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Inflammation and hypoxia  
in atherosclerosis, coronary artery 
disease, and heart failure

ABSTRACT
Inflammation is a process that occurs after tissue damage or counteract infection. It is a complex reac-

tion involving various cells, proteins (chemokines, acute-phase proteins) and other factors. The precise 

understanding of the mechanisms affecting the distribution of inflammatory cells and their modulators 

in areas of inflammation may have a crucial role in the development of strategies blocking inflammatory 

processes. Hypoxia leads to deprivation of oxygen and when it develops, various mechanisms come 

into action to alleviate any consequences that it might cause. Hypoxia inducible factor (HIF) is one of the 

most important factors involved in the response to hypoxia. Recent studies provide a better understanding 

of both, inflammation and hypoxia, in the development of atherosclerosis and various diseases in the 

spectrum of cardiology. 
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Introduction

Most of the major breakthroughs in understanding 
inflammatory processes took place in the nineteenth 
and twentieth century. The term “inflammation” origi-
nates from ancient Egypt, but the first written definition 
of this process and the description of its symptoms was 
put forward by Roman writer Celsus in the first century 
of our era. Celsus described four cardinal features 
of inflammation such as warming, pain, swelling and 
redness. The last element, loss of function, was added 
in the nineteenth century by Rudolf Virchow. In 1793, 
John Hunter, the eminent Scottish surgeon, argued that 
inflammation should not be considered a disease but 
a process which is beneficial to the host. This discovery 
resulted in the subsequent intensive worldwide research 
projects which led to the conclusion that inflammation 
should be perceived as one of the most complicated 
processes but extremely important for the survival of 
organisms [1].

Inflammation is a complex reaction to harmful 
agents, tissue necrosis or direct injury. The aim of 
this process is to remove or destroy the cause of cell 
damage as well as eliminate any cells or necrotic de-
bris which formed as a result of the damage. In a set 

of complex reactions between various cell types and 
organs, damaged tissue is either repaired, regenerated 
or replaced by the scar tissue [2]. It should be em-
phasized that repair mechanisms are activated at the 
moment when damaging factor appears. Some of the 
inflammatory cells are recruited not only to eliminate 
the necrotic tissue but also to stimulate the formation of 
a new extracellular matrix mediated by cytokines. The 
repair process begins within 24 hours after damage by 
the inflow and then the proliferation of fibroblasts and 
endothelial cells. Most elements of these processes 
are controlled by the mediators which have the ability 
to interact with the extracellular matrix.

Based on the recognized morphological and clinical 
differences, inflammation has been divided into acute 
and chronic. Acute inflammation (AI) is an immediate 
systemic reaction which aims to transfer leukocytes to 
the site of the injury and to eliminate the cause. AI is 
characterized by short duration, presence of exudate 
and neutrophil infiltration. Depending on nature and 
intensity of the damage, acute inflammation can: resolve 
completely (with normalization of vascular permeability 
and inhibition of leukocyte infiltration, and tissue pattern 
return to its state before the injury), lead to fibrosis and 
formation of scar tissue (in tissues unable to regenerate 
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Figure 1. Receptors for external signals recognized by macrophages and macrophage secretions

or when excessive damage occurs), or it can progress 
to chronic inflammation (CI) in which mononuclear 
cells infiltration occurs along with vascular proliferation 
and scarring [2]. The key cells in chronic inflammation 
and immune responses are macrophages, sometimes 
called administrators or masters of chronic inflam-
mation. The most important functional features of the 
macrophages are mobility, phagocytosis, the ability to 
recognize signals as well as production and secretion 
of mediators (Fig. 1).

Hypoxia, in general, is an inadequate oxygen 
supply, which can span from a single cell to the whole 
body. The process of hypoxia involves various com-
pensation mechanisms which are initiated to restore 
oxygen homeostasis. Prolonged hypoxia is likely to 
directly cause cell injury and death [2]. One of the 
most important mediators in the adaptation to hypoxia 
is hypoxia inducible factor (HIF) which is a heterodimer 
transcriptional factor built of subunits a and b. Subunits 
a (HIF-1a, HIF-2a, HIF-3a) are sensitive to, e.g. oxygen 
supply and growth factors, but subunit b is constitutively 
expressed. Along with adaptation to hypoxia, HIF is 
seen as an important factor in embryogenic develop-
ment and immune response [3, 4]. However, there is still 
no consensus on the exact mechanism of the cellular 

response to hypoxia. Numerous pathway models of 
hypoxia signalling have been proposed. Although all of 
these models present some clues, no clear conclusions 
can be drawn yet. However, they provide us with better 
understanding of what might become a framework for 
future experiments [5].

The number of patients suffering from heart failure 
constantly rises across the world. The treatment of 
this disease puts an ever-rising strain on healthcare. 
Immense amount of research has already been done 
on this subject, but relatively few new drugs and 
treatment options have been provided thus far [6]. 
Recently, new diagnostic aids have become available 
(e.g. C-reactive protein (CRP) measurements). From 
a practical point of view, while they are helpful, they 
also tend to be overused especially by the inexpe-
rienced doctors [7]. It has been widely agreed that 
both inflammation and hypoxia are integral parts in the 
development of a wide array of diseases in the spec-
trum of cardiology. HIF and inflammation mediators 
have been identified to be expressed in the course of 
atherosclerosis development. Moreover, their plas-
ma levels change in various clinical scenarios, and 
altering their expression may also lead to different 
outcomes in particular diseases.
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Acute-phase proteins

Acute and chronic inflammations, besides local 
changes, are frequently accompanied by various 
changes in the whole body and these may occasionally 
occur in location distant from the site of inflammation. 
This phenomenon has been defined as an acute-phase 
response (APR) [8]. Changes in APR can be divided into 
the following: changes in the concentration of plasma 
proteins, known as acute phase proteins, and various 
changes in the physiology and biochemistry of the 
whole body. A particular plasma protein is considered 
an acute phase protein if its concentration changes by 
at least 25% within hours after the onset of the inflam-
matory response. Proteins which display tendency to 
increase their concentration in acute-phase response 
are known as positive acute-phase proteins, while pro-
teins with reduced concentrations are called negative 
acute-phase proteins. The concentration of proteins 
depends mainly on the severity of synthesis in hepato-
cytes. Factors known to have the ability to initiate the 
increase of acute phase proteins are: infection, trauma, 
surgical intervention, tissue infarction and advanced 
cancer. Over the past few years, acute phase proteins 
have become a diagnostic tool for diagnosis and 
monitoring of inflammation. According to the statistical 
analysis from the numerous recent studies, measuring 
plasma concentrations of these proteins can also help 
in predicting the risk of development, diagnosis and 
outcome of many diseases [9].

Meta-analysis undertaken by Kaptoge et al. re-
vealed that adding plasma/serum CRP measurements 
could improve unfavourable inflammation course risk 
prediction. For patients with high cardiovascular event 
risk (10–20% risk of coronary heart disease or stroke 
over 10 years [10]), additional 1 in 440 events could be 
successfully predicted. In the same study, authors found 
that additional assessment factor such as fibrinogen, that 
also belongs to the acute phase proteins, could help to 
predict 1 in 490 events in the same risk group [11]. In 
a different study, plasma CRP levels were reported to be 
useful in assessing the risk of acute coronary syndrome 
occurrence, and more precise than predictions based on 
apolipoproteins (A-I, apoB) or cholesterol fraction levels 
(total cholesterol, LDL, HDL) [12]. CRP level is also a po-
tent screening tool for coronary artery disease in patients 
presenting with chest pain [13]. Higher plasma/serum 
levels of CRP are found in patients suffering from acute 
coronary syndromes (myocardial infarction (MI), unsta-
ble angina pectoris) compared to those suffering from 
stable angina pectoris and patients not suffering from 
coronary artery disease (CAD) [14]. In a different study, 
CRP levels measured at rest were found to correlate 
positively with the presence of CAD. Nevertheless, the 
correlation was weaker than conventional risk factors 

including: high age, diabetes or male sex [15]. More-
over, higher ceruloplasmin (also an acute phase protein)  
levels are associated with significant risk of death, MI or 
stroke in patients selected for coronary angiography [16].  
High CRP concentration can be a predictor of left ven-
tricle remodelling (LVR). In patients suffering their first 
ST segment elevation myocardial infarction (STEMI) 
treated with primary percutaneous coronary intervention 
(pPCI), CRP levels measured 24h after admission have 
a positive predictive value for LVR.

In addition, CRP levels correlated with future mag-
nitude of LVR [17]. In a different study, CRP levels 
measured 2 days, one week as well as 2 months after 
STEMI occurrence correlated positively with the mass 
of infracted heart muscle in patients suffering from the 
first episode of STEMI [18]. Elevated CRP is a potent 
predictor of death and non-fatal recurrent MI in patients 
diagnosed with non-ST segment elevation MI or unsta-
ble angina [19]. Higher CRP levels measured 12–24 h 
after admission can be a valuable tool in predicting 
heart failure and death of patients who suffered MI [20]. 
Lower CRP levels were associated with lower risk of 
death in patients with congestive heart failure. A positive 
predictive value was especially strong for patients with 
ischaemic cardiomyopathy. The measurements of this 
protein levels also proved useful for risk stratification of 
those patients [21]. CRP concentration measured with 
high sensitivity method (hsCRP), below 3 mg/L before 
treatment, indicated possible successful outcome of 
cardiac resynchronization therapy and lower probability 
of death in patients with congestive heart failure [22]
mean age 65.0 ± 11.8 years, NYHA class III/IV. High 
CRP plasma concentration on its own correlated with 
higher mortality in patients with acute coronary syn-
dromes. The addition of CRP measurements can slightly 
improve accuracy of risk scoring systems for cardiac 
patients [23] but current risk score systems do not con-
sider this factor. We studied the incremental predictive 
value of adding C-reactive protein to the Global Registry 
of Acute Coronary Events (GRACE. Plasma/serum CRP 
increase (but not baseline CRP levels) have also been 
found to indicate a late recurrence of atrial fibrillation 
after catheter ablation treatment [24]. Bouloukaki et 
al. suggest in their review that there is a connection 
between obstructive sleep apnea syndrome (OSAS), 
rising plasma/serum CRP levels and cardiovascular 
disease. Nevertheless, while CRP is strongly associated 
with cardiovascular disease, its association with OSAS 
is not definitively proven, leaving much room for spec-
ulation [25]. Authors cited above [12, 17, 18] suggest 
that CRP could be more than just a marker of LVR, of 
acute coronary syndrome occurrence risk or the size of 
myocardial damage when we consider cardiovascular 
disease. It has been observed that high expression of 
CRP can promote cardiac muscle remodelling after 
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MI in mice [26]. CRP plasma/serum levels have also 
been observed to correlate with the magnitude of 
atherosclerotic process. Moreover, CRP deposits are 
present in arterial intima at all stages of development 
of atherosclerosis,  which suggests that it might have 
a potentially significant role in the pathogenesis of this 
disease [27]the origin and pathological significance of 
CRP in these lesions are not completely understood. 
In this study, we measured CRP levels in the plasma 
of hypercholesterolemic rabbits and investigated CRP 
expression at both the mRNA and protein levels using 
rabbit and human atherosclerotic specimens. CRP 
levels were significantly elevated in both cholesterol-fed 
and Watanabe heritable hyperlipidemic rabbits, and 
CRP levels were clearly correlated with aortic athero-
sclerotic lesion size. Immunohistochemical staining 
coupled with Western blotting analysis revealed that 
CRP-immunoreactive proteins were found at all stag-
es of atherosclerosis from the early to advanced le-
sions. CRP was present extracellularly and co-localized 
with apolipoprotein B but was rarely associated with the 
cytoplasm of macrophages and foam cells. Real-time 
reverse transcriptase-polymerase chain reaction anal-
ysis revealed that CRP mRNA in atherosclerotic lesions 
was barely detectable, and isolated macrophages did 
not express CRP mRNA, suggesting that CRP proteins 
found in the lesions were essentially derived from the 
circulation rather than synthesized de novo by vascular  
cells. These results suggest that there is a link between 
plasma CRP and the degree of atherosclerosis and that 
inhibition of plasma CRP may represent a therapeutic 
modality for the treatment of cardiovascular disease [27].  
It has been indicated that hsCRP measurement in 
males ≥ 50 years and females ≥ 30 years with LDL 
cholesterol < 130 mg/dL can be helpful in determining 
patients suitable for statin therapy. Newer inflammatory 
markers such as lipoprotein-associated phospholipase 
A2 or myeloperoxidase, or growth differentiation fac-
tor-15 have also been investigated in relation to CAD. 
Nevertheless, their relevance to CAD is not yet clear [28]. 
Various trials which aim at reducing CRP levels us-
ing non-specific anti-inflammatory drugs have been 
undertaken, and their outcome is still uncertain. In 
spite of this fact, numerous more precise strategies of 
reducing CRP levels have been put forward including: 
CRP cross-linking, inhibition of CRP synthesis, block-
ing of CRP receptors, antisense strategies or blocking 
CRP-mediated complement activation. Potentially ben-
eficial CRP-specific drugs require further research [29].  
It has not been determined whether inappropriate levels 
of CRP promote disease [30]. However, it has been 
put forward by some researchers that randomized trial 
using CRP inhibitor (1,6-bis-phosphocholine) would 
make it clear whether CRP plays an active role in the 
development of CAD [31].  

The role of chemokines and chemokine 
receptors in inflammation

Chemokines can be described as small proteins 
responsible for attracting leukocytes  to areas of 
inflammation or damage [32], and, along with their 
receptors, they play a key role in directing the migra-
tion of mononuclear cells in the human body. Their 
role in inflammation and immunity has been studied 
extensively in recent years, and they have been already 
linked to various diseases. Human organism produces 
about 50 different chemotactic cytokines (chemokines), 
which can be divided into four groups, depending on 
their structure and function. 

The first and largest group consists of CC chemo-
kines (the CC name comes from 2 of the four cysteine 
residues lying beside each other in the molecule), 
known as b-chemokines, which are responsible for 
directing mononuclear cells to the areas of chronic 
inflammation (Tab. 1). The second group are the CXC 
chemokines (in this case single amino acid is located in 
between cysteine residues), also called a-chemokines, 
which are divided further into two more subgroups. In 
the first subgroup, chemokines contain the amino acid 
sequence: Glu-Leu-Arg (ELR motif) and have been 
identified to be chemoattractants of neutrophils. They 
contribute to wound repair, promote angiogenesis and 
promote the formation of granulation tissue by inducing 
fibroblast differentiation. Chemokines in the second 
subgroup (without the ELR motif) are the inhibitors 
of angiogenesis. The third group of chemokines is 
called CX3C (three amino acids separating first two 
cysteine residues), and it contains only one protein 
CX3CL1 fractakline (FKN) which acts as a cell adhesion 
receptor (when connected to the cell membrane) or as 
a chemoattractant (after being cut from the cell mem-
brane by tumour necrosis factor alpha). Lymphotactin 
(XCL1 — only contains 1 cysteine residue) is the only 
member of the fourth group of chemokines. It attracts 
T lymphocytes and natural killer cells [32, 33].

Rising levels of chemokines coupled with chronic 
inflammation are confirmed factors in development of 
many vascular diseases including: atherosclerosis, 
restenosis, and transplant vasculopathy [34]. Athero-
sclerosis is associated with the formation of athero-
sclerotic plaques caused by hypercholesterolemia, 
turbulent blood flow and hypertension. CCL2 chemo-
kine is present in all macrophages forming atheroscle-
rotic plaque (Fig. 2). Increased levels of low density 
lipoprotein (LDL) have been identified to induce the 
production of CCL2 in the endothelium and smooth 
muscle cells at the site of atheroma formation. CCL2 has 
a significant impact on the interaction of oxidized lipo-
proteins and recruitment of the foam cells in the walls 
of blood vessels [33, 35, 36]. Various studies suggest 
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that CX3CL1is a key factor in cellular adhesion [37]. 
Studies in mice have shown that CX3CR1 receptor is 
present on cellular membrane of monocytes and is 
responsible for their adherence to the vessel wall and 
plaque creation [38]. CXCR2 and CX3CR1 chemokines 
have also been observed to have an impact at the early 
stages of atherosclerotic plaque formation [39, 40]. In 
addition, polymorphism in the promoter of CCL2 has 
been associated with an increased transcription of the 
CCL2 gene, and patients who were homozygous for the 
polymorphism were found at higher risk for CAD than 
patients who were heterozygous [41]. Further analysis 
showed that certain allele variants of receptor for the 
CX3CL1 and CC chemokine receptor 2 have a pro-
tective effect against the calcified atherosclerotic le- 
sions [39, 40]. CX3CL1 chemokine has been identified 
as an important factor in the development of type 2  
diabetes mellitus, which is strongly associated with ath-
erosclerosis development. Although certain pathways 
have been identified, the significance of these findings is 
not yet clear [42]. Interestingly, statin treatment reduces 
expression of CX3CL1 in adult patients not suffering 
from CAD [43].

Activated platelets produce chemokines (CCL5 and 
CXCL4) with a tendency to accumulate on the sur-

face of endothelium and monocytes, which, in turn, 
promotes migration of monocytes into inflammated 
vessel wall, thus, possibly promoting the development 
of atherosclerosis [44, 45]. Platelet factor 4 (PF4 or 
CXCL4) can also inhibit apoptosis of monocytes and 
support monocyte arrest [44, 46].Von Hundelshausen 
et al. suggest that when atherosclerosis is considered, 
there is a room for the development of novel anti-platelet 
drugs concentrating on controlling the pro-inflammatory 
properties of platelets rather than their haemostatic 
function [47]. Blocking the CXCR4 chemokine receptor 
in mice promotes atherosclerotic plaque progression 
and promotes its instability. This finding was accom-
panied by the increased presence of neutrophils in 
atherosclerotic plaque, suggesting their possible role 
in the development of atherosclerosis. Similarly, Bot et 
al. report a positive correlation between CXCR4 expres-
sion and the level of the development of atherosclerotic 
plaques in samples from human carotid arteries [48].

Another chemokine, namely CXCL16, normally 
responsible for the stimulation of cell proliferation and 
adhesion as well as the migration of T lymphocytes, 
has also been identified as an atherogenic chemokine 
and its receptor — CXCR6 is present on the surface of 
macrophages, dendritic cells, natural killer T cells and 

Table 1. CC, CXC, CX3C and XC Groups of Chemokines and Chemokines Receptors. Summarized from [33]

Receptor Chemokine Relationship with disease

CCR1 CCL3, CCL5, CCL7, CCL14 Rheumatoid arthritis, multiple sclerosis

CCR2 CCL2, CCL8, CCL7, CCL13, CCL16 Atherosclerosis, rheumatoid arthritis, multiple sclerosis, type 2 diabetes 
mellitus

CCR3 CCL11, CCL13, CCL7, CCL5, CCL8, 
CCL13

Allergic asthma, rhinitis

CCR4 CCL17, CCL22 Parasitic infection, graft rejection

CCR5 CCL3, CCL4, CCL5, CCL11, CCL14, 
CCL16

HIV-1 co-receptor, transplant rejection

CCR6 CCL20 Allergic asthma 

CCR7 CCL19, CCL21

CCR8 CCL1 Granuloma formation

CCR9 CCL25 Inflammatory bowel disease

CCR10 CCL27, CCL28

CXCR1 CXCL8 (interleukin-8), CXCL6 Inflammatory lung disease, chronic obstructive pulmonary disease

CXCR2 CXCL8, CXCL1, CXCL2, CXCL3, 
CXCL5, CXCL6

Inflammatory lung disease, chronic obstructive pulmonary disease, angiogenic 
for tumour growth

CXCR3-A CXCL9, CXCL10, CXCL11 Inflammatory skin disease, multiple sclerosis, transplant rejection

CXCR3-B CXCL4, CXCL9, CXCL10, CXCL11 Angiostatic for tumour growth

CXCR4 CXCL12 HIV-1 co-receptor, tumour metastases

CXCR5 CXCL13

CXCR6 CXCL16 Inflammatory liver disease, atherosclerosis

CX3CR1 CXCL1 (fractalkine) Atherosclerosis

XCR1 XCL1 (lymphotactin) XCL2 Rheumatoid arthritis, IgA nephropathy, tumour response
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Figure 2. Evolution of arterial wall changes with recruitment of monocytes. A., B. Endothelial injury (hyperlipidemia, 
hypertension, smoking, toxins, etc.), which is the result of dysfunction, increased permeability and leukocyte adhesion. 
Migration of leukocytes to the intima. C. Entering LDL lipoprotein to the vessel wall and then their oxidation. Movement 
of smooth muscle cells from media to intima. Transformation of monocytes to macrophages and their activation.  
D. Absorption of lipids by macrophages (foam cells) and muscle cells in the intima. E. Developed atherosclerotic 
plaque with proliferation of smooth muscle cells, deposition of collagen, proteoglycans and formation of the lipid core.  
F. Monocytes circulating in the blood bind to the vascular endothelium. Trapping monocytes and their binding takes place 
through different mechanisms. Specific chemokines (e.g., CX3CL1 and CCL2) secreted by macrophages and foam cells 
play the key role. Binding of the appropriate chemokine takes place through a specific receptor on monocyte. Capturing 
monocytes could be done through the presentation of chemokines such as CXCL1 by endothelial-cell. Modified from [33]

lymphocytes T and B. This receptor (also known as scav-
enger receptor), allows macrophages to bind oxidised 
lipids and may be important in atheroma formation [49].

Certain chemokines including: CCL2, CCL5 CXCL8, 
CXCL10 and CX3CL1 along with chemokine receptors: 
CCR2, CCR5, CXCR1, CXCR2, CXCR3 and CX3CR1 have 
been identified to be involved in the pathogenesis of hy-
pertension. Exact nature of this process is not yet fully 
understood and requires further research [50].

New discoveries provide better understanding of 
physiological and pathogenic role of chemokines. Re-
search data acquired thus far suggest that chemokines 
play an important part in the atherosclerosis devel-
opment. Targeting chemokines or their receptors for 
pharmacotherapy might be beneficial for patients.  

Nevertheless, a successful chemokine-focused therapy is 
probably still far away from daily practical use. However,  
intensive research as well as many successful model 
studies might open new possibilities in the future [51, 52].

The role of HIF-1a factor in the 
pathogenesis and treatment of 
cardiovascular diseases

HIF-1a is a heterodimeric transcriptional factor 
induced by hypoxia, which belongs to PerARNT-Sim 
(PAS) protein family. HIF-1a is a key factor associated 
with adaptation of cells to hypoxia [4]. The activation 
of HIF-1a leads to an enhanced production of various 
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proteins including: angiogenetic factors such as delta 
like ligand 4 (DLL-4), platelet derived growth factor beta 
(PDGF-b), vascular endothelial growth factor (VEGF) 
and other [53–56]. In recent years, there has been an 
increasing interest in HIF protein and many researchers 
tried to connect this factor and its effects associated 
with disease development.

According to the data from some recent reports, 
there is a clear indication that HIF-1a is involved in the 
pathogenesis of atherosclerosis, but its exact role still 
remains unclear. In experiments conducted on the 
cultures of smooth muscle cells from coronary arteries 
in humans, the stability of HIF-1a increased during hy-
poxia. This activity is associated with higher expression 
levels of VEGF which can also lead to an increased 
proliferation of those cells [56]. Furthermore, hypoxia 
causes HIF-1a dependent increase in macrophage 
migration inhibitory factor (MIF) expression. MIF causes 
the escalation of migration and the increased prolifer-
ation of vascular smooth muscle cells, both of which 
are important in the progression of atherosclerosis [57].  
Na et al. suggest that there is a positive feedback circuit 
between HIF-1a and liver X receptor a which leads to 
the formation of foam cells [58]. Hypoxia and HIF-1a 
up regulation also stimulates expression of low density 
lipoprotein receptor-related protein 1 (LRP1) which is 
associated with cholesterol independent progression 
of atherosclerosis [59]. Sluimer et al. suggest that 
hypoxia, increased HIF-1a and angiogenesis are an 
integral part in the development of atherosclerosis [60]. 
HIF-1a can also be an important factor in the deep vein 
thrombosis. Evans et al. revealed that HIF-1a stimulates 
vein recanalization and thrombus resolution. However, 
the presence of thrombus does not increase HIF-1a 
expression [61].

Various studies suggest that the enhanced stability 
of HIF-1a during hypoxia promotes beneficiary effects 
when it comes to the outcome of myocardial infarc-
tion. In experiments on mice, smaller infarct size along 
with less apoptotic cells were observed when HIF-1a 
stability had been increased [55, 62, 63]. A possible 
explanation for a down regulation of apoptosis in such 
circumstances could be an up regulation of Cardiotro-
phin-1 (member of interleukin-6 family) by HIF-1a in 
the hypoxic environment [64]. Moreover, the enhanced 
expression of HIF-1a may lead to the impaired cardiac 
muscle contractility due to the reduced calcium ions 
uptake by cardiomyocytes along with certain amount of 
dilation in muscle structure. Rising HIF-1a level may also 
lead to a better chance for cardiomyocytes to survive 
hypoxia episodes (by preserving ATP). Effects observed 
in this study showed capability for the reverse potential 
of changes. Bekeredjian et al. hypothesised that HIF-1a  
is indeed responsible for the impaired contractility fol-
lowing ischemia. It should be mentioned that this study 

was conducted in normoxic condition [65]. Constant 
activation of HIF-1a gene resulted in an increased 
number of capillaries in adult mice myocardium along 
with larger peak volume of perfusion for the whole heart. 
Angiogenesis was less pronounced in older muscles, 
as transport of HIF-1a to nucleus in the endothelial cells 
decreases with age [53, 66]. Moreover, up regulation 
of HIF-1a was associated with better response of ag-
ing myocytes to a positive inotropic stimulation [67].  
In studies on cultured endothelial and myocardial cells, 
HIF-1a was reported as an important factor in phar-
macologically induced and NO-mediated protection  
of cardiomyocytes in ischemia-reperfusion simulation [68].  
In experiments on murine model of myocardial infrac-
tion, Huang et al. have proven that mesenchymal cell 
transplant combined with adenoviral mediated increase 
in HIF-1a  expression caused higher levels of angio-
genesis and lower levels of apoptosis than each of 
these methods on its own [69]. In cardiac hypertrophy 
model, HIF-1a partly restored cardiac muscle response 
to NO and natriuretic peptides [70]. Enhancing HIF-1a 
expression in diabetic mice resulted in the attenuation of 
negative effects of diabetes on myocardium. Expression 
of glucose transporters and glycolytic enzymes, along 
with myocyte ATP production, increased where HIF-1a 
levels were higher [54].

In the light of current knowledge on HIF function and 
effects, many researchers have applied these findings 
in a form of therapy, based on increasing expression of 
this protein. A promising phase I clinical study has been 
conducted by Kilian et al. In those studies they used 
adenoviral vectors to deliver HIF-1a DNA sequence into 
cardiac muscle via injection. Patients in this model have 
been suffering from the advanced multivessel CAD and 
had already undergone coronary artery bypass proce-
dure after which revascularisation was not complete. 
Injections containing viruses were administered directly 
into the cardiac muscle during the bypass procedure. 
Success rate for this therapy cannnot be measured yet, 
mainly because the test group was too small (n = 13). 
Nevertheless, this study revealed that there were no 
complications caused by the administration of adeno-
viral vectors. Future studies are needed to reveal just 
how successful this form of therapy could become [71]. 

Similar studies have already been conducted on 
patients suffering from critical limb ischemia [72]. In 
a murine model of atherosclerosis, Christoph et al. have 
proven that the local inhibition of HIF activity (via adeno-
viral mediated siRNA silencing approach [73]) following 
arterial injury reduces formation of neointima, thus 
reducing restenosis after the injury [74]. Nevertheless, 
such therapy is not without potential negative conse-
quences, as inadequate timing of HIF inhibiting therapy 
could promote atherosclerotic plaque instability [75].  
Target therapies against hydroxylases (prolyl hydroxy
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lase domain proteins) leading to the increased HIF 
stability have also been proposed and successfully 
undertaken on animal models [76].

Conclusions

Recently, researchers have investigated various 
possible interactions between inflammation and hy-
poxia, and their influence on the development of ath-
erosclerosis and various diseases. The aforementioned 
studies provide better understanding of the develop-
ment and the pathomechanisms of diseases. Never-
theless, several questions still remain unanswered. Hy-
poxia and inflammation have been identified as taking 
part in pathogenesis of a disease. Recent discoveries 
suggest new possible forms of therapy and possibly 
an alternation of current guidelines for the disease 
treatment. However, these data must be interpreted 
with caution because most of the cited studies were 
undertaken either on animals or cultured cells. There is 
no guarantee that we can expect similar results in real 
life situations in humans. However, recent discoveries 
have indicated new paths for research and provided 
new diagnostic tools and better understanding of the 
disease. 
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