.16) yields the following identity
Eq. (2.17):

c = c∓ v
1∓ 1

v

(
1− 1

γγ

)
c

=⇒ γγ = 1
1− v2

c2

. (2.17)

As γγ depends on c2, i.e., the square of c, we can
conclude that — besides the fixed point +c of the
velocity addition law Eq. (2.15) and its inverse —
there simultaneously exists a second fixed point −c.
Eq. (2.17) can be used to transform Eqs. (2.11)–(2.16)
to their final form. As LLFV transformations should
reduce to the identity in the limit v → 0, we take
the “positive” complex square root of Eq. (2.17), i.e.,
(γγ)−1/2 = +

√
1− v2

c2 , and invoke it together with

γ =
√
γγ ·
√

γ
γ and γ =

√
γγ ·
√

γ
γ to Eqs. (2.11)–(2.14)

and obtain the following generalized LLFV transfor-
mations (with γ ≡ γ(v), γ ≡ γ(−v)):

z′ =
√
γ

γ
· z − v · t√

1− v2

c2

, (2.18)

t′ =
√
γ

γ
·
t− v

c2 · z√
1− v2

c2

, (2.19)

z =
√
γ

γ
· z
′ + v · t′√
1− v2

c2

, (2.20)

t =
√
γ

γ
·
t′ + v

c2 · z′√
1− v2

c2

, (2.21)

and to Eqs. (2.15), (2.16) to arrive at the generalized
velocity addition law and its inverse:

z′

t′
=

z
t − v

1− v
c2 · zt

, (2.22)

z

t
=

z′

t′ + v

1 + v
c2 · z

′

t′

. (2.23)

Two comments are in order here: even though the
previous Eqs. (2.18)–(2.23) look very similar to the
well known text-book equations appearing in the con-
text of the standard formalism of special relativity,
they are completely non-trivial as they hold not only
in a real-valued space-time and for real-valued veloci-
ties, yet also in a complex-valued space-time and for
complex-valued velocities. Moreover, the extension
of the aforementioned equations to three spatial di-
mensions is achieved by replacing the complex-valued
quantities z, z′ and v by complex-valued 3-dimensional
vectors ~z, ~z′ and ~v, respectively.

3. On the choice of the invariant
velocities ±c and the
complexification of time

As we allow complex-valued velocities we face more
freedom than Albert Einstein in defining the invariant
eventually complex-valued invariant velocities ±c. We
will discuss here two specific options for defining c
of which the first is our preferred choice due to the
arguments given below:

• Option 1: Choose c = ±|c| real-valued with |c| =
299792458m/s [38] being the vacuum speed of light
and set γ = γ (See the discussion of Eq. (4.14)!).
Performing this choice Eqs. (2.18)–(2.23) read:

z′ = z − v · t√
1− v2

|c|2

, z = z′ + v · t′√
1− v2

|c|2

, (3.1)

t′ =
t− v

|c|2 · z√
1− v2

|c|2

, t =
t′ + v

|c|2 · z
′√

1− v2

|c|2

, (3.2)

z′

t′
=

z
t − v

1− v
|c|2 ·

z
t

,
z

t
=

z′

t′ + v

1 + v
|c|2 ·

z′

t′

. (3.3)

With the exception of the square-roots all these
equations are manifestly analytic. On the world-
line z = v · t of S ′ in S we have with t ∈ R:

t′ =
t− v

|c|2 · v · t√
1− v2

|c|2

= t ·

√
1− v2

|c|2
∈ C for v ∈ C. (3.4)

Hence, the attractive feature of analyticity would
be obtained at the price of multiplying time in the
boosted frame by some complex-valued constant.
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• Option 2: Choose c and v to be (anti)parallel in
the complex plane, i.e., c = ±|c| · v

|v| = ±
∣∣ c
v

∣∣ · v
with |c| = 299792458m/s [38] being the vacuum
speed of light, and set γ = γ (See the discussion of
Eq. (4.14)!).
Performing this choice Eqs. (2.18)–(2.23) read:

z′ = z − v · t√
1−

∣∣ v
c

∣∣2 , z = z′ + v · t′√
1−

∣∣ v
c

∣∣2 , (3.5)

t′ =
t− v∗

|c|2 · z√
1−

∣∣ v
c

∣∣2 , t =
t′ + v∗

|c|2 · z
′√

1−
∣∣ v
c

∣∣2 , (3.6)

z′

t′
=

z
t − v

1− v∗

|c|2 ·
z
t

,
z

t
=

z′

t′ + v

1 + v∗

|c|2 ·
z′

t′

. (3.7)

All these equations are manifestly non-analytic. On
the world-line z = v · t of S ′ in S we have with
t ∈ R:

t′ =
t− v∗

|c|2 · v · t√
1−

∣∣ v
c

∣∣2 = t ·
√

1−
∣∣∣v
c

∣∣∣2 ∈ R

for
∣∣∣v
c

∣∣∣ ≤ 1. (3.8)

Hence, the attractive feature of a real-valued time
in S and S ′ would be obtained at the price of inter-
ferring manifest non-analyticity to the theory.

4. Momentum-energy covariance
for complex-valued velocities

It seems to be one of the greatest mysteries in the-
oretical physics that — as to our understanding —
the most straightforward derivation of Einstein’s [36]
famous seemingly classical identity E = mc2 is based
on the correspondence between classical and quantum
physics, finding its manifestation in the concept of
Louis de Broglie’s [37] (1923) particle-wave duality
(see also [25, 26]). In our words:2 In the process of
quantisation the point particle of classical mechanics
propagating in complex-valued space-time is replaced
by energy quanta (quantum particles) being represented
by some wave function ψ evolving also in complex-
valued space-time. Quantum particles, i.e. energy
quanta, can be — depending on the spatial spread
of the wave function and circumstances — localized
or delocalized. Moreover, — according to Liouville’s
complementarity and Heisenberg’s uncertainty prin-
ciple — they display some simultaneous spread in
complex-valued momentum space.

2It should be stressed that the concept of “electromag-
netic mass” [25, 26] involving names like J.J. Thomson (1881),
FitzGerald, Heaviside (1888), Searle (1896, 1897), Lorentz
(1899), Wien (1900), Poincaré (1900), Kaufmann (1902-1904),
Abraham (1902-1905), Hasenöhrl (1905) had revealed already
before Einstein (1905) a proportionality between energy and
some (eventually velocity dependent) mass, i.e. E ∝ mc2. Ein-
stein himself considered a moving body in the presence of e.m.
radiation to derive E = mc2.

In the interaction-free case, the wave function of a
quantum particle with sharply defined momentum is a
plane wave with angular frequency ω and wave number
k (or wave vector ~k in more than one dimension).
For a real-valued space coordinate x the functional
behaviour of a plane wave is known to be ψ(x, t) ∝
exp
(
i(kx− ωt)

)
, yielding obviously:

ω = +i∂ lnψ
∂t

, k = −i∂ lnψ
∂x

. (4.1)

As we extend our formalism to the complex plane we
replace the real-valued coordinate x by the complex-
valued coordinate z (or the complex-conjugate z∗).
Instead of performing partial derivatives with respect
to x, we will now perform partial derivatives with
respect to z (or z∗), which are known as Wirtinger
derivatives in one complex dimension and Dolbeault
operators in several complex dimensions. They are
used in the context of (anti)holomorphic functions
and have the following fundamental properties, being
some special case of the famous Cauchy-Riemann
differential equations:

∂z∗

∂z
= ∂z

∂z∗
= 0, ∂z

∂z
= ∂z∗

∂z∗
= 1. (4.2)

On this formalistic ground we denote now generalized
relations within a holomorphic framework to deter-
mine the eventually complex-valued angular frequency
ω and wave number k for a plane wave propagating
in some complexified phase space:

ω = +i∂ lnψ
∂t

, k = −i∂ lnψ
∂z

. (4.3)

Integration of these equations results in the following
wave function for a plane wave in some some holomor-
phic phase space:

ψ(z, t) ∝ exp
(
i(kz − ωt)

)
. (4.4)

As a key postulate (let us call it e.g. plane-wave-phase-
covariance postulate (PWPCP)) in our derivation we
claim at this point that the eventually complex-valued
phase of a plane wave should be a Lorentz scalar. Or,
in other words: the eventually complex-valued phase
of a plane wave should not change when boosted from
one inertial frame to another.3 For the previously
considered inertial frames S and S ′ this implies in
particular:

kz − ωt = k′z′ − ω′t′. (4.5)

We may now insert into the left-hand side of this equa-
tion our generalized LLFV transformations Eqs. (2.20)

3One could use these considerations even to define inertial
frames on the basis of quantum particles: An inertial frame in
the absence of gravitation is some reference frame in complex-
valued space-time in which the wave function describing a non-
interacting quantum particle with sharply defined momentum
has the mathematical form of a plane wave.
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and (2.21), i.e.:

k ·
√
γ

γ
· z
′ + v · t′√
1− v2

c2

− ω ·
√
γ

γ
·
t′ + v

c2 · z′√
1− v2

c2

= k′z′ − ω′t′. (4.6)

Comparison of the left- and right-hand side of this
equation yields the following two equations:

k′ =
√
γ

γ
·
k − v

c2 · ω√
1− v2

c2

, ω′ =
√
γ

γ
· ω − v · k√

1− v2

c2

, (4.7)

and by application of the principle of relativity inter-
changing k, ω and k′, ω′, respectively, and replacing
v by −v the two inverse equations:

k =
√
γ

γ
·
k′ + v

c2 · ω′√
1− v2

c2

, ω =
√
γ

γ
· ω
′ + v · k′√

1− v2

c2

. (4.8)

These four equations state that an eventually complex-
valued frequency ω and some — 3-dimensionally gener-
alized — wave vector ~k are transforming like a fourvec-
tor under inverse generalized LLFV transformations.
While the wave representation of particles has

brought us to the quantum formalism without even
involving Planck’s quantum of action ~ = h/(2π) =
1.054571726(47) · 10−34 J s [38] it is the following two
highly non-trivial and fundamental identities conjec-
tured by Louis de Broglie [37] (1923) to be applicable
even to massive particles which will bring us back to
the seemingly classical quantities momentum p (here
for simplicity in one dimension) and energy E, i.e.
(with k = 2π/λ):4

p = ~k, E = ~ω (4.9)

and — when combined with our Eqs. (4.3) — to the
following two fundamental identities representing even
for wave functions of interacting quantum particles
(being not of plane wave form) the correspondence
principle of QHJT, i.e.:

E = +i~∂ lnψ
∂t

, p = −i~∂ lnψ
∂z

. (4.10)

In multiplying Eqs. (4.7) and (4.8) by ~ it is now
straightforward to obtain via Eqs. (4.9) the seemingly
classical generalized Lorentz-Planck (LP) transforma-
tions (see also Planck [39] (1906)) relating here some

4It is of course known that the former identity E = hf
(with f = ω/(2π)) had been derived earlier — using an energy-
discretisation trick of Boltzmann — by Planck (1900) in the
context of the e.m. radiation of a black body and by Einstein
(1905) to determine the energy of his massless photon, while
the latter identity had been used in the form p = hf/c for
massless photons for the first time by Stark (1909) and later by
Einstein (1916, 1918), while Compton (1923) and Debye (1923)
had finally confirmed the proportionality of the suggested three-
momentum and wave vector of a massless photon by famous
experiments.

even eventually complex-valued momentum and en-
ergy in inertial frames S and S ′:5

p′ =
√
γ

γ
·
p− v

c2 · E√
1− v2

c2

, E′ =
√
γ

γ
· E − v · p√

1− v2

c2

, (4.11)

p =
√
γ

γ
·
p′ + v

c2 · E′√
1− v2

c2

, E =
√
γ

γ
· E
′ + v · p′√
1− v2

c2

.

(4.12)

Hence, a particle with zero momentum (p′ = 0) in
S ′ will have in the frame S of a resting observer the
eventually complex-valued velocity v and appear with
eventually complex-valued momentum p and energy
E given by:6

p =
√
γ

γ
· m0v√

1− v2

c2

, E =
√
γ

γ
· m0c

2√
1− v2

c2

, (4.13)

with m0 ≡ E′/c2 being — for the limit γ = γ being
seemingly favoured by experiment — some eventu-
ally complex-valued rest mass and Lorentz invariant,
as there obviously holds the generalized dispersion
relation:

E2 − (pc)2 = γ

γ
(m0c

2)2. (4.14)

5. Non-Hermitian
Klein-Gordon-Fock equation

At this point we would like to recall Eqs. (4.10) ex-
pressing the correspondence principle in QHJT and
being even valid for interacting quantum particles:

E = +i~∂ψ
∂t
· 1
ψ
, p = −i~∂ψ

∂z
· 1
ψ
, (5.1)

yielding obviously

E2 = (+i~)2
(
∂ψ

∂t

)2
· 1
ψ2 , p2 = (−i~)2

(
∂ψ

∂z

)2
· 1
ψ2 ,

(5.2)

Simultaneously there are the following two identities
holding for non-interacting quantum particles being
described by a plane wave ψ ∝ exp

(
i
h (pz − Et)

)
(ob-

tained by combining Eq. (4.4) with Eqs. (4.9)):

E2 = (+i~)2 ∂
2ψ

∂t2
· 1
ψ
, p2 = (−i~)2 ∂

2ψ

∂z2 ·
1
ψ
, (5.3)

Like Klein [40], Gordon [41] and Fock [42] in 1926
we can insert Eqs. (5.3) in the dispersion relation

5Without loss of generality, we display the equations here
only for one complex-valued momentum dimension.

6In the limit γ = γ we recover the famous relativistic identi-
ties ~p = m~v (Planck [39] (1906)) and E = mc2 (Einstein [36]
(1905)) with m = m0√

1−(v/c)2 .
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Eq. (4.14) to obtain the generalized Klein-Gordon-
Fock (KGF) equation describing a non-interacting
relativistic quantum particle:

E2︷ ︸︸ ︷
(+i~)2 ∂

2ψ

∂t2
· 1
ψ
−

(pc)2︷ ︸︸ ︷
(−i~c)2 ∂

2ψ

∂z2 ·
1
ψ

= γ

γ
(m0c

2)2

(5.4)

=⇒ (+i~)2 ∂
2ψ

∂t2
− (−i~c)2 ∂

2ψ

∂z2 = γ

γ
(m0c

2)2ψ

(5.5)

=⇒ (+i~)2 ∂
2ψ

∂t2
= (−i~c)2 ∂

2ψ

∂z2 + γ

γ
(m0c

2)2ψ.

(5.6)

As usual, the solution ψ = ψ(+) + ψ(−) of the KGF
Eq. (5.6) can be decomposed into a sum of a retarded
solution ψ(+) and an advanced solution ψ(−) solving
not only the KGF Eq. (5.6), but also respectively the
following relativistic retarded or advanced interaction
free Schrödinger [43] (1926) equations:

± i~∂ψ
(±)

∂t
=

√
(−i~c)2 ∂

2

∂z2 + γ

γ
(m0c2)2ψ(±)

≈
(√

γ

γ
m0c

2 −
√
γ

γ

~2

2m0

∂2

∂z2 + . . .

)
ψ(±) (5.7)

In the last line we performed the non-relativistic limit
well known for γ = γ.

6. Non-Hermitian Dirac-equation
Each of the four components of the Dirac spinor ψ
of a non-interacting Dirac-quantum particle should
individually respect the KGF Eq. (5.4). Returning to
three eventually complex-valued space and momentum
dimensions, this condition is formally denoted by the
following equivalent identities:

0 =
(
E2 − (~pc)2 − γ

γ
(m0c

2)2
)
ψ (6.1)

0 =
(

(+i~)2 ∂
2

∂t2
− (−i~c)2 ∂

∂~z
· ∂
∂~z
− γ

γ
(m0c

2)2
)
ψ

(6.2)

0 =
([

β
(

+i~ ∂
∂t
− (−i~c)~α · ∂

∂~z

)]2
− γ

γ
(m0c

2)2

)
ψ

(6.3)

0 =
(
β
(

+i~ ∂
∂t
− (−i~c)~α · ∂

∂~z

)
−
√
γ

γ
m0c

2
)

·
(
β
(

+i~ ∂
∂t
− (−i~c)~α · ∂

∂~z

)
+
√
γ

γ
m0c

2
)
ψ.

(6.4)

Throughout the factorization of Eq. (6.2) we made
use of the four well known 4× 4 Dirac matrices ~α and
β, which are defined as follows with the help of the

Pauli matrices ~σ, the 2 × 2 unit matrix 12 and the
2× 2 zero matrix 02:

~α ≡
(

02 ~σ
~σ 02

)
, β ≡

(
12 02
02 −12

)
. (6.5)

By simple inspection of Eq. (6.4) and use of the iden-
tity β2 = 14 it is now straightforward to denote the
retarded and advanced Dirac [44] (1928) equations for
the retarded component ψ(+) and advanced compo-
nent ψ(−) of solution ψ = ψ(+) + ψ(−) of the interac-
tion free KGF Eq. (6.1), i.e.:

0 =
(
β
(

+i~ ∂
∂t
− (−i~c)~α · ∂

∂~z

)
∓
√
γ

γ
m0c

2
)
ψ(±),

(6.6)

+i~∂ψ
(±)

∂t
=
(
−i~c~α · ∂

∂~z
±
√
γ

γ
βm0c

2
)
ψ(±),

(6.7)

±i~∂ψ
(±)

∂t
=
(
±(−i~c)~α · ∂

∂~z
+
√
γ

γ
βm0c

2
)
ψ(±).

(6.8)

Once more we stress that these generalized Dirac
equations, the generalized Schrödinger Eq. (5.7) and
the generalized KGF Eqs. (5.6), (6.2) do hold even
in complex-valued space-time and for complex-valued
rest mass m0.

7. Final remarks
The purpose of the considerations presented here has
been to extend the concept of covariance to complex-
valued space-time. It is remarkable that this can be
achieved in some analytical way on the basis of and
in accordance with the correspondence principle of
QHJT. After extending the concept of inertial frames
to the complex plane we have constructed on one
hand generalized LLFV and LP transformations relat-
ing the fourvectors of complex-valued space-time and
momentum-energy beween two inertial frames with
an eventually complex-valued relative velocity, and
on the other hand a complex generalization of Ein-
stein’s energy-mass equivalence E = mc2. It turned
out that the complexification of time is — in the
limit γ = γ — not a severe problem, as a boost will
multiply the time at most by a complex constant.
Moreover, it has been possible to derive on the ba-
sis of a generalized concept of covariance generalized
KGF, Schrödinger and Dirac differential equations,
which can be used to formulate a non-Hermitian QT
describing the apparently complex laws of physics. As
had already been pointed out earlier (e.g. [2]) it is
the advanced Schrödinger (or Dirac) equation which
plays the role of Benders hardly constructable CPT-
transformed Schrödinger (or Dirac) equation required
to construct some positive semidefinite CPT-inner
product [45] for some PT-symmetric QT. The pos-
sibility to obtain — via covariance — directly the
underlying advanced Schrödinger (or Dirac) equation,
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as described in the present paper, will make the te-
dious search and construction of a unique CPT-inner
product in non-Hermitian QT needless.
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