
1 Introduction

The use of Artificial Neural Nets for systems identification
and control, has been the subject of a vast amount of publica-
tions in recent years. It is possible to mention for instance, the
paper of Narendra and Parthasaraty [5] in which several
possible structures of the neural controller that suppose an
a priori knowledge of the plant dynamic structure are pro-
posed. In Bhat and McAvoy [3] and in many other papers,
a scheme based in an inverse dynamic neural model is used.
A similar approach is adopted by Aguado and del Pozo [2]
but here the inverse neural regulator is complemented by
a self-tuning PID algorithm which guarantees that the sta-
tionary error goes to zero. In the above mentioned paper and
in many others, it is required an exhaustive previous training
of the neural net, which is a serious obstacle for the practical
implementation of the proposed solution in the industry. At
the same time, the controller structure in some cases, as in the
mentioned paper of Narendra and Parthasaraty [5], is very
complex, including several nets each one with two hidden
layers of many neurons which must be trained using large
data samples.

An important contribution to enhance the possibilities of
neural nets in the solution of practical problems is the paper
by Cui and Shin [4]. In that work a direct neural control
scheme is proposed for a wide class of non-linear processes
and it is shown that in many cases, the net can be trained
directly retropropagating the regulation error instead of the
net output error. However, in that paper it is not discussed
the influence of some training parameters, particularly the
learning coefficient, over the closed loop dynamics. It is also
not remarked that practically with a direct neural control
scheme the training stage can be substituted by a permanent
and real time adaptation of the weighting coefficients of the
neural net.

In the present paper, it is proposed a self-tuning neural
regulator, inspired in the ideas of Cui and Shin [4], but with
the particular feature that the previous training is substituted
by a permanent adjustment of the weighting coefficients
based on the control error. At the same time, it is shown the
influence of the learning coefficient over the closed loop
dynamics and some criteria are given about how to choose
that parameter. Finally, some examples are given where the
possibilities of the proposed method for difficult non-linear

systems control is shown, specially when there exists a consid-
erable pure time delay.

2 Self tuning neural controler
structure

In Fig. 1, it is shown the proposed scheme of the self-
-tuning neural regulator. The neural net which assume the
regulator function, is a 3 neuron layers perceptron (one hid-
den layer) which weighting coefficients are adjusted by a mod-
ified retropropagation algorithm. In this case, instead of the
net output error:

� � � � � �e t u t u tu d� � (1)

it is used the process output error:

� � � � � �e t y t y ty r� � (2)

to adjust the weighting coefficients.
In Fig. 2, it is represented the neural net controller struc-

ture. The output layer has only one neuron because by the
moment, we are limiting the analysis to one input-one output
processes. In the input layer, the present and some previous
values of the regulation error are introduced, it means that:

� � � � � � � �� �x t e t e t e t ny y y� � �1 � . (3)

For the cases that has been simulated until now, the value
n � 2 was sufficient to obtain an adequate closed loop per-
formance. It means that the number of input neurons can
be 3. A similar number of hidden layer neurons was equally
satisfactory.

3 Weighting coefficients adaptation
algorithm
In Fig. 2, the weighting coefficients wji and vj for the hid-

den layer and output layer input connections respectively, are
shown. In what follows, we will detail the adaptation algo-
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Fig. 1.: Scheme of the self-tuning neural regulator
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rithm for that coefficients, which ensures the minimisation of
a regulation error � �e ty function.

The output of the j hidden layer neuron may be calcu-
lated by means of:
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where:
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At the same time, the output layer neuron output value
will be:
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where:
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As a criteria to be minimised, we defined the function:
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where it is supposed that the time has been discretized by us-
ing an equally-spaced small time interval.

The minimisation procedure consists, as it is known, in a
movement in the negative gradient direction of the func-
tion E(t) with respect to the weighting coefficients vj and
wji. The E(t) gradient is a multi-dimensional vector whose

components are the partial derivatives � ��
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Let us first obtain the partial derivatives with respect to the
coefficients of the output neuron. Applying the chain rule, we
get:
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In (11) it is used the well known relation:
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Let us define:

� � � �� ��1 1� � � �e u t u ty (13)

Then:
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In the equation (14), it appears the partial derivative
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which can be interpreted as some kind of “equivalent gain”
of the process. Further we will make some considerations
about that term.

The partial derivative of function E(t) with respect to the
weighting coefficients wji, can be obtained applying again the
chain rule:
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Let us define:

� �� �j j j jv h h2 1 1� � (17)

and then:
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Using equations (14) and (18), the adjustments of
weighting coefficients vj , wji can be made by means of the
expressions:
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where � is the so-called learning coefficient and
�

�

e

e
y

u
is the

“equivalent gain” of the plant. The main obstacle to apply the
adjustment equations (19) and (20) is that in general the plant

equivalent gain
�

�

e

e
y

u
is unknown. However, in the above

mentioned paper by Cui and Shin [4], it is demonstrated that
it is only required to know the sign of that term to ensure the
convergence of the weighting coefficients, because the magni-
tude can be incorporated in the learning coefficient � if the
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Fig. 2.: Neural net controller structure



non-restrictive condition
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� � is accomplished. Besides,

the sign of
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can be easily estimated by means of a very

simple auxiliary experiment, by instance, to apply a step func-
tion at the process input.

The assumption that the sign of the gain remains constant
in a neighbourhood of the operation point of the process is
not very strong and it is accomplished in most practical cases.
Finally, in the worst of cases, real time estimation of the gain
sign could be incorporated, without great difficulties, in the
control algorithm.

Having in mind the above considerations, the equations
(19) and (20) could be written as follows:
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The right value of learning coefficient � can be experi-
mentally determined from the observation of closed loop
system performance when some changes are made in the
controlled variable set-point.

The equations (21) and (22) for the proposed neural
controller structure, may be interpreted as the regulator
adaptation equations instead of training equations as it is nor-
mally done. Indeed, the simulation study done until now
using the scheme shown in Fig. 1 and permanently adjusting
the weighting coefficients vj and wji by means of (21) and (22)
allowed us to arrive to the next conclusions:
� It is not in general required a previous training of the net

and once the control loop is closed, the weighting coef-
ficients self-adjust in a few control periods, carrying the
regulation error ey(t) to zero.

� The dynamical performance of the closed loop depends
exclusively on the learning coefficient magnitude, corre-
sponding to higher values of �, a faster response that can
even present a considerable over-shoot. Diminishing the
value of �, the system is damped up to the point in which

the desired response is obtained. The system, however,
keeps the stability for a wide range of � values.

� It is very convenient to use a variable learning coefficient,
using an expression as:

� �� � �� � � abs e y (23)

In this way a small basic value of � can be used, for
instance � �01. , and the effective value �� is incremented
depending of the regulation error magnitude. The right
value of � can be tuned experimentally without troubles.
The use of equation (23) gives the system the possibility to
present a fast response when the errors are big and then to go
slowly to the reference value. That behaviour is, indeed, very
convenient in practice.

4 Some simulation results
Although the above described algorithm has been tested

in many examples, here we will only show the results obtained
in two simulated cases corresponding to non-linear processes
which can be described by means of the equation:
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The simulation was carried out on a real time environ-
ment provided by the CPG System (Aguado, 1992) so that the
obtained results are very close to those that could be expected
in a real process.

In Fig. 3 it is represented the closed loop behavior corre-
sponding to the next process and regulator parameters:

T T Td � � �5 3 51 2s s s, , , (25)

� �� �06 0 4. , . . (26)

As can be seen, a practically perfect response is obtained
when positive and negative step changes in the reference
output value are applied. Given that the time constants are
relatively small, the values of � and � can be chosen relatively
big without producing positive or negative over-shoots. This
type of performance is observed in general, it means that for
fast dynamics processes, it is possible and convenient a fast
learning of the net. We have observed that for time constants
in the order of milliseconds, values of � of 5 and more can
be used.
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In Fig. 4, it is represented the close loop performance for
the next constants values:

T T Td � � �60 10 201 2s s s, , , (27)

� �� �005 020. , . . (28)
As can be observed, we have a large time-delay non linear

system which can be hardly controlled by a conventional
adaptive algorithm, for instance a self-tuning PID. However,
with the adaptive neural regulator, it is obtained a response
that can be considered as very good, given the process charac-
teristics. Notice that in this case, the values of � and � are
considerably smaller, as expected, given that the process
dynamics is much slower.

5 Conclusions
The self-tuning control algorithm based on a neural net

presented in this paper, promise to be a very interesting op-
tion for the control of processes with a difficult dynamics that
could not be adequately controlled with PID regulators, even
in their self-tuning versions, as it was shown in the above pre-
sented simulation cases. The class of processes in which the
algorithm could be applied is very wide and it includes most
of the cases that can appear in practice. In the near future, we
plan to apply the algorithm to some real laboratory processes
and to extend the obtained results to the case of multivariable
and multiconnected systems.
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Fig. 4.: Closed loop behaviour for process in equations (27)


