
Acta Polytechnica 53(4):344–346, 2013 © Czech Technical University in Prague, 2013
available online at http://ctn.cvut.cz/ap/

ON AN ALGORITHM FOR MULTIPERIODIC WORDS

Štěpán Holub∗

Department of Algebra, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 175 86 Praha
∗ corresponding author: holub@karlin.mff.cuni.cz

Abstract. We consider an algorithm by Tijdeman and Zamboni constructing a word of length k that
has periods p1, . . . , pr, and the richest possible alphabet. We show that this algorithm can be easily
stated and its correctness briefly proved using the class equivalence approach.

Keywords: periodicity, combinatorics on words.

1. A short (personal) history
Non-trivial words with a given set of periods P =
{p1, p2, . . . , pr} have received a lot of attention in the
past decade. The motivation was to generalize the
result by Fine and Wilf dealing with two periods,
which has become part of the folklore. A word with
periods P is called trivial if gcd(P) is its period too.
Papers [1] and [2] are two (independent) results con-
sidering non-trivial such words with maximal length
and maximal cardinality of the alphabet. These pa-
pers supplemented some older research of Castelli,
Mignosi, Restivo and Justin (see, e.g., [3] for more
details and references). Already in 1998, I wrote a
short manuscript giving an analogous result (without
considering publishing it), which I showed to Sorin
Constantinescu during the WORDS 2003 conference
in Turku, where he presented their results. Since this
was passed without notice in the subsequent publi-
cation, and since I considered my approach simpler
and more natural, I later decided to publish it in [4].
There was a gap in my paper, discovered by Gwénaël
Richomme, which is fixed in [5].
The present paper extends the same approach to

the construction of the richest word with a given set
of periods and a given length. The basic idea is to con-
sider relations defined by the periods and understand
letters as (names of) equivalence classes generated by
those relations. The idea is obvious and well known,
usually expressed using the graph terminology (edges
and connected components), rather than the alge-
braic terminology (relations and equivalence classes).
Tijdeman and Zamboni [3] point out that the straight-
forward algorithm based on the graph approach is
“simple but inefficient”, and then present an algorithm
based on less transparent combinatorial analysis. The
aim of this paper is to give a short description of their
algorithm, as well as a short and intuitive proof of its
correctness, using consistently the graph/equivalence
viewpoint.

2. Notation
Let w be a word of length k over an alphabet A. The
set of all letters that occur in w is denoted by alph(w).

The i-th letter of w is denoted by w[i − 1] so that
w = w[0]w[1] · · ·w[k − 1]. The prefix of w of length n
is denoted by prefn(w).
We say that a positive integer p is a period of a

word w if w[i] = w[i + p] for all 0 ≤ i ≤ |w| − p − 1
(where |w| denotes the length of the word). Note that
any p ≥ |w| is a period of u. If P is a set of positive
integers such that each p ∈ P is a period of w, we say
that w has periods P .
The word of length k having periods P and the

maximal possible cardinality of alph(w) is called an
FW-word relative to P (where FW stands for “Fine
and Wilf” for historic reasons). The word is called
trivial with respect to P if gcd(P) is a period of w. The
longest non-trivial FW-word relative to P is called an
extremal FW-word relative to P . We denote its length
by L(P) (note that L(P) = L(P)− 1 where L(P) is
the notation adopted in [3]).

3. Classes of Equivalence
Let w be a word which has periods P . For the rest
of the paper we denote m = min P . Obviously, if
i ≡ j mod m or |i − j| ∈ P , then w[i] = w[j]. These
two conditions induce the relation ∼P,k on integers
{0, . . . , k − 1} defined by:

i ∼P,k j if
a) i ≡ j mod m, or
b) there are integers i′, j′ ∈ {0, . . . , k − 1} such that

i ≡ i′ mod m, j ≡ j′ mod m

and
|i′ − j′| ∈ P.

Let ≈P,k be the equivalence closure of ∼P,k. In other
words, we have i ≈P,k j if and only if i and j lie in
the same connected component of the graph defined
by edges i ∼P,k j. The class of ≈P,k containing i will
be denoted by [i]P,k and represented by its minimal
element min[i]P,k. Then we define a word FW(P, k) of
length k over the alphabet N by

FW(P, k)[i] = min[i]P,k.

344

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/268468257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ctn.cvut.cz/ap/

vol. 53 no. 4/2013 On an Algorithm for Multiperiodic Words

The construction immediately yields that FW(P, k) is
the unique (up to renaming of letters) FW-word of
length k relative to P . The alphabet eventually used
in FW(P, k) depends on the number of equivalence
classes. In fact, its cardinality is part of the informa-
tion yielded by the algorithm.

Example 1. Let P = {5, 7}. The following picture
illustrates the construction of the word FW(P, 8) =
01034010. The upper edges correspond to i ≡ j
mod 5, and the lower edge corresponds to |i− j| = 7.

0 1 2 3 4 5 6 7

Note that the condition
• i ∼P,k j if |i− j| ∈ P

would alone be enough in order to generate the equiv-
alence ≈P,k. However, conditions a) and b), though
more complicated, are convenient since they allow to
limit the number of equivalence classes to m (and the
alphabet to {0, 1, . . . , m− 1}) from the very beginning.
Consider, for example, how 0 ≈P,8 2 is immediately
seen in the following adjusted picture.

0 1 2 3 4 0 1 2

4. The algorithm
The basic step of the algorithm is the reduction of P
to a new set of periods Q defined by

Q = {p−m | p ∈ P, p 6= m} ∪ {m} (1)

(where m = min P according to our convention). This
reduction is, in fact, one step in the Eucledean algo-
rithm, and is well known in the literature on multiperi-
odic words. The key fact about P and Q is expressed
in the following lemma, which is an improved version
of Lemma 2 from [4].

Lemma 1. Let k ≥ 0. Then for all i, j ∈ {0, 1, . . . , k}

[i]Q,k = [j]Q,k if and only if [i]P,k+m = [j]P,k+m.

Proof. “⇒”: If [i]Q,k = [j]Q,k, then there is a sequence
i = i0, . . . , i` = j, of numbers from {0, 1, . . . , k − 1}
such that

is ∼Q,k is+1

for each s = 0, . . . , ` − 1. The relation is ∼Q,k is+1
implies is ∼P,k+m is+1, since either
• is ≡ is+1 mod m, or
• max{is, is+1}+ m−min{is, is+1} ∈ P .

Therefore [i]P,k+m = [j]P,k+m.
“⇐”: On the other hand, let i = i0, . . . , i` = j, be

a sequence of numbers from {0, . . . , k + m− 1}, with
i, j ∈ {0, . . . , k − 1}, such that

is ∼P,k+m is+1

for each s = 0, . . . , `− 1. Certainly, we can suppose
that the numbers in the sequence are pairwise distinct,
whence |is − is+1| ≥ m and both min{is, is+1} and
max{is, is+1} − m are in {0, 1, . . . , k − 1}. We now
see that

max{is, is+1} −m ∼Q,k min{is, is+1}.

Therefore the sequence

i = i0, (i0 mod m), . . . , (i` mod m), i` = j

proves [i]Q,k = [j]Q,k.

We have an immediate corollary.

Corollary 1. For any k ≥ 0, the word FW(Q, k) is a
prefix of FW(P, k + m).

The following lemma is an easy observation.

Lemma 2. Let k−m ≤ i ≤ m−1. Then [i]P,k = {i}.

Proof. Both i − p and i + p are out of range
{0, 1, . . . , k − 1} for any p ∈ P (including m). There-
fore i is not related by ∼P,k to any other element.

From Corollary 1 and Lemma 2, the formula

LP = m + max{LQ, m− 1}

can be readily derived (see [4, 5]). In addition, it yields
the following construction of FW(P, k), equivalent to
Algorithm B described in [3].

FW-construction (Algorithm B).
(1.) If k ≤ m, then Lemma 2 gives

FW(P, k) = 0 · 1 · · · (k− 1).

(Recall that we consider integers as letters. To
stress this, we use the typewriter font for them.
The multiplication sign means concatenation).

(2.) Let k > m. Since the word FW(P, k) has a period
m, it is determined by its prefix w of length m.
Denote u = FW(Q, k−m). Corollary 1 and Lemma 2
imply that
• w = prefm(u) if m ≤ k −m, and
• w = u · |u| · (|u|+ 1) · · · (m− 1) otherwise.

This can be succinctly stated as:

FW(P, k)[i] =

FW(Q, k −m)[i mod m]

if (i mod m) < k −m;
i mod m otherwise.

345

Štěpán Holub Acta Polytechnica

Example 2. Let P = {5, 7} and k = 8 as in Example
1. Recursive definition of FW(P, 8) leads to

P = Q0 = {5, 7} k = k0 = 8
Q1 = {2, 5} k1 = 3
Q2 = {2, 3} k2 = 1

In order to obtain the word

u0 = FW(Q0, k0) = FW(P, 8)

we will need words

u1 = FW(Q1, k1) and u2 = FW(Q2, k2).

Since k2 = 1, we have u2 = 0. From the point (2.)
above we have

u1 = pref3(wω
1) where w1 = 01.

Therefore u1 = 010. Similarly, we get

u0 = pref8(wω
0) where w0 = 01034,

whence FW(P, 8) = 01034010.
Schematically:

Q0 = {5, 7}

Q1 = {2, 5}

Q2 = {2, 3}

k0 = 8

k1 = 3

k2 = 1

u0 = 01034010

u1 = 010

u2 = 0

w0 = 01034

w1 = 01

From the above example we see that the procedure
has two parts: “descending” and “ascending”, which
are called “Reduction” and “Extension” in [3]. The
end of reduction can be defined in several ways. We
have seen that we can turn to extension as soon as
we know FW(Qi, ki). This typically happens if ki ≤
min Qi, or if min Qi = gcd(Qi).

5. Concluding remarks
As already remarked, the above algorithm is identical
with Algorithm B from [3]. Even all arguments we use

can be in some way traced back to similar arguments
in the literature. Nevertheless, I believe that the
description presented here provides further evidence
that the equivalence class approach is not only simple
but it also yields an intuition sufficient to formulate
and understand the construction. (Another elegant
example, in my opinion, is the proof of the fact that
the extremal FW-word is a palindrome, given in [4].)
That said, one should stress that the inefficiency

claim concerning the equivalence class approach is
valid if we consider the naïve procedure suggested by
Example 1. The precise computational complexity of
Algorithm B goes beyond the scope of this paper (see
the discussion in [3]).

One possible drawback can be a bit discouraging no-
tation like ∼P,k, and the fact that notions like “equiv-
alence closure” may sound “too algebraic” to some
ears. Computer theorists could therefore like to trans-
late the exposition into graph language and speak
about edges instead of generating relations, and about
connected components instead of equivalence classes.
The rest will be the same.

Acknowledgements
This work was supported by Czech Science Foundation
grant 13-01832S.

References
[1] S. Constantinescu, et al. Generalised Fine and Wilf’s
theorem for arbitrary number of periods. Theoret
Comput Sci 339(1):49–60, 2005.

[2] R. Tijdeman, et al. Fine and Wilf words for any
periods. Indag Math (NS) 14(1):135–147, 2003.

[3] R. Tijdeman, et al. Fine and wilf words for any periods
II. Theor Comput Sci 410(30-32):3027–3034, 2009.

[4] Š. Holub. On multiperiodic words. Theor Inform Appl
40(4):583–591, 2006.

[5] Š. Holub. Corrigendum: On multiperiodic words.
Theor Inform Appl 45(4):467–469, 2011.

346

	Acta Polytechnica 53(4):344–346, 2013
	1 A short (personal) history
	2 Notation
	3 Classes of Equivalence
	4 The algorithm
	5 Concluding remarks
	Acknowledgements
	References

