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1. Introduction
The theory of simple Lie groups and their representa-
tions (and corresponding representations of simple
Lie algebras) has been at the center of interest of
modern mathematics for a long time, because it has
many relationships with other areas of mathematics
and physics.
The simple Lie algebras over the field of complex

numbers were classified in the famous works of Killing
and Cartan in the 1930s. Since then we have known
that there are four infinite series An, Bn, Cn, Dn,
which are called the classical Lie algebras, and five
Lie algebras E6, E7, E8, F4 and G2, which we call
exceptional Lie algebras. The structure of these Lie
algebras is described in terms of special finite sets of
elements in a Euclidean space, called roots, which
generate a root system. Weyl’s theorem assures that
each finite dimensional reducible representation of
such a Lie algebra is completely reducible. Therefore
in the theory of finite dimensional representations of
the semisimple Lie algebras, which are direct sums of
simple ones, it is sufficient to restrict to irreducible
finite dimensional representations. The complete
classification of these irreducible finite dimensional
representations is known. Their sets are parametrized
by vectors of nonnegative integers called highest
weights. Moreover, the characters and dimensions
of such irreducible finite dimensional representations
are explicitly known because of the Weyl formula
[2–5].
Practical use of the simple Lie groups and Lie

algebras, serving as a fundamental tool for studying
the symmetries of systems examined in physics, often
involve constructing the bases of the spaces on which
their finite dimensional representations act.

The best known example of such constructions are
two works of Gelfand and Tsetlin. In two famous
papers (see [6] and [7]), they gave an explicit construc-

tion of bases for a general linear Lie algebra gl(n,C)
(resp. special linear Lie algebra An) and for orthogo-
nal Lie algebras Bn and Dn (for detailed comments,
see also [8]). These papers contain no comments and
no methods for deriving the explicit formulas. These
papers also do not contain any references (the hint
that one has to verify the commutation relations by
direct calculation is not very useful for the proof).
It is therefore no wonder that their formulas were
re-derived and verified by other authors. Verification
and/or an independent derivation of these formulas
was given in the papers by Baird and Biedenharn
(see [9, 10]), and also by other authors [11–14].

After Gelfand and Tsetlin’s construction of rep-
resentations, in the second half of the 20th century
and later, a range of different approaches were devel-
oped and many techniques were adopted to construct
the bases of the representations of classical series
of Lie algebras. We can mention here the Gould
paper [15], which made use of polynomial identities
satisfied by the generators of the corresponding Lie
group, an approach which was then generalized then
to Kac-Moody algebras [16], and the approach of
Asherova, Smirnov and Tolstoy involving projection
operators [17, 18], which prove their usefulness also in
the field of Lie superalgebras and quantum algebras
[19]. The results of Tarasov and Nazarov [20] also
belong to this group. Another approach, based on
using Weyl realization [21] of the representations of
corresponding groups in tensor spaces, was developed
in many papers [22–26].
So-called special bases were constructed by de

Concini and Kazhdan [27], and their q-analogs by
Xi [28]. Proper bases were constructed by Gelfand
and Zelevinsky [29], Retakh and Zelevinsky [30], and
similar good bases were constructed by Mathieu [31].
Another well known group of bases are crystal bases.
They were constructed by Lusztig [32, 33], Kashiwara
[34], Du [35, 36], Kang [37], and others [38–41].
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2. Verma bases
Besides these approaches, an important role is played
by bases which have special properties as bases in
the universal enveloping algebra of a given simple Lie
algebra, and which can then be restricted by taking a
suitable subset to the basis of a given representation
of that Lie algebra. Such bases are called monomial
bases, and were constructed in the standard mono-
mial theories developed by Lakshmibai, Musili and
Seshadri [42], by Littelmann [1, 43], its q-analogs by
Chari and Xi [44] and others. One of the advantages
of these bases is that the basis vectors are eigenvec-
tors of Cartan subalgebra, and therefore such a basis
is suitable for various modifications. On the other
hand, there is no explicit form of matrix elements of
operators expressed in these bases.
Verma bases as introduced in [45] are of this type.

These bases were constructed for the Lie algebras An
in [46] and for some concrete examples of other Lie
algebras of low rank (see also [47]). In [48, 49] proof
of the so-called Verma conjecture for the Lie algebra
An was given by Raghavan and Sankaran. Note that
the basis in enveloping algebra from which we can
obtain the corresponding Verma basis by restriction
was given in [1].
The basis vectors of the Verma basis are con-

structed from the highest weight vector (vacuum
state) in a way consisting of the action of some speci-
fied sequence of the elements corresponding to simple
roots. Each set of basis vectors is constructed using
sequences given by a certain set of inequalities (called
Verma inequalities). Let us briefly describe the main
result for the Lie algebra An.

Let An = sl(n+ 1,C) = n+⊕h⊕n− be the decom-
position of the Lie algebra sl(n+ 1,C) into strictly
upper triangular, diagonal and strictly lower trian-
gular matrices. Denote U(An), U(A+

n ) and U(A−n )
corresponding enveloping algebras of An, n+ and
n−. Let Φ be the root system of An and fixed h
such that Φ = Φ+ ∪ Φ−, where n+ =

⊕
β∈Φ+ gβ . For

the positive root β ∈ Φ+ denote by fβ ∈ gβ and
eβ ∈ g−β fixed elements of the Chevalley basis of An.
For a fixed ordering of simple roots {β1, . . . , βn} de-
note fβj by fj and the corresponding eβj by ej . Put
hj = [ej , fj ]. Then the set of the following monomials
(so-called Verma monomials),

f
a1

1
1
(
f
a2

2
2 f

a2
1

1
)(
f
a3

3
3 f

a3
2

2 f
a3

1
1
)
· · ·
(
f
an

n
n f

an
n−1

n−1 · · · f
an

2
2 f

an
1

1
)
,

where
ack ≤ ack+1 (1)

is a linear basis of U(A−n ). A similar basis consisting
of vectors generated by appropriate sequences of ej ’s
spans U(A+

n ). Together with the enveloping algebra
of h one can obtain a basis of the whole U(An).
If we now restrict to the elements generated by

sequences fulfilling Verma inequalities

0 ≤ ack ≤ min{ack−1 + λn−c+k, a
c+1
k+1},

where an+1
k = +∞ and ak0 = 0 for all k, acting on

the highest weight vector |0〉 (vacuum state) with the
highest weight (λ1, . . . , λn), where λj are nonnegative
integers, we obtain a basis of the representation space
of the corresponding finite dimensional representa-
tion.

3. Verma monomials inequalities
As a contribution to the above discussion, we give an
alternate proof of (1) to the proof given in [1].

Lemma 3.1. For any n,m ≥ 1 and k ≥ 0 we have

fni f
k
i−1f

m
i ∈ span{fki−1f

n+m
i ,

fk−1
i−1 f

n+m
i fi−1, . . . , f

n+m
i fki−1}, (2)

fn+m
i−1 fni ∈ span{fni−1f

n
i f

m
i−1,

fn−1
i−1 f

n
i f

m+1
i−1 , . . . , fni f

m+n
i−1 }, (3)

and (2), (3) in which fi and fi−1 are interchanged.

Proof. To show (2) we first prove the following iden-
tity: for any m ≥ 1 and i = 2, 3, . . . , n we have

fifi−1f
m
i = 1

m+ 1
(
fm+1
i fi−1 +mfi−1f

m+1
i

)
. (4)

For m = 1, (4) follows from the fact that[
fi, [fi, fi−1]

]
= 0. Now let us assume validity for m

and calculate the equation

fifi−1f
m+1
i = 1

2(f2
i fi−1 + fi−1f

2
i )fmi

= 1
2(m+ 1)fi(f

m+1
i fi−1 +mfi−1f

m+1
i )

+ 1
2fi−1f

m+2
i = 1

2(m+ 1)f
m+2
i fi−1

+ m

2(m+ 1)fifi−1f
m+1
i + 1

2fi−1f
m+2
i ,

from which, isolating the term fifi−1f
m+1
i we get the

desired result.
We now generalize formula (4) to the form

fif
k
i−1f

m
i = 1

m+ 1
(
kfk−1
i−1 f

m+1
i fi−1

+ (m− k + 1)fki−1f
m+1
i

)
. (5)

This formula is proved similarly by induction on k.
Multiplying both sides of (5) by fi−1, we obtain

fi−1fif
k
i−1f

m
i = 1

m+ 1
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kfki−1f

m+1
i fi−1

+ (m− k + 1)fk+1
i−1 f
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)
,

fi−1fif
k
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i = 1

2
(
f2
i−1fifif

2
i−1
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i−1 f

m
i

= 1
2f

2
i−1

1
m+ 1

(
(k − 1)fk−2

i−1 f
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i fi−1

+ (m− k + 2)fk−1
i−1 f
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i

)
+ 1

2fif
k+1
i−1 f

m
i .
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Extracting terms fifk+1
i−1 f

m
i we obtain (5) for k + 1.

The last step is to prove the following identity: for
any n, k,m ≥ 0 we have

fni f
k
i−1f

m
i = 1(

m+n
n

) n∑
l=0

(
k

l

)(
m− k + n

n− l

)
× fk−li−1 f

m+n
i f li−1. (6)

This can be shown by induction on n.
To show (3) we apply Dixmier’s antiisomorphism

(see [3], 2.2.18., p. 73) to (6) to obtain the relation

fmi f
k
i−1fi = 1

m+ 1
(
kfi−1f

m+1
i fk−1

i−1 +

(m− k + 1)fm+1
i fki−1

)
,

which allows inductively to prove

fn+1
i−1 f

n
i =

n+1∑
l=1

(−1)l+1
(
n+ 1
l

)
fn+1−l
i−1 fni f

l
i−1. (7)

Multiplying (7) by fi−1 and repeatedly applying (7)
to the right-hand side we finally obtain (3).

Replacing fi and fi−1 and using a similar approach,
we subsequently obtain the following formulas:

fi−1fif
m
i−1 = 1

m+ 1
(
fm+1
i−1 fi +mfif

m+1
i−1

)
,

fi−1f
k
i f

m
i−1 = 1

m+ 1

(
kfk−1
i fm+1

i−1 fi

+ (m− k + 1)fki fm+1
i−1

)
,

fni−1f
k
i f

m
i−1 = 1(

m+n
n

) n∑
l=0

(
k

l

)(
m− k + n

n− l

)
× fk−li fm+n

i−1 f li ,

fn+1
i fni−1 =

n+1∑
l=1

(−1)l+1
(
n+ 1
l

)
fn+1−l
i fni−1f

l
i .

Due to the Poincaré-Birkhoff-Witt theorem, or-
dered monomials

es12
12 e

s13
13 · · · e

s1,n+1
1,n+1 e

s23
23 e

s24
24 · · · e

s2,n+1
2,n+1

· · · esn−1,n+1
n−1,n+1e

sn,n+1
n,n+1 , sij ≥ 0, (8)

where ei,i+1 = fi and

eik = [ei,k−1, ek−1,k], i+ 1 < k, (9)

form a basis of U(A−n ). Let us consider any such
monomial and denote it by v. The relations (9)
express any generator eik, i < k as a commutator
of simple ones f1, . . . , fn. Therefore v is a linear
combination of (unordered) monomials from these
simple generators and such monomials can be written
in the form

v′ = v1f
r1
n v2f

r2
n · · · vmfrm

n vm+1, (10)

where vi ∈ U(A−n−1) ⊂ U(A−n ) and the mono-
mials v2, v3, . . . , vm 6∈ U(A−n−2) (i. e. they con-
tain generator fn−1, otherwise we use the relation
frnvjf

s
n = fr+sn vj and the product can be truncated).

Theorem 3.2. Let us denote

VR,m = span
{
v1f

r1
n v2f

r2
n · · · vmfrm

n vm+1
∣∣

vi ∈ U(A−n−1), r1 + r2 + · · ·+ rm = R
}
. (11)

Then we have v′ ∈ VR,1.

Proof. By induction on n. If n = 2, we have

v′ = fs1
1 fr1

2 fs2
1 fr2

2 · · · f
sm
1 frm

2 f
sm+1
1 . (12)

If m ≥ 2, we use formula (2) from lemma 3.1 applied
to the product fr1

2 fs2
1 fr2

2 and we obtain v′ ∈ VR,m−1.
In the general case we write

vi = wif
si
n w

′
i, w, w′ ∈ U(A−n−1),

and, therefore,

[w, fn+1] = [w′, fn+1] = 0.

For monomial v′ we can write

v′ = v1f
r1
n+1w2f

s2
n w

′
2f
r2
n+1 · · ·
= v1w2f

r1
n+1f

s2
n f

r2
n+1w

′
2 · · ·

and we use the same argument as in the case n = 2.

It follows from the above theorem that the set
U(A−n ) is spanned by monomials of a special type.
When n = 2 these monomials are of the form

{fs1
1 fr1

2 fs2
1 |s1, s2, r1 ≥ 0}.

Due to formula (3) from lemma 3.1 the monomials
fs1

1 fr1
2 fs2

1 , where s1 > r1 are linearly dependent on
those having s1 ≤ r1, therefore we can restrict to the
set

{fs1
1 fr1

2 fs2
1 |s1, s2, r1 ≥ 0, s1 ≤ r1}. (13)

We can generalize this assertion for n > 2 as follows.

Theorem 3.3.

U(A−n ) = span
{
fk1n

1 fk2n
2 · · · fknn

n f
k1,n−1
1 f

k2,n−1
2 · · ·

f
kn−1,n−1
n−1 . . . fk12

1 fk22
2 fk11

1
∣∣kij ≤ ki+1,j ,

i = 1, . . . , n− 1, j = 1, . . . , n
}
. (14)

(We call Verma monomials those monomials appear-
ing on the right hand side of this equality.)

Proof. We proceed by induction on n. For n = 2 the
assertion is true, now assume validity for n and we
prove for n+ 1. It follows from the preceeding lemma
that it is sufficient to consider v ∈ U(A−n+1) such that
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it can be written as v1f
R
n+1v2, where v1, v2 ∈ U(A−n )

and v1 is a Verma monomial of the form

v1 = fk1n
1 fk2n

2 · · · fknn
n f

k1,n−1
1 f

k2,n−1
2 . . .

× fkn−1,n−1
n−1 . . . fk12

1 fk22
2 fk11

1 .

Therefore

v1f
R
n+1v2 = fk1n

1 fk2n
2 · · · fknn

n fRn+1

× fk1,n−1
1 f

k2,n−1
2 · · · fkn−1,n−1

n−1 . . . fk12
1 fk22

2 fk11
1 v2︸ ︷︷ ︸

v′

and, due to the induction hypothesis, v′ is a linear
combination of Verma monomials. Now if R ≥ knn,
then the product

fk1n
1 fk2n

2 · · · fknn
n fRn+1

is already a Verma monomial and the proof is finished.
When R < knn, we rewrite the product fknn

n fRn+1
using (2) from lemma 3.1 to the form

fknn
n fRn+1 = a0f

R
n f

R
n+1f

knn−R
n

+ a1f
R−1
n fRn+1f

knn−R+1
n + · · ·+ aRf

R
n+1f

knn
n ,

ai being suitable complex constants. From this we
conclude that

fk1n
1 fk2n

2 · · · fknn
n fRn+1

∈ span{u1f
R
n+1w1, u2f

R
n+1w2, . . . , unf

R
n+1wn}, (15)

where ui, wi are Verma monomials from U(A−n ) and
the highest degree of the simple root fn in vi is less
or equal to R. Therefore the product (15) is a linear
combination of Verma monomials from U(A−n+1), as
desired.

Linear independence of Verma monomials can be
shown as follows. We make use of commuting opera-
tors adhi : U(A−n )→ U(A−n ) defined by

adhiv = [hi, v], i = 1, . . . , n. (16)

The algebra U(A−n ) decomposes into the direct sum

U(A−n ) =
⊕

z1,...,zn

V (z1, . . . , zn)

of common eigenspaces of operators adhi

V (z1, . . . , zn) =
{
v ∈ U(A−n )

∣∣
adhiv = ziv, i = 1, . . . , n

}
.

Two vectors belonging to different subspaces are
linearly independent.

Lemma 3.4. (1.) PBWmonomials (8) of U(A−n ) are
eigenvectors of all adhi.

(2.) v ∈ V (z1, . . . , zn) iff

s12 + s13 + · · ·+ s1,n+1 = m1,

s23 + · · ·+ s2,n+1 = m2 + s12,

...
sn,n+1 = mn + s1n + s2n

+ · · ·+ sn−1,n, (17)

where
m = − 1

n+ 1C1z, (18)

and

m =



m1
m2
m3
...

mn−1
mn


,

C1 =



−n −(n− 1) −(n− 2) · · · −2 −1
1 −(n− 1) −(n− 2) · · · −2 −1
1 2 −(n− 2) · · · −2 −1
...

...
...

...
...

1 2 3 · · · −2 −1
1 2 3 · · · (n− 1) −1


,

z =



z1
z2
z3
...

zn−1
zn


.

Proof. (1.) The assertion is direct consequence of the
fact that generators ejk, j < k are eigenvectors of
adhi.

(2.) System (17) was obtained using generators eii,

eii = 1
n+ 1

(
c1 −

n+1−i∑
j=1

jhn+1−j+

n∑
j=n+2−i

(n+ 1− j)hn+1−j

)
,

ad eiiv = 1
n+ 1

(
−
n+1−j∑
j=1

jzn+1−j+

n∑
j=n+2−i

(n+ 1− j)zn+1−j

)
v ≡ miv.

c1 = e11 + · · ·+enn stands for the Casimir operator.

Note that the matrix which appears in (18) is the
inverse of the Cartan matrix of the algebra An. From
equations (17) we see that mi are all nonnegative
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integers. The dimension of V (z1, . . . , zn) is finite
since for fixed right hand sides of equations (18) there
is only a finite number of decompositions of m1 into
the sum of s12, s13, . . . , s1,n+1, etc. For each of the
possibilities

(s12, . . . , s1,n+1, s21, . . . , s2,n+1, . . . , . . . , sn,n+1) (19)

we obtain a basis vector v ∈ V (z1, . . . , zn). By ex-
hausting all these possibilities we obtain the basis of
V (z1, . . . , zn).

Lemma 3.5. Verma monomial

v =
(
f l1n

1 · · · f ln−1,n

n−1 fkn
n

)(
f
l1,n−1
1 · · · f ln−2,n−1

n−2 f
kn−1
n−1

)
· · ·
(
f l12

1 fk2
2
)(
fk1

1
)
∈ V (z1, . . . , zn) (20)

iff 
z1
z2
...

zn−1
zn

 =


−2 −1 0 · · · 0 0
−1 −2 −1 · · · 0 0
...

...
...

...
...

0 0 0 · · · −2 −1
0 0 0 · · · −1 −2



×


l1n + l1,n−1 + · · ·+ l12 + k1
l2n + l2,n−1 + · · ·+ l2,3 + k2

...
ln−1,n + kn−1

kn

 . (21)

Proof. By direct calculation using relations

[fi, hj ] = cijfi,

cij = 2δij − δi,j+1 − δi,j−1,

cij = 0 for |i− j| > 1

and, consequently

[fαi , hj ] = αcijf
α
i .

Note that inverting the Cartan matrix and matrix
from eq. (21) we can rewrite system (21) to the form

l1n + l1,n−1 + · · ·+ l12 + k1 = m1,

l2n + l2,n−1 + · · ·+ k2 = m1 +m2,

...
ln−1,n + kn−1 = m1 +m2 + · · ·+mn−1,

kn = m1 +m2 + · · ·+mn.
(22)

Theorem 3.6. If the numbers m1, . . . ,mn are fixed,
then there is a bijective mapping between the set of
all solutions (19) of (17) and the set of all solutions(

l1n, l1,n−1, . . . , l12, k1, l2n, l2,n−1, . . . , l23, k2,

. . . , . . . , ln−1,n, kn−1

)
of the system (22).

Proof. The explicit form of this bijection is

s12 = k1

s1t = l1,t−1, t = 3, . . . , n+ 1,
sr,r+1 = kr − lr−1,r,

srt = lr,t−1 − lr−1,t−1, t = r + 2, . . . , n+ 1,
sn,n+1 = mn + kn−1.

Bijectivity is the consequence of the fact that Verma
monomials form the spanning set of U(A−n ).

Corollary 3.7. All Verma monomials are linearly
independent.

4. Conclusions
Problems of unified construction of Verma bases for
other series of simple Lie algebras (namely orthogonal
and symplectic) and of an effective determination of
matrix elements in these cases are still open. In [50,
51], Kang and Lee developed the notion of Gröbner-
Shirshov pairs. In this way, the reduction problem
in representation theory was solved and monomial
bases of representations of various associative algebras
could be constructed. The algebra An was among the
first examples. Note that the bases obtained there
are different from Verma bases. It is an interesting
question whether Verma bases can be derived this
way.
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