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Background: Traumatic brain injury (TBI) leads to neuronal damage and neu-
rological dysfunction. The aim of our study was to investigate the antioxidative 
effect of honokiol on TBI in rats with biochemical, histopathological and immu-
nohistochemical methods. 
Materials and methods: Sprague–Dawley rats were subjected to TBI with  
a weight-drop device using 300 g/1 m weight/height impact. Forty-five rats were 
divided into three groups as control group, TBI group and TBI + honokiol group 
(5 mg/kg/day, i.p.). Honokiol (5 mg/kg) dissolved in dimethyl sulfoxide (DMSO) 
was intraperitoneally administered to rats for 7 days after the trauma. At the end 
of experiment, blood samples were taken from the animals and analysed with 
various biochemical markers. 
Results: Histopathological examination of the trauma group revealed some de-
generated pyramidal cells, dilatation and congestion in blood vessels, hyperplasia 
in endothelial cells, inflammatory cell infiltration around the vein and disruptions in 
glial extensions. In TBI + honokiol group, pyramidal neurons showed a decrease 
in degeneration, slight dilatation in blood vessels, improvement of endothelial 
cells towards the lumen, and reduction of inflammatory cells in the vessel. In TBI 
+ honokiol group, vascular endothelial growth factor expression was positive in 
the endothelial and few inflammatory cells of the mildly dilated blood vessels. In 
the blood brain barrier deteriorated after trauma, it was observed that the glial 
foot processes were positive expression and extended to the endothelial cells in 
the TBI + honokiol group.
Conclusions: Glial fibrillary acidic protein expression showed a positive reaction 
in these processes. Considering the important role of antioxidants and inflamma-
tory responses in cerebral damage induced by traumatic head injury, honokiol is 
thought to be important in decreasing lipid peroxidation, protecting the membrane 
structure of blood brain barrier, degeneration of neurons and glial cells. (Folia 
Morphol 2019; 78, 4: 684–694)
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INTRODUCTION
Traumatic brain injury (TBI) is a health problem 

known as the cause of mortality and disability in 
young people. Primary and secondary injury cascades 
that cause delayed neuronal dysfunction, synapse 
loss and cell death are associated with TBI [1, 39]. 
Secondary damage develops within the minutes to 
days following the primary insult, release of the in-
flammatory mediators, formation of the free radicals, 
excessive release of the neurotransmitters (glutamate 
and aspartate), influx of calcium and sodium ions 
into neurons, and dysfunction of mitochondria [22]. 
At a cellular level, the biphasic nature of secondary 
injury is mediated by numerous disturbed pathways 
which include: excitotoxicity caused by an excess of 
the neurotransmitter glutamate; free radical gener-
ation by dysfunctional mitochondria, causing dam-
age to proteins and phospholipid membranes of 
neurons and glia; the neuroinflammatory response 
which takes place due to both brain parenchyma 
and systemic immunoactivation [22, 31]. Glutamate 
is an excitatory amino acid which is known to play 
a role in the pathological events, increasing brain-
blood barrier permeability and the occurrence of 
oxidant damage. Previous studies have shown that 
glutamate antagonists may be beneficial in several 
conditions, such as ischaemia, sepsis and trauma 
[1, 22]. The neuroinflammation is closely related to 
the overproduction of the reactive oxygen species 
which cause many neuropathologies. Free radicals 
damage various cellular components, including pro-
teins, lipids and deoxyribonucleic acid. Antioxidants 
and anti-inflammatory drugs were widely studied in 
neurotrauma models [31]. After trauma, depending 
on the degree of brain damage, neuroinflammation, 
cerebral oedema and blood-brain barrier fragmenta-
tion occur. Vascular endothelial growth factor (VEGF) 
is a trophic factor that is expressed in the central 
nervous system after injury [10] and induces angio - 
genesis [34]. Inhibition of VEGF expression after trau-
ma may exacerbate neuronal and glial injury [23]. 
However, increased endogenous VEGF interacts with 
ischaemic vessels with its receptors and contributes 
to the deterioration of the blood-brain barrier and 
subsequent leakage [51].

Glial fibrillary acidic protein (GFAP) is an intermedi-
ate filament protein found in the skeleton of astroglia. 
Data from studies have shown that increased local 
tissue GFAP immunoreactivity is a sensitive indicator 

of neuronal damage and its increase is considered to 
be a determinant of reactive astrocytosis. GFAP level 
in blood fluid increases when cerebral tissue or spi-
nal cord cells are damaged due to trauma or disease 
[15, 41, 50]. This marker is in fact an indicator of the 
reaction of astrocytes in the form reactive gliosis.

Honokiol is a natural biphenolic compound that is 
isolated from magnolia bark and has been used in the 
traditional Chinese and Japanese medicine as an anti-
bacterial, antiemetic, antidepressant, antithrombotic, 
and anxiolytic agent. Studies have shown therapeutic 
effects including antioxidative and anti-inflammatory 
activities for honokiol [16, 27, 28].

Traumatic brain injury animal models are im-
portant in developing diagnostic and therapeutic 
strategies for understanding the pathophysiology of 
brain shocks [40]. In this study, antioxidative effects 
of honokiol on neuronal structures and changes in 
blood-brain barrier were investigated in TBI. In this 
study, we aimed to investigate antioxidative effects 
of honokiol on neuronal structures in a TBI model in 
rats with biochemical, histopathological and immu-
nohistochemical methods.

MaTERIalS aND METhODS
Animals

Every single surgical methodology and the con-
sequent care and healing of the animals utilised as  
a part of this investigation were in strict understanding 
with the National Institutes of Health (NIH Publications 
No. 8023, revised 1978) rules for animal care. All tech-
niques performed in this examination were approved 
by the Ethics Committee for Animal Experimentation 
of the Faculty of Medicine at Dicle University, Turkey. 
Male Sprague-Dawley rats (250–280 g) were housed 
in an air-conditioned room with 12-h light and dark 
cycles, where the temperature (23 ± 2°C) and relative 
humidity (65–70%) were kept constant. All rats at the 
end of experiment were healthy and no difference in 
food/water consumption and body weight gain be-
tween experimental and control rats were observed.

Traumatic brain injury model

Sedation procedure. The animals were anes-
thetised by an intraperitoneal injection of 5 mg/kg 
xylazine HCl (Rompun, Bayer Health Care AG, Germa-
ny) and 40 mg/kg ketamine HCl (Ketalar, Pfizer Inc., 
USA), and were allowed to breathe spontaneously. 
A rectal probe was inserted, and the animals were 
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positioned on a heating pad that maintained the body 
temperature at 37°C. 

Three groups (15 rats per group) were arranged 
as below:

 — Control group: Isotonic saline solution (an equal 
volume of honokiol) was administered i.p. for  
7 days;

 — TBI group: The widely used diffuse brain injury 
model described by Marmarou et al. [31] was 
used. Briefly, a trauma device which works by 
dropping a constant weight from a specific height 
through a tube was used. A weight of 300 g was 
dropped from a 1 m height, which can induce mild 
trauma, as shown by Ucar et al. [46];

 — TBI + honokiol group: Honokiol (5 mg/kg; Sig-
ma-Aldrich Inc., St. Louis, MO, USA) dissolved in 
dimethyl sulfoxide (DMSO) was intraperitoneally 
administered for 7 days after the trauma. After  
7 days, all animals were sacrificed by an intraperi-
toneal injection of 5 mg/kg xylazine HCl (Rompun, 
Bayer HealthCare AG, Germany) and 40 mg/kg 
ketamine HCl (Ketalar, Pfizer Inc., USA). After TBI, 
blood samples were taken from the animals and 
analysed with various biochemical markers. Then, 
parietal lobe of the brain cortex were rapidly re-
moved. For the histological examination, brain 
tissues were fixed in 10% formaldehyde solu-
tion, post-fixed in 70% alcohol, and embedded 
in paraffin wax. The sections were stained with 
haematoxylin-eosin (H&E).

Malondialdehyde and glutathione  
peroxidase assays  

Tissue samples were homogenised with ice-cold 
150 mM KCl for the determination of malondialde-
hyde (MDA) and glutathione peroxidase (GSH-Px)  
levels. The MDA levels were assayed for products 
of lipid peroxidation, and the results are expressed 
as nmol MDA/g tissue [42]. Glutathione was  
determined by the spectrophotometric method, 
which was based on the use of Ellman’s reagent, 
and the results are expressed as μmol glutathione/g 
tissue [38].

Myeloperoxidase assay

Myeloperoxidase (MPO) activity in tissues was 
measured by a procedure similar to that described 
by Hillegas et al. [17]. Myeloperoxidase activity is 
expressed as U/g tissue.

Evans blue assay for blood-brain  
barrier permeability 

To evaluate the blood–brain barrier integrity,  
Evans blue (EB) dye was used as a marker of albumin 
extravasation [14]. EB was expressed as μg/mg of 
brain tissue against a standard curve.

Immunohistochemical technique

Formaldehyde-fixed tissue was embedded in paraf-
fin wax for further immunohistochemical examination. 
Sections were deparaffinised in xylene. Antigen retrieval 
process was performed twice in citrate buffer solution 
(pH: 6.0), first for 7 min, and second for 5 min, boiled in 
a microwave oven at 700 W. They were allowed to cool 
to room temperature for 30 min and washed twice in 
distilled water for 5 min. Endogenous peroxidase activity 
was blocked in 0.1% hydrogen peroxide for 20 min. Ul-
tra V block (Cat. No:85-9043, Invitrogen, Carlsbad, CA, 
USA) was applied for 10 min prior to the overnight ap-
plication of primary antibodies VEGF antibody (Cat. No: 
RB-222-P0) (1:100 dilution), GFAP antibody (1:100 dilu-
tion) (Cat. No: PA3-067, Invitrogen, Carlsbad, CA, USA). 
Secondary antibody (Cat. No: 85- 9043, Invitrogen, 
Carlsbad, CA, USA) was applied for 20 min. Slides were 
then exposed to streptavidin–peroxidase for 20 min.  
Chromogen diaminobenzidine (DAB) (Invitrogen, Cat. 
No: 34002 Carlsbad, CA, USA) was used. Control slides 
were prepared as mentioned above, but omitting the 
primary antibodies. After counterstaining with hae-
matoxylin, and washing in tap water for 8 min and 
in distilled water for 10 min, the slides were mounted 
with Entellan.

Statistical analysis

Statistical analysis of biochemical findings was car-
ried out using GraphPad Prism 4.0 software (GraphPad 
Software, 2003, San Diego, CA, USA). All data are 
presented as mean ± standard deviation (SD). Groups 
of data were compared with an analysis of variance 
(ANOVA) followed by Tukey’s multiple comparison 
tests. Values of p < 0.001 and p < 0.01 were consid-
ered as statistically significant (Fig. 1). For the statistical 
analysis of VEGF and GFAP expression, Kruskal-Wallis 
and Mann-Whitney U non-parametric statistical tests 
were used in the intergroup comparisons depending 
on the variables and the results were given as the mean 
± SD and mean rank. And, the results were considered 
statistically significant for p = 0 with Kruskal-Wallis 
test and p < 0.05 with Mann-Whitney U test (Table 1).
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RESUlTS
Biochemical findings

The following biochemical parameters were com-
pared between groups (Fig. 1).

Tissue MDA levels 

Malondialdehyde values in the trauma (TBI) group 
were significantly higher than those of the control 
group (p < 0.001), while the TBI + honokiol group 
had significantly lower levels than those of the trauma 
(TBI) group (p < 0.001).

Tissue GSH-Px levels 

Glutathione peroxidase levels of the control group 
were significantly higher than those of the trauma 

group (p < 0.01), while those of the TBI + honokiol 
group were also significantly higher than those of 
the trauma group (p < 0.01).

Tissue MPO activity

Myeloperoxidase levels of the control group were 
significantly lower than those of the trauma group 
(p < 0.01), while those of the TBI + honokiol group 
were also significantly lower than those of the trauma 
group (p < 0.01).

Evans blue assay for blood-brain barrier  
permeability

Blood–brain barrier permeability values of the 
control group were significantly lower than those of 

Figure 1. Biochemical results relevant to the study groups; abbreviations — see text.

Table 1. Histopathological scoring of vascular endothelial growth factor (VEGF) and glial fibrillary acidic protein (GFAP) expressions

Histopathological scoring of control and experimental groups

Parameter Groups N Mean ± SD Mean rank Kruskal-Wallis 
test value

Mann-Whitney U comparisons  
for groups (p < 0.05)

VEGF expression (1) Control 15 1.81 ± 0.65 17.08 (2)**

(2) TBI 15 3.12 ± 0.71 30.12 19.397; *p = 0 (1)** (3)**

(3) TBI + honokiol 15 2.00 ± 0.73 44.30 (2)**

GFAP expression (1) Control 15 3.31 ± 0.60 10.50 (2)** 

(2) TBI 15 1.37 ± 0.61 33.65 34.034; *p = 0 (1)** (3)**

(3) TBI + honokiol 15 3.06 ± 044 47.35 (2)**

Data are expressed as the mean ± standard deviation (SD) and mean rank (*p = 0 with Kruskal-Wallis test, **p < 0.05 with Mann-Whitney U test, * and ** — statistically significant 
result). The quantification of all parameters: 0 — no change, 1 — too week, 2 — week, 3 — middle, 4 — strong (Scoring was determined by examining histological parameters in  
15 different regions within the microscope field); TBI — traumatic brain injury
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the trauma group (p < 0.001), while those of the TBI 
+ honokiol group were also significantly lower than 
those of the trauma group (p < 0.001).

Histopathologic findings

When brain cortex of the control group was exam-
ined, the pyramidal neurons were polyhedral and had 
chromatin-rich nuclei. Glial cells were observed with 
small round nuclei and distributed solitary.

The lumen of the capillary vessels in the cortex was 
regular and the endothelial cells were flat (Fig. 2a). His-
topathological examination of the TBI group revealed 
some degenerated pyramidal cells, pyknotic nuclei, 
dilated and congested blood vessels, hyperplasia in en-
dothelial cells, inflammatory cell infiltration around the 
vein and disruptions in glial extensions (Fig. 2b). In the 
histopathological examination of the TBI + honokiol 
group, we observed a decrease in degenerated pyram-
idal neurons, polygonal and dense-chromatin nuclei, 
slight dilated blood vessels and flattened endothelial 
cells towards the lumen and decrease in inflammatory 
cells around the vessel (Fig. 2c).

Immunohistochemical findings

Vascular endothelial growth factor expression 
in the capillary endothelial and some glial cells in 
the cortex showed a positive reaction in the control 
group sections (Fig. 3a). In the TBI group, glial cells 
around some degenerated neurons, dilated capil-
lary endothelial cells and vascular inflammatory cells 
showed increased VEGF expression (Fig. 3b). In the 
TBI + honokiol group, VEGF expression was positive 
in the endothelial and few inflammatory cells of the 
mildly dilated blood vessels (Fig. 3c). When GFAP 
expression was examined in the control group, it 
was observed that the glial foot processes around 
the capillary vein covered the basement membrane 
like a meshwork and were firmly bound to the en-
dothelial cells, and the expression of GFAP protein 
was significant (Fig. 3d). In the TBI group, loss of 
glial extensions was observed with deterioration of 
the glial food processes around the dilated capillary 
vessels. GFAP positive expression was observed in the 
short thick extensions away from the vessels (Fig. 3e).  
A significant increase in GFAP expression was observed 
in the glial food processes that covered the lumen of 
regular capillaries in the TBI + honokiol group (Fig. 3f).

DISCUSSION
Shortly after TBI, lack of blood flow causes necrotic 

neuronal death; however, greater loss of apoptotic 

Figure 2. a. Haematoxylin and eosin (H&E) staining, original mag-
nification ×40 (Control group). Normal appearance of regular cells 
and vascular structures in brain cortex; b. H&E staining, original 
magnification ×40 (TBI group). Dilation in blood vessels and  
haemorrhage (yellow arrow), degenerative changes in some neurons,  
hyperplasia in endothelial cells (red arrow), inflammatory cell  
infiltration around blood vessels (green arrow) and disruptions in 
glial extensions; c. H&E staining, original magnification ×40  
(TBI + honokiol group). Reduction in vascular dilatation (yellow 
arrow), flat endothelial cells towards the lumen, and decrease in 
inflammatory cells around the blood vessel (green arrow), regular 
structure of the nucleus and cytoplasm in neurons and glial cells; 
TBI — traumatic brain injury. 
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Figure 3. a. Vascular endothelial growth factor (VEGF) immunostaining, original magnification ×40 (Control group). VEGF expression in the 
capillary endothelial (yellow arrow), and some glial cells in the cortex; a*. Negative control, haematoxylin staining, original magnification ×40;  
b. VEGF immunostaining, original magnification ×40 (TBI group). An increase in VEGF expression glial cells around some degenerated neu-
rons and dilated capillary endothelial and vascular inflammatory cells (yellow arrow); b*. Negative control, haematoxylin staining, original 
magnification ×40; c. VEGF immunostaining, original magnification ×40 (TBI + honokiol group). Positive VEGF expression in the endothelial 
and few inflammatory cells of the mildly dilated blood vessels (yellow arrow); c*. Negative control, haematoxylin staining, original magnifica-
tion ×40; TBI — traumatic brain injury.
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Figure 3. d. Glial fibrillary acidic protein (GFAP) immunostaining, original magnification ×40 (Control group). Positive GFAP expression in glial 
food processes around the capillary vessel (yellow arrow); d*. Negative control, haematoxylin staining, original magnification ×40; e. GFAP 
immunostaining, original magnification ×40 (TBI group). Loss and degeneration in glial food processes around the dilated capillary vessels, 
positive GFAP expression (yellow arrows); e*. Negative control, haematoxylin staining, original magnification ×40; f. GFAP immunostaining, 
original magnification ×40 (TBI + honokiol group). An increase GFAP expression in glial food processes (yellow arrows); f*. Negative con-
trol, haematoxylin staining, original magnification ×40; TBI — traumatic brain injury.
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neurons may then occur after secondary injury of 
hypoxia/ischaemia and oxidative stress and inflam-
mation [8, 9, 12].

Previous studies have shown that a variety of 
pathological factors, such as oxidative stress, the 
inflammatory response and apoptosis, are involved 
in secondary brain injury after TBI. Furthermore, early 
interventions to reduce the level of oxidative stress 
and the extent of the inflammatory response can 
significantly reduce the extent of TBI [13]. Baloğlu et 
al. [2] observed a significant increase in MDA levels in 
spinal cord injury and a significant decrease in level 
of GSH and MPO. They have observed degenerative 
changes in some multipolar and bipolar nerve cells 
and pyknotic changes in the nucleus of glial cells.

Traumatic brain injury initiates a neuroinflam-
matory cascade characterised by microglial activa-
tion and increased production of proinflammatory 
cytokines [24]. TBI often promotes disruption of 
blood–brain barrier integrity and the neurovascular 
unit, which can result in vascular leakage, oedema, 
haemorrhage, and hypoxia. Other pathologic mech-
anisms include cell death within the meninges and 
brain parenchyma, stretching and tearing of axonal 
fibres, and disruptions at the junctions between white 
and grey matter, stemming from rotational forces 
that cause shearing injuries [3]. In this study, histo-
pathological examination of the TBI group revealed 
some degenerated pyramidal cells, pyknotic nuclei, 
dilated and congested blood vessels, hyperplasia in 
endothelial cells, inflammatory cell infiltration around 
the vein and disruptions in glial extensions (Fig. 2b). 
In the TBI + honokiol group, pyramidal neurons were 
less degenerated, also there were slight dilatation 
of blood vessels, improvement of endothelial cells 
towards the lumen, and reduction of inflammatory 
cells in the vessel (Fig. 2c). Feng et al. [11] reported 
that TBI can result in synapse loss or damage and 
may contribute to observed behavioural, cognitive, 
and neurological disorders.

Vascular endothelial growth factor is effective 
on vascular and neural development. It was thought 
that brain oedema was dominant because of the 
increase in VEGF expression and blood–brain barrier 
destruction in the post-traumatic contusion stage 
[6, 43]. Lenzlinger et al. [23] found that inhibition of 
VEGF significantly reduced regional cerebral oedema 
in TBI rats. Krum and Khaibullina [19] showed that 
inhibition of VEGF signals, including VEGF-R1 recep-
tors, decreased the numbers of reactive astrocytes 

and prevented glial scar formation in TBI models. In 
our TBI group, an increase in VEGF expression levels, 
vascular permeability, and rapid interaction of VEGF 
receptors in endothelial cells led to the destruction 
of vascular wall in the blood–brain barrier and the 
formation of oedema. The neuroprotective function 
of VEGF is thought to be due to a combination of 
direct neuroprotective effects and stimulation of an-
giogenesis. GFAP, a brain-specific protein that acts as 
the major integral component of the cell skeleton of 
astrocytes, GFAP after brain injury discharges the brain 
cells into the interstitial fluid in the environment and 
causes deterioration in the blood-brain barrier [32]. 
An increase in GFAP expression is a cardinal feature of 
many pathological conditions of the central nervous 
system and astrocytes. Increasing numbers of GFAP 
positive expression astroglia cells following TBI have 
been described in several experimental studies in an-
imals. GFAP was positively expressed in the normal 
brain tissue, processes in astrocytes around blood–
brain barrier rupture was defined as significant GFAP 
expression [15, 50]. Özevren et al. [37] showed that 
glial food processes around the blood vessels were de-
creased and GFAP expression was positive after trauma. 

Honokiol with its antioxidant effects was shown 
to provide protection against cerebral ischae-
mia-reperfusion (I/R) injuries and dermatological 
disorders [52]. It has been reported that honoki-
ol can provide potential support to clinical trials 
in ischaemia treatment by passing through the 
blood–brain barrier in low-dose long-term treat-
ments [48]. Honokiol has been reported to protect 
the rat brain from focal cerebral ischaemia-reperfu-
sion (I/R) injury by inhibiting neutrophil infiltration 
and production of reactive oxygen species [28]. In  
a similar way to our study, they investigated the ef-
fects of honokiol, a cell cycle inhibitor, on neuronal 
damage reduction and functional recovery after TBI 
in rats. They demonstrated that honokiol, adminis-
tered intravenously, has a strong neuroprotective 
effect against sensorimotor and cognitive deficits 
after TBI, which is highly associated with the survival 
of increased neurons. It has been suggested that 
the neurocompatibility mediated by honokiol after 
TBI may affect the molecular mechanism due to 
suppression of over-activated cell cycle [47]. Talerek 
et al. [45] have made a comprehensive assessment 
of the potential molecular mechanisms of action 
that are considered as a promising agent in the 
treatment and management of neurodegenerative 
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diseases concerning the neuroprotective effects of 
honokiol [45]. In the experimental studies, it was 
stated that honokiol plays an active agent role in 
the central nervous system. Antioxidant activity, 
inhibition of excitotoxicity; and cell signalling in 
neuroinflammation has been shown as evidences on 
its neuroprotective activity [20, 21, 25, 26, 48, 49]. 
In studies of experimental and human cell culture, 
it has been reported that honokiol can reduce oxi-
dative stress parameters in several catabolic tissues 
such as liver [44], endothelial cells [36], muscle tis-
sue [5], heart or kidney [30]. However, there is little 
information in studies demonstrating the oxidative 
inhibition of honokoil in the central nervous system. 
Chuang et al. [7] studied the effect of honokiol on 
oxidative stress and inflammation in neural and 
microglial cells. They investigated the oxidative 
and inflammatory responses of these isomers in 
microglial cells activated by interferon-gamma 
and lipopolysaccharide in suppressing oxidative 
stress in neuronal stimulated neurons by ionotropic 
glutamate receptor agonist N-methyl-D-aspartate. 
And, they also investigated the mechanism and 
signalling pathways involved in cytokine-induced 
production of reactive oxygen species in microglial 
cells. Their results of microglial cells also demon-
strated the important role of interferon-gamma in 
stimulating signalling pathways involving activation 
of extracellular signal-regulated protein kinases 1 
and 2, reactive oxygen species and nitric oxide. 
Studies have shown that honokiol inhibits reactive 
oxygen species in neutrophils [28] and suppresses 
the lipopolysaccharide-induced tumour necrosis 
factor alpha and nitric oxide expression in mac-
rophages [18]. In addition, some authors suggest 
that honokiol can inhibit nuclear factor kappa light 
chain enhancer of activated B cells activation in 
mouse B cells [31], macrophages [4] and lipopol-
ysaccharide-induced microglia cells [52]. It is also 
believed that honokiol can selectively modulate the 
phosphoinositide 3-kinase/Akt pathway [18, 35, 53]. 

CONClUSIONS
The neuroprotective effect of honokiol was found 

to be parallel to the reduction of lipid peroxidation 
and inhibition of inflammatory cell in cerebral tissue. 
After trauma, the structure of glial food processes 
deteriorates along with the increase in inflamma-
tion towards endothelial cells. Due to the effect of 
honokiol, the improvement of vascular wall due to 

decreased inflammation in this region and the regular 
distribution of glial food processes define the anti-
oxidative development. Considering the important 
role of antioxidants and inflammatory responses in 
cerebral damage induced by traumatic head injury, 
honokiol is thought to be important in decreasing li-
pid peroxidation and protecting the membrane struc-
ture of blood–brain barrier, degeneration of neurons 
and glial cells.
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