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Almost one million new cases of gastric cancer (GC) were estimated globally in 2012, (i.e. 952,000, representing 6.8% 
of the total cancer burden), making it the fifth most common malignancy in the world. GC represents a biologically 
and genetically diverse group of tumours with multifactorial aetiologies; both environmental and genetic. The vast 
majority of GCs are adenocarcinomas, which can be further subdivided into intestinal and diffuse histological subtypes 
according to the Lauren classification published in 1965. The molecular classification of GC according to the Cancer 
Genome Atlas (TCGA) divides GC into four subtypes: tumours positive for the EBV virus (9%), microsatellite unstable 
tumours (22%), genomically stable tumours (20%) and tumours with chromosomal instability (CIN) at 50%. Most GCs 
are sporadic by nature, where approximately 10% appear to possess a familial predisposition of which around half can 
be attributed to hereditary germline mutations i.e. those of the E-cadherin (CDH1) or mismatch repair (MMR) genes. 
Histopathological characteristics of the tumour type and analysis of potential genetic changes have substantial cli-
nical significance, as they determine the choice of treatment. In this review, we consider the molecular pathogenesis, 
phenotype and testing of GC placing particular emphasis on microsatellite instability (MSI) and the CDH1 mutation.
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Introduction
GC represents a biologically and genetically heteroge-

neous group of tumours arising from multifactorial aetio-
logies; both environmental and genetic. Nearly one million 
new cases of gastric cancer (GC) were estimated globally 
in 2012 (952,000, i.e. constituting 6.8% the whole cancer 
burden), making it the fifth most common malignancy in 
the world after cancers of the lung, breast, colorectum 
and prostate. This represents a substantive change since 
the very first estimates from 1975, when GC was the most 
common neoplasm. More than 70% of cases (677,000) occur 
in developing countries, (456,000 in men and 221,000 wo-
men), with half of the world’s total coming from Eastern 
Asia; mainly China [1]. The age standardised incidence rate 
for males is generally twice that for females [2] and the 
majority of GCs arise in the distal stomach (non-cardia 
gastric cancers) with their incidence gradually decreasing 
throughout the world [2]. Cancers of the gastric cardia are 

most commonly reported in European and North American 
populations with a rising prevalence [2]. GC is clinically 
classified as early or advanced stage to help determine 
prognosis and appropriate treatment. Additionally, histo-
pathological characteristics of the tumour type and analy-
sis of potential genetic disorders have substantial clinical 
significance, as they ultimately determine the choice of 
treatment, i.e. submucosal endoscopic dissection which is 
used as a treatment for early gastric cancer that fulfil the 
expanded criteria [3]. 

In this review, we consider the molecular pathogene-
sis, phenotype and testing of GC, laying particular em-
phasis on microsatellite instability (MSI) and E-cadherin 
mutations.

Molecular classification of gastric cancer 
GCs are solid tumours with complex genetic and environ-

mental interactions that contribute towards their initiation 



194

and progression [4]. Most of GCs are sporadic tumours where 
genetic alterations are frequently reported. Nevertheless, no 
major high-penetrance genes have yet been discovered [5], 
although genetic factors might play an important role in 
gastric carcinogenesis by possibly affecting immune and 
inflammatory responses, especially in cases of the bacterium 
Helicobacter pylori (H. pylori) and Epstein-Barr virus (EBV) in-
fections and thereby altering the susceptibility to gastric 
cancer [6–8]. GCs classified molecularly by the Cancer Geno-
me Atlas (TCGA) categorises GC into four subtypes: tumours 
positive for the EBV virus (9%), tumours with microsatellite 
instability (22%), genomically stable tumours (20%) and tu-
mours with chromosomal instability (CIN) at 50% [9]. All EBV-
-positive tumours displayed CDKN2A (p16INK4A) promoter 
hypermethylation, but lacked the MLH1 hypermethylation 
characteristic of the MSI-associated CpG island methylator 
phenotype (CIMP) [9]. EBV-positivity decreased with age 
among men; more steeply for those tumours localised in 
the antrum [5]. In addition, EBV-positivity has been associated 
with longer survival, suggesting that EBV-positive GC may 
have distinct clinical and genetic features, and therefore may 
be a separate clinical entity [5]. Sporadic GCs with micro-
satellite instability present epigenetic silencing of MLH1 in 
the context of a CIMP, whereas a small minority of GC cases 
are associated with germline mutation of mismatch repair 
genes (MMR). The term CIN refers to an accelerated rate of 
gain and loss of whole or a large portion of chromosomes. 
The consequence of CIN is an imbalance in chromosomal 
number (reflected by aneuploidy) and higher rates of losing 
heterozygosity (LOH), gene deletions and/or amplifications 
[10, 11]. All these alterations may lead to oncogene activation 
and/or tumour suppressor gene inactivation [11]. Each sub-
type was found throughout the stomach, but CIN tumours 
rates were higher in the gastroesophageal junction/cardia, 
whereas most EBV-positive tumours occurred in the gastric 
fundus or body [9]. Genomically stable tumours were diagno-
sed at an earlier age, whereas MSI tumours were diagnosed 
at relatively older ages [7]. MSI patients tended to be female, 
but most EBV-positive GCs were observed in males [2]. Appro-
ximately 10% of GCs appear to have a familial predisposition, 
of which about half can be attributed to hereditary germline 
mutations as follows: hereditary diffuse gastric cancer with 
E-cadherin (CDH1) mutation, gastric adenocarcinoma and 
proximal polyposis of the stomach (implicated genes are unk-
nown), hereditary nonpolyposis colorectal cancer (HNPCC) 
with mismatch repair (MMR) gene mutations, Li-Fraumeni 
syndrome with TP53 mutation, Peutz-Jeghers syndrome with 
STK11 gene mutation and Familial adenomatous polyposis 
with APC gene mutation [4, 9, 12–14].

Histopathological subtypes of gastric cancer 
The vast majority of GCs are adenocarcinomas, which 

can be further subdivided into intestinal and diffuse sub-

types according to the Lauren classification published 
in 1965 [4, 7, 15] (Fig. 1). These subtypes have different 
molecular profiles and their developmental pathways are 
distinct  [4,  15]. The relative proportions of GC subtypes 
worldwide are 74% intestinal ones versus 16% diffuse and 
10% other, although diffuse GC is becoming relatively more 
common in Western countries [12, 16]. Geographic varia-
tions in GC rates correlate with lifestyle, diet and H. pylori 
infection [5, 12]. The effects of environmental factors as cau-
ses of GC is highlighted by declining rates of intestinal GC in 
immigrants from high-incident countries to low-incident co-
untries [10, 17, 18]. The intestinal subtype is more often seen 
in older patients, whereas the diffuse type affects younger 
patients and has a more aggressive clinical course [12]. The 
intestinal type gastric tumours often present solid masses 
and arise from a premalignant gastric lesion, such as chronic 
atrophic gastritis, intestinal metaplasia and dysplasia, that in 
turn develops into a chronic inflammatory background that 
is usually induced by H. pylori infection [4, 12]. The ‘Correa 
Model’ describes a multistep cascading process from chro-
nic gastritis to atrophic gastritis, intestinal metaplasia and 
dysplasia before culminating in intestinal-type GC [19]. GCs 
with chromosomal instability are recognised by intestinal 
histology [9]. Abrogation of normal p53 function appears to 
be important in intestinal-type GC and its premalignant co-
unterparts [12]. A genomically stable group of GCs revealed 
enriched diffuse histological subtypes [19]. Sporadic diffuse 
GC appears not to develop in this step-wise neoplastic pro-
gression, arising instead from normal gastric mucosa with 
no definitive premalignant stage and is often associated 
with negative H. pylori status [4]. Diffuse tumours exhibit 
isolated cells, typically developing below the mucosal lining, 
often spreading and thickening until the stomach appears 
hardened into a morphological designation termed ‘linitis 
plastica’. Diffuse gastric tumours frequently present as ‘signet 
ring cells’, named for the marginalisation of the nucleus to 
the cell periphery due to high mucin content [12, 15]. The 
importance of distinguishing between these two main hi-
stopathological types of GC, one with a diffuse component 
(isolated cells and mixed types) and one without a diffuse 
component (glandular/intestinal and solid types), is highli-
ghted by finding somatic E-cadherin mutations exclusively 
in the first group [13]. 

Microsatellite instability in gastric cancer
Over 130 genes are thought to be involved in DNA repair 

mechanisms in humans. One of the DNA repair mechanisms 
is MMR, which includes single strand DNA damage-micro-
satellite instability (MSI). MSIs are insertion and deletion 
mutations at microsatellites, because these structures are 
particularly prone to DNA replication. Microsatellites are 
defined as stretches of DNA sequences where a single nucle-
otide (mononucleotides) or units of two or more nucleotides 
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are repeated in the genome [22]. There are at least 500,000 
microsatellites in the human genome, either at intergenic or 
noncoding regions (with unknown functional significance) 
as well as in gene-encoding regions (coding microsatellites, 
cMSs). They are commonly located in introns, with many 
microsatellites found in promoters, untranslated terminal 
regions and indeed in coding exons. Insertions and dele-
tions in cMSs result in the production of a truncated and 
therefore inactive protein. Examples of genes containing 
coding repeats that are targets for mutations in cancers 
with MSI, include genes associated with DNA repair (MLH1, 
MSH2, MSH6, PMS2), apoptosis (BAX, BCL10, Caspase-5), sig-
nal transduction (TGF-βRII, ACT RII) , cell cycle (PTEN, RIZ), 
and transcription factors (TCF-4) [22–24]. 

MMR proteins form heterodimers when active. MLH1 
constructs a functional complex with PMS2 and MSH2 along 
with partner MSH6 [10]. It is of note that the MLH1 and MSH2 
proteins are obligatory partners of their retrospective hete-
rodimers [10]. Mutations in the MLH1 or MSH2 gene result 
in proteolytic degradation of the retrospective dimer and 

consequent loss of both the obligatory and the seconda-
ry partner proteins [10]. The reverse, however, is not true: 
a mutation in one of the secondary genes, i.e. PMS2 or MSH6, 
does not usually lead to a concurrent loss of the obligatory 
proteins (MLH1 or MSH2, respectively) [10]. 

The MMR system is necessary for maintaining genomic 
stability by correcting single-base mismatches as inser-
tion-deletion loops which form during DNA replication [25]. 
Impaired MMR function leads to high-level MSI, which may 
be observed in both sporadic and hereditary cancers [10, 22]. 
The MSI-H phenotype is reported in 5–50% of all GCs with 
significant differences within various ethnic groups [26, 27]. 
The overwhelming majority of these are sporadic neoplasms 
with hypermethylation of CpG-rich gene promoters, thereby 
leading to transcriptional inactivation of a large number 
of genes, including MMR genes [11, 22]. MicroRNAs have 
been shown to act as oncogenes or tumour suppressing 
genes in cancer, with putative growth-inhibitory functions 
undergoing promoter CpG island hypermethylation in hu-
man cancer [22]. Recognising the link between miR-155 

Figure 1. Histological types of GC according to the Lauren classification in H&E staining. A — intestinal type of GC with tubular arrangement;  
B — diffuse type of GC with signet ring cell morphology and remnants of benign glands

A
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with oncogenic function has been demonstrated through 
their specific downregulation of MLH1, MLH2 and MSH6 
(core components of DNA mismatch repair), which has been 
implicated in the pathogenesis of HNPCC [22]. In particular, 
an altered expression of MLH1 has been associated with 
gene inactivation by promoter hypermethylation [11]. The 
silencing of these genes is responsible for MSI develop-
ment [10, 22]. Cancers with a high degree of methylation 
(CIMP phenotype) represent a clinically and aetiologically 
distinct group of sporadic GCs characterised by epigenetic 
instability [10, 12]. MSI-H GCs develop and progress genet-
ically as a consequence of frameshift mutations in multiple 
target genes [26]. TGFβRII mutations have appeared to play 
a major role in gastric tumourigenesis, thus suggesting that 
progression in MSI-H GCs is linked to cellular escape from 
the growth control signal of the TGF-b network [26]. 

A germline mutation in one of the MMR genes is respon-
sible for genetic predisposition to many cancers known as 
the Lynch syndrome, previously referred to as HNPCC [9, 22]. 
The Lynch syndrome is an autosomal dominant disorder 
with high penetrance that accounts for 5% of newly dia-
gnosed cases of GC [12, 22]. Patients with Lynch syndrome 
also exhibited an increased risk of GC and other extracolonic 
malignancies [10, 22]. The life time risk of GC for patients 
with Lynch syndrome is 6 to 13% [12]. The median age at 
diagnosis is 71 years for all GC types and 56 years for patients 
with Lynch syndrome [12]. From a study with patients belon-
ging to families diagnosed with Lynch syndrome, more than 

80% of tumours display MSI [22]. The most common cause 
of MSI being absent in Lynch syndrome is a false negative 
result, because of inadequate numbers of microsatellite 
markers or an inadequate proportion of tumour cells in 
the sample [22]. 

In Amsterdam, from 1990, the first set of clinical criteria 
for families with Lynch syndrome was established [28]. The 
expanded criteria include also extracolonic tumour sites as 
diagnostic features (Tab. I) [28–30]. The Amsterdam Crite-
ria were initially designed to serve research purposes. The 
Bethesda Guidelines and revised Bethesda Guidelines are 
used to select patients for MSI testing, i.e. to limit molecular 
analysis to cancers that have a high likelihood of being he-
reditary (Tab. II) [30, 31]. A standard test for MSI, also known 
as the Bethesda panel, was proposed at the National Cancer 
Institute in 1997 but also customized panels are used which 
precisely indicate MSI [24, 32, 33]. This is a panel consisting 
of two mononucleotide repeats (BAT25, BAT26) and three 
dinucleotide repeats (D2S123, D5S346, D17S250) [22]. In-
stability can thereby be classified in high-level MSI (MSI-H) 
with instability demonstrated by the five Bethesda panels 
and low-level MSI (MSI-L) with instability at only one of the 
five Bethesda panels [22]. Microsatellite stable (MSS) GC pre-
sents as a non-positive marker by the Bethesda panel [34]. 
Suraweera et al. proposed a new five-marker or pentaplex 
panel for MSI screening that comprises the mononucleotide 
repeats BAT25, BAT26, NR21, NR22 and NR24. The pentaplex 
assay is commercially available and has been used for se-

Table I. Amsterdam Criteria I and Amsterdam Criteria II for diagnosing Lynch Syndrome [1–20]

Amsterdam Criteria I

1. Three or more relatives with histologically verified CRC, one of whom is a first-degree relative of the other two

2. Two or more generations should be affected

3. One or more patients with CRC should be diagnosed before 50 years age

4. Familial adenomatous polyposis (FAP) should be excluded

Amsterdam Criteria II

1. Three or more relatives with histologically verified Lynch syndrome-associated cancer, (CRC, cancer of the endometrium, small bowel, ureter, or 
renal pelvis), one of whom is a first-degree relative of the other two.

2. Two or more generations should be affected

3. One or more patients should be diagnosed before 50 years age

4. Familial adenomatous polyposis (FAP) should be excluded

CRC — colorectal cancer

Table II. Revised Bethesda Guidelines [20, 21]. Colorectal cancers (CRCs) should be tested for MSI in the following cases:

1. CRC diagnosed in patients below 50 years age

2. Presence of synchronous or metachronous CRC or Lynch syndrome-associated tumour*, regardless of age

3. CRC with MSI-H histology diagnosed in patients below 60 years age

4. Patients with CRC and CRC or a Lynch syndrome-associated tumour* diagnosed in at least one first-degree relative aged below 50 years

5. Patients with CRC and CRC or a Lynch syndrome-associated tumour* diagnosed in two first-degree or second-degree relatives regardless of age

*Lynch syndrome-associated tumours include cancers of the colorectum, endometrium, stomach, ovary, pancreas, biliary tract, small bowel, ureter, renal pelvis and brain 
tumours (usually glioblastoma as seen in the Turcot syndrome), as well as sebaceous gland adenomas and keratoacanthomas (in the Muir-Torre syndrome);  
CRC — colorectal cancer; MSI-H — microsatellite instability high
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veral years, although the simultaneous assessment of two 
markers (BAT26 and NR24) has been shown to be as effective 
as the pentaplex panel for diagnosing MSI [22]. The MMR 
defect may also be screened with the immunohistochemi-
stry method; MMR protein expression. Recent studies have 
demonstrated the predictive value of immunohistochemi-
stry which includes analysing four proteins (MLH1, MSH2, 
MSH6 and PMS2) which is virtually equivalent to MSI testing 
(Fig. 2) [11, 35, 36]. Microsatellite analysis and immunohi-
stochemical staining are in agreement in more than 90% 
of GCs [37]. However, microsatellite analysis when using 
PCR is more sensitive and provides informative results in 
virtually all cancers [37].

Clinicopathological features displayed by high-level 
microsatellite instability GC with MSI-H are reported to be 
distinct both clinically and in molecular terms compared 
to microsatellite stable (MSS) GC [35]. In contrast to colo-
rectal cancer, the clinical significance and role of MSI in GC 
however remain controversial [35]. MSI-H GCs tend to be 
associated with an older age, female gender, distal tumour 

location, rare lymph node involvement and a lesser propen-
sity to invade the serosa. They often display distinct features 
at the histological level, which should raise suspicion of MSI 
and prompt further analysis [35]. The histological features 
which are not specific, but are commonly seen, include 
an intestinal type of tumour and prominent lymphoid cell 
infiltration with expanding borders [26, 37, 38]. The MSI-H 
phenotype was also associated with mucinous GC or MUC 
6 positivity [26, 35]. There exists a growing body of evidence 
that GC with MSI is associated with a better prognosis than 
MSS GC [39, 40].

Most histological features which serve as diagnostically 
useful markers of MSI-H status are apparent in both sporadic 
and hereditary GC in the Lynch syndrome.

E-cadherin mutation and gastric cancer
The E-cadherin gene coding sequence gives rise to 

a mature protein consisting of 3 major domains, a large 
extracellular domain and a smaller transmembrane and cy-
toplasmic domain [12, 41]. As in other autosomal dominant 

Figure 2. Immunohistochemical staining for MSH6 and MSH2 proteins in GC. A — malignant tubules of GC and benign lymphoid cells showing 
positive nuclear staining for MSH6 protein; B — MSI-H AGC exhibiting a complete loss of MSH2 expression, with stromal cells showing positive 
staining

A

B
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cancer predisposing genes, only 1 CDH1 allele is mutated in 
the germline and the majority of genetic changes lead to 
truncation of the protein. CDH1 encodes the calcium-depen-
dent cell-adhesion glycoprotein E-cadherin that connects 
to the actin cytoskeleton through a complex with catenin 
proteins (Fig. 3) [41–43]. Functionally, E-cadherin plays a role 
in maintaining normal tissue morphology and cellular dif-
ferentiation [44]. CDH1 somatic mutations have been no-
ted in genomically stable subtypes (37% of cases) [9]. The 
germline CDH1 mutation has been found to be associated 
with approximately 30% of families with hereditary diffuse 
gastric cancer (HDGC), with a lifetime risk of GC greater than 
80%, and up to a 60% risk for female carriers developing 
lobular breast cancer [27, 45]. The average age of onset for 
both males and females is 38 years, though cases of onset 
at ages 15 and 16 years have been documented worldwi-
de [13]. CDH1 is the only gene implicated in HDGC. About 
100 CDH1 mutation-positive families have been globally 
reported [6]. Using the initial International Gastric Cancer 
Linkage Consortium (IGCLC) criteria for HDGC (Tab. III), CDH1 
mutation testing yielded a detection rate of 30–50% [46] of 
clinically diagnosed HDGC families with no identifiable ge-
netic mutation [12]. A somatic CDH1 mutation was identified 
in about half of sporadic diffuse GCs, but occurs rarely for 
intestinal GC [12]. The histological phenotype of HDGC at 
the early stage includes patchy intramucosal signet ring car-
cinoma cells in the lamina propria which is a unique feature 

of carcinoma in situ associated with the pagetoid spread of 
tumour cells along the basement membrane [14]. Although 
malignant foci are generally localised to the proximal one 
third of the stomach, lesions may be distributed through the 
entire stomach [47]. GC in patients with HDGC syndrome 
presents a diffuse pattern of growth with a high intracellular 
mucin content, signet ring features and a loss of E-cadherin 
upon immunohistochemical analysis (Tab. III). Prophylactic 
gastrectomy is offered to carriers of the germline CDH1 
mutation [12]. Nearly all specimens contain multiple foci of 
intramucosal diffuse signet ring cell carcinoma [12]. 

Conclusions
Diagnosing gastric cancer usually begins by histological 

examination of material from a gastric biopsy. Clinical ma-
nifestations, (a family history, the presence of potential risk 
factors of GC, patient age, a macroscopic tumour image), 
and the histological type of cancer may help to determine 
those patients who might need future treatment because of 
their genetic predisposition to GC. Finally, as aforementio-
ned in detail, the two principal subtypes of GC with MSI-H 
and CDH1 mutation evolve through different pathways, 
and those differences in molecular pathogenesis translate 
into a morphological distinction, which merits our atten-
tion [48, 49].

Identifying MSI-H and CDH1 mutated GC is of considera-
ble clinical significance. The MSI-H status is not only the cen-

Figure 3. E-cadherin interface mediating cell–cell adhesion. The extracellular domain binds to the extracellular domain of E-cadherin on adjacent 
cells by calcium activated dimerisation. The intracellular domain binds to p120ctn and to b-catenin. The complex formed with b-catenin allows 
a-catenin to link this complex to the cellular actin cytoskeleton [39]
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tral molecular tumour feature for identifying individuals with 
Lynch syndrome and sporadic MMR deficient GCs, but it is 
also a marker of favourable outcome and a predictive marker 
of resistance to the standard 5-fluorouracil-based adjuvant 
chemotherapy [38, 50]. Patients with the CDH1 mutation 
require individual clinical therapy, (preventive gastrectomy 
may be considered and endoscopic submucosal dissection 
can be used as an alternative method of treatment), and 
regular endoscopic examination using chromoendoscopy 
for direct biopsy for diagnosing early diffuse GC. 
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