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ABSTRACT
Scientists have been trying to find the best parameter for laboratory assessment of the risk of cardio-

vascular diseases (CVD) for decades. Initially, the results of many studies indicated that the analysis 

of the lipid profile was sufficient to evaluate the risk of CVD. Further studies revealed that more precise 

laboratory prediction of cardiovascular risk requires quantification of atherogenic lipoproteins. Recently, 

angiopoietin-like proteins 3, 4 and 8 (ANGPTLs) have been described as important regulators of plasma 

lipoprotein metabolism and triglyceride homeostasis. Mutations in ANGPTL3 leading to loss of its function 

have been linked to decreased risk of CVD in humans. Among potential new targets for the management 

of dyslipidemia, ANGPTL3 may become a considerably promising one.
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Introduction

Cardiovascular diseases are considered to be 
a serious problem of the 21st Century. In Poland, in 
spite of the increased number of invasive interventions, 
cardiovascular diseases are still the cause of more than 
35 percent of deaths in individuals before the age of 
64. The most common cause of cardiovascular diseases 
(> 90%) is coronary atherosclerosis, which is a chronic 
inflammatory process. Some other causes of the dis-
ease are coronary artery spasm, an embolism or injury 
of a coronary artery. The risk factors for the occurrence 
of CVD include lipid disorders, hypertension, cigarette 
smoking, obesity, stress, diabetes, low physical activity, 
hyperhomocysteinemia and an inappropriate diet. The 
risk factors that are non-modifiable and can also lead to 
disease comprise the family history of coronary artery 
disease, gender and age [1].

Routine laboratory assessment of the cardiovascu-
lar risk, in general, includes the traditional lipid profile 
measurement. The key components are: calculated or 
measured LDL-cholesterol (LDL-C), HDL-cholesterol 
(HDL-C) and triglycerides (TG), measured with direct 
methods. Increased levels of lipids are an important 
risk factor for atherosclerosis development. Additional 
tests, which are not carried out routinely but are char-

acterised by their high diagnostic value, include the 
measurements of apolipoproteins: apoB and apoA-I and 
lipoprotein (a). Estimation of the ratio of apoB/apoA-I, 
total cholesterol (TC) to HDL-C or calculation of non-
HDL cholesterol enables a better assessment of the 
risk of CVD [2]. 

Cholesterol level is a significant predictor of car-
diovascular risk, however, despite its decrease after 
treatment, there is still a risk of ischaemic heart disease 
[3]. It is related to LDL particles heterogeneity and the 
low level of HDL-C. The occurrence of small, dense LDL 
particles correlates with the presence of triglyceride-rich 
lipoproteins and a lowering of the HDL-C level. Small, 
dense LDL particles are more atherogenic and their 
number reflects the level of apolipoprotein B (ApoB). 

Numerous studies indicated that there is also a sig-
nificant correlation between the small, dense LDL and 
the risk of ischaemic heart disease. It has been shown 
that the presence of small, dense LDL may increase the 
risk by 7 times [4–7]. 

Lipoprotein lipase (LPL)

Lipoprotein lipase (LPL) is a key enzyme taking 
part in triglyceride metabolism. LPL is produced in 
macrophages, adipose tissue, heart and skeletal mus-
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Figure 1. Lipoprotein lipase domains function [8], modified by authors. 

Figure 2. Lipoprotein lipase action [9], modified by authors

cles. The enzyme is secreted from parenchymal cells 
(e.g. adipocytes, cardiomyocytes) as a homodimer. 
Lipoprotein lipase consists of two domains: a larger N-ter-
minal domain, which contains the lipolytic active site and 
apolipoprotein interaction site, and the smaller C-terminal 
domain which is responsible for the substrate specificity. 
The domains are linked by a peptide bond. Lipoprotein 
lipase is functional as the head-to-tail dimer (Fig.1).

LPL is transported by glycosylphosphatidylinositol 
anchored high-density lipoprotein-binding protein 
1 (GPIHBP1) to the vascular lumen to become functional 
at the endothelial cells surface [8]. The regulation of 
LPL occurs at the level of transcription by peroxisome 
proliferator-activated receptor PPARa (in the liver) and 
PPARg (in adipose tissue) and post-translation level 
by microRNAs. The activity of LPL is dependent on the 
nutritional status; in adipose tissue is particularly high 
in the fed state whereas in heart and skeletal muscles 
the regulation is tighter.

Lipoprotein lipase plays an important role in the 
metabolism of TG-rich lipoproteins by hydrolysis of 
triglycerides, transported by chylomicrons and very 
low-density lipoproteins (VLDL), to free fatty acids and 
glycerol. Among several regulators of LPL activity apo-
lipoproteins C-II, C-III and angiopoietin-like proteins 3, 
4, 8 seem to be the most important. The presence of 
apolipoprotein C-II on TG-rich and HDL lipoproteins is 
essential for the activation of lipoprotein lipase (Fig.2) [9].

Under the influence of lipase activity, the VLDL parti-
cle loses triglyceride content and shrinks, transforming 
into LDL. During the transformation of VLDL into LDL, 
their apolipoprotein content changes. During lipolysis 
apolipoprotein C-III, which is found mainly on VLDL, is 
released into the blood stream. Apo-CIII is known as 
an inhibitor of lipoprotein lipase, however, according to 
recent data the inhibition of LPL depends on the ratio of 
apoC-III to apoC-II [10]. Thus apoC-III should be regard-
ed as a factor involved in triglyceride homeostasis. Free 
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fatty acids formed during lipolysis are further transferred 
to the adipose tissue or muscles, where they can be 
used for energy production or stored. 

Additionally, LPL is involved in the atherogenesis 
since it influences the interaction between atherogenic 
lipids and the surface of endothelial cells of arterial 
vessel walls [11]. Changes of LPL activity may occur in 
some pathophysiological processes related to obesity, 
diabetes, chylomicronemia and atherosclerosis [12].

Angiopoietin-like proteins (ANGPTLs)

Angiopoietin-like proteins (ANGPTLs) are a group 
of eight proteins that are structurally similar to the an-
giopoietin, however, they do not bind to the receptors 
specific for angiopoietins. Three of these proteins 
ANGPTL3, ANGPTL4 and ANGPTL8 are related to lipo-
protein metabolism as they regulate lipoprotein lipase. 
ANGPTL3 and ANGPTL4 contain an amino-terminal 
coiled-coil domain, carboxy-terminal fibrinogen-like 
domain and a linker. ANGPTL8 is an exception since it 
does not contain the fibrinogen-like domain. They are 
released into the circulation from the liver and adipose 
tissue with exception of ANGPTL3, secreted only from 
the liver, and named a hepatokine [13]. In the fed state 
both, ANGPTL3 and ANGPTL8 act together inhibiting 
lipoprotein lipase. Expression of ANGPTL4 is increased 
in the fasting state and then ANGPTL4 may inhibit LPL. 
Although ANGPTLs are structurally similar, they exhibit 
a slightly different biological activity. ANGTPL3 is reg-
ulated by the liver X receptor which acts as a sensor 
of cholesterol metabolism and lipid biosynthesis, while 

ANGPTL4 expression is regulated by the peroxisome 
proliferator-activated receptors (PPARs) that influence 
adipocyte differentiation, insulin sensitivity and lipid me-
tabolism [14, 15]. The mechanism of ANGPTL4 activity 
is based on the inhibition of LPL partly by dissociation 
of active LPL dimers to an inactive LPL monomer. 
Transcription of ANGPTL4 is under the control of the 
peroxisome proliferator-activated receptors (PPARs) 
and the level of fatty acids (Fig.3).

In tissues such as, for example, a heart, the produc-
tion of ANGPTL4 is stimulated by fatty acids, which can 
protect the cells from an excessive fat uptake. LPL, on 
the surface of endothelial cells, forms a complex with 
GPIHBP1 which is responsible for the transport and 
entry of LPL into capillaries in the process of lipoly-
sis. ANGPTL4 is capable of binding and inactivating LPL 
complexed to GPIHBP1. ANGPTL4 is a strong inhibitor 
of lipoprotein lipase which hydrolyses triglycerides in 
chylomicrons and VLDL. By means of this mechanism, 
the protein inhibits release of free fatty acids and their 
further uptake by adipose tissue, skeletal muscles and 
cardiac muscle. It is suggested that all three ANGPTLs 
have different roles in lipid metabolism. ANGPTL3 seems 
to be a new treatment target to decrease circulating 
cholesterol and triglyceride levels in patients with dys-
lipidemia [16]. Mutations in the gene of ANGPTL3 and 
ANGPTL8 in humans, leading to inactivation of proteins, 
were shown to reduce triglyceride and cholesterol levels 
due to an elevation of LPL activity. Interestingly, similar 
mutations in ANGPTL4 did not affect significantly lipid 
levels. Dewey et al. [17] showed in their studies that in 
1661 individuals with heterozygous missense mutations 
of ANGPTL4 protein, the triglycerides level was lower 

Figure 3. ANGPTL4 as an inhibitor of lipoprotein lipase (LPL) [15], modified by authors
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by 13 %, and the HDL-C level was higher by 7% than 
in individuals without this mutation. 

ANGPTL3 and ANGPTL4 levels can be determined 
by commercial enzyme-linked immunosorbent as-
says [18]. However, due to the fact that ANGPTLs 
undergo proteolytic cleavage in the circulation, it is 
important to report which form of these proteins were 
assayed. Cleavage of ANGPTL3, probably facilitated by 
ANGPTL8, leads to release of the N-terminal domain 
from ANGPTL3 and restore LPL activity for TG hydroly-
sis. ANGPTL4 is also cleaved in the linker region and as 
ANGPTL3 is present in the circulation in full-length and 
truncated form [16]. Recently, Morinaga et al reported 
that circulating full-length form of ANGPTL3 levels were 
directly and significantly correlated only with C-reactive 
protein (hsCRP) values and liver enzymes activity when 
assayed in a population of adult women and men un-
dergoing routine health check-ups [16]. As the cleaved 
form of ANGPTL3 was found to be the active one, fur-
ther studies are needed to confirm its association with 
triglyceride and/or cholesterol reduction. Interestingly, 
in the same study, a significant positive correlation was 
found between ANGPTL8 and triglycerides and LDL-C 
and negative with HDL-C levels, indicating its role in lipid 
metabolism. What is more, a significant interaction of 
ANGPTL3 and ANGPTL8 with serum triglyceride levels 
was shown. 

In conclusion, several studies confirm that angiopoi-
etin-like proteins may be potential new biomarkers for 
the cardiovascular diseases risk assessment [16, 17, 
19, 20, 21]. However, in spite of playing an important 
role in the lipoprotein metabolism, currently, they are 
not used in the routine diagnostics due to the technical 
limitations in their measurement.
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