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The Marsupial feathertail glider has a unique set of morphological, anatomical 
and behavioural features that make it a promising model for study of primate 
evolution. Among them it has many locomotor adaptations to arboreal life, such 
as diagonal gait of movements, gliding, fast climbing and running along branches. 
These ecological and behavioural specialisations could result in differences in 
anatomy of the brain systems involved in their integration. It is well acknowledged 
that dopaminergic neurons are involved in motor control, motivation and cogni-
tion. Due to the fact that there are no data on morphological organisation of 
dopaminergic system in the midbrain of this species, we decided to investigate 
it using immunohistochemical and quantitative methods. Our study showed that 
the general distribution and characteristics of the dopaminergic cells within mid-
brain nuclei of the pygmy acrobat is similar to that in other species, but it lack 
the substantia nigra compact part — ventral tier and “tail” of the substantia nigra 
subnuclei. This study provides the first description of the dopaminergic cells and 
nuclei in the midbrain of the feathertail glider and we hope it will start interest in 
the neurobiology of this species. (Folia Morphol 2017; 76, 4: 558–567)
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INTRODUCTION
The feathertail glider (Acrobates pygmaeus) is 

the smallest gliding mammal in the world [21, 64, 
69, 77]. It inhabits the mainland forests and shrubby 
woodland ranging widely along the Australian east-
ern coast from Northern Queensland to Southern 
Australia [64, 77]. The natural habitats of this species 
are the canopies of tall, well-watered coastal euca-
lyptus forests, as well as lower sclerophyl forests and 
dense dry shrubs inland from the coast. Feathertail 
glider is mainly a nocturnal species, able to fell in 
torpor during cold days and when active spending 

up to 87% of its time in trees at heights greater than 
15 m, which makes it the most mysterious and rar-
est seen of all gliding mammals [21, 64]. The diet of 
this species consists of plants’ nectar, tree saps and 
small insects. It is the only mammal possessing stiff 
feather-like hairs along the sides of its long tail that 
form a flattened tail-feather. This flat tail surface gives 
the feathertail glider an excellent ability to control the 
flight path between tree trunks and among branches 
[64, 72, 77]. The tail can also be used for grasping 
branches [64]. This species has also lateral folds of 
skin stretching between elbow and knee on both 
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sides known as a “patagium” that increases its gliding 
ability [19, 64]. Among branches and along trunks it 
moves swiftly with a diagonal gait resembling that 
of climbing primates [39]. What more, this species 
has the ability to run up and down smooth surfaces. 
This ability is related to the unique structure of their 
feet which resemble gecko feet. The large pads on 
its toes have serrated grooves underneath and can 
act like mini suction cups. This adaptation allows the 
glider to climb up just about any surface, including 
smooth-barked eucalyptus tree-trunks and window 
glass [63, 64, 72, 77, Y. Werner, personal commu-
nication]. These reports clearly show that this small 
marsupial species has unique anatomical adaptations 
to moving in different ways (gliding, climbing, run-
ning, jumping among branches) and exhibits high 
locomotor activity.

Specific behavioural adaptations, such as diverse 
locomotor activity, may depend on differences in 
anatomy and physiology of the brain circuits that 
are involved in the control and integration of behav-
iour [38, 65, 73]. It is worth noting that dopamin is  
a major neurotransmitter involved in the modulation 
of different behaviours, in particular, motor activity 
of animals and also plays a crucial role in positive 
motivation of animal behaviour and its adaptation 
to changing environment in the course of evolution 
[35, 66, 75, 78]. Dopaminergic neurons which are 
involved in motor control, motivation and cognition, 
are also crucial in aetiology of some disorders, such 
as Parkinson’s disease or schizophrenia.

Dopaminergic neurons are distributed in several 
midbrain structures such as the ventral tegmental area 
(VTA), substantia nigra (SN) and retrorubral field [2, 13, 
14, 20, 22, 54, 67]. As there are no data on morpho-
logical organisation of the dopaminergic system in the 
midbrain of the Acrobates pygmaeus, we decided to 
investigate it using immunohistochemical and quan-
titative methods. Such data are interesting from both 
physiological and comparative points of view helping to 
understand the specific behaviour of this species, such 
as diverse locomotor activity or gliding flight [1, 21, 72].

MATERIALS AND METHODS
Animals

In this study, we used eight brains of male adult 
A. pygmaeus (Acrobatidae, Diprotodontia). The brains 
were obtained from the Poznan New ZOO, Poland, as 
post-sectional material (heads) from males that had to 
be sacrificed for ZOO animal husbandry reasons and 

purposes. In 2008 and 2009 the ZOO certified the dona-
tion of the Acrobates heads to prof. Krzysztof Turlejski, 
to be used in his basic research. In Poland, such a form 
of post-mortem use of animal cadavers does not require 
opinion or agreement of an Ethics Committee.

Immunohistochemistry

Brains of the Acrobates pygmaeus were quickly 
removed from skulls and postfixed in 4% paraformal-
dehyde for 3–4 days. Then, they were placed in 15% 
sucrose solution (overnight at 4oC) followed by 30% 
sucrose solution until they sunk. After this, coronal 
40 μm-thick sections of the brain were cut on cryostat 
(Leica, Germany). Separate alternate series of sections 
were collected for Nissl and immunohistochemical 
staining. Nissl staining was performed in accordance 
with the standard protocols, whereas labeling with 
antibodies against tyrosine hydroxylase were used 
for immunohistochemistry protocol. Sections were 
washed three times in 0.01 M phosphate buffered 
saline (PBS) followed by 2.5 h blocking in 10% normal 
goat serum and 0.3% Triton X-100 at room tem-
perature. Then, the sections were incubated for 48 h  
in 4oC with the primary antibodies against tyrosine 
hydroxylase (1:1000, Millipore). Afterward, sections 
were washed 3 times in PBS and incubated for 2.5 h 
with the secondary antibodies: 1:600 goat anti-rabbit 
antibody for tyrosine hydroxylase conjugated with 
Cy3 (111-165-144 Jackson ImmunoResearch Labora-
tories). The sections were then washed, mounted on 
slides and cover-slipped with Kaiser’s Glycerol gelatin 
for microscopy (Merck).

Quantitative study

Every fourth systematic random sampling section 
containing VTA-SN complex and A8 dopaminergic 
cell group was chosen. The delineation of A8 and 
subdivisions of the ventral tegmental area and the 
substantia nigra were prepared using Fu et al. [23] 
and Paxinos and Watson [58]. Following Gundersen 
[30], we estimated: (1) the number of profiles per 
area (QA); (2) the area of profiles (AA); (3) the mean 
profile area (ā).

1. QA (prof⁄sect) = Q (prof)/A (sect) — number of profiles 
per area of frame
2. AA (struct⁄sect) = SP (struct)/SP (sect) — total area of 
structure/total area of section
3. ā (prof) = AA (prof⁄sect)/QA (prof⁄sect) — relative area of 
profiles/relative number of profiles
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TH-immunoreactive cells with visible nuclei were 
quantified using the new CAST software (Visiopharm, 
Denmark) connected with Olympus BX51 microscope. 
The microscope was equipped with Olympus DP72 cam-
era (Olympus, Japan). The recognition of the regions of 
interest was achieved at 4× lens and quantification of 
profiles of cells at 40×. The results were estimated from 
50 to 60 testing areas and 100–200 counted cells per 
structure, or less if it was not possible to count this many.

RESULTS
Cytoarchitecture of the VTA-SN complex  
and retrorubral field

The investigated substantia nigra, ventral teg-
mental area, and retrorubral field (A9, A10 and A8 
dopaminergic cell groups, respectively) of Acrobates 
pygmaeus extend for 5.0–6.7 mm in the rostocaudal 
direction (Fig. 1).

Distribution of tyrosine hydroxylase  
in the A9 dopaminergic cell group

We identified four subdivisions of the substantia 
nigra: substantia nigra compact part — dorsal tier 

(SNCD), substantia nigra compact part — lateral tier 
(SNCL), substantia nigra compact part — medial tier 
(SNCM), and substantia nigra reticular part (SNR). In 
the present study, we did not find TH-immunoreactive 
neurons corresponding to the substantia nigra com-
pact part — ventral tier (SNCV).

The SNCD is located over the SNR (Fig. 2A–E) and 
contains TH-ir neurons packed in moderate density 
(QA = 276.6 ± 162.5, AA = 0.06 ± 0.01), with the 
largest cells of all studied TH-ir cell groups (231.1 ±  
± 52.8 μm2) and predominantly multipolar, round 
or triangular neurons with frequently branched den-
drites. Many of the dendrites extended ventromedially 
and ventrolaterally into the SNR (Fig. 3B). TH-immuno-
reactive cells located laterally to the SNCD belonged to 
the SNCL and were highly variable (Fig. 2B–E). These 
neurons were generally small (184.2 ± 39.3 μm2), 
fusiform, round or triangular, and loosely packed  
(QA = 150.6 ± 64.2, AA = 0.03 ± 0.01).

Bipolar and multipolar cells had thin processes. 
Some of their dendrites coursed into the lateral part 
of SNR (Fig. 3A). A medial extension of the SNCD 
is the substantia nigra compact part medial tier  

Figure 1. Nissl staining of coronal sections in the rostral to caudal order from the Acrobates pygmaeus brain. Axis shows the distance be-
tween subsequent sections in millimetres (A). Representative Nissl staining photomicrographs of substantia nigra-ventral tegmental area  
(SN-VTA) complex and retrorubral field for 5.32 mm (B), 5.8 mm (C), 6.28 mm (D). Scale bar relates to A–D pictures = 500 µm.

A B C D
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(Fig. 2C, D). In the SNCM, neurons were the most 
densely packed from all of the investigated nuclei 
(QA = 883.3 ± 183.4 and AA = 0.18 ± 0.05, respec-
tively). They ranged in size, primarily from middle to 
big (215.4 ± 57.1 μm2) multipolar cells with densely 
spread dendrites, of which extended into the medial 
part of SNR (Fig. 3C). In most cases their neuronal 
bodies had round or fusiform shape.

Distribution of tyrosine hydroxylase  
in the A10 dopaminergic cell group

In the VTA area we were able to distinguish follow-
ing nuclei: ventral tegmental area rostral part (VTAR) 
parabrachial pigmented nucleus (PBP), parainterfas-
cicular nucleus (PIF), paranigral nucleus (PN), inter-
fascicular nucleus (IF), rostral linear nucleus (RLi) and 
caudal linear nucleus of the raphe (CLi). For quantifi-

Figure 2. The photomicrographs of coronal sections of the Acrobates pygmaeus midbrain. Low-power illustrations A–F show distribution of 
tyrosine hydroxylase-immunoreactivity in particular nuclei. Substantia nigra compact part dorsal tier (SNCD), substantia nigra compact part 
lateral tier (SNCL), substantia nigra compact part medial tier (SNCM), substantia nigra reticular part (SNR), ventral tegmental area rostral part 
(VTAR) parabrachial pigmented nucleus (PBP), parainterfascicular nucleus (PIF), paranigral nucleus (PN), interfascicular nucleus (IF), rostral 
linear nucleus (RLi), caudal linear nucleus of the raphe (CLi) and A8 dopaminergic cell group (A8). Scale bar relates to all pictures = 200 µm.

A D

B E

C F
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cation and qualitative studies, we incorporated VTAR 
to PBP and PIF to PN, because there were too few 
sections across these nuclei to perform the analysis.

The PBP is a wing-shaped structure located most 
laterally of all VTA nuclei (Fig. 2A–E). Tyrosine hydroxy-
lase labeled neurons in the PBP were primarily bipolar, 
medium sized (227.5 ± 25 μm2), polygonal, oval or 
round with variably oriented dendrites and mode
rate density (QA = 196.6 ± 61, AA = 0.04 ± 0.01  
(Fig. 3D). Large multipolar, triangular or polygonal 
cells were uniformly scattered. The PN is a small, elon-
gated structure formed by cells located medially to 
the parabrachial pigmented nucleus (Fig. 2B–D). Neu-
rons found in the PN were small (159.6 ± 16.9 μm2)  

and densely packed (QA = 491.4 ± 247.8, AA =  
= 0.08 ± 0.04), fusiform or oval, with long and smooth 
processes directed dorsomedially (Fig. 3E). Three nu-
clei of the VTA: IF, RLi and CLi located at the midline 
(Fig. 2B–F) were similar in their morphology. They 
contained small, round cells (144.8 ± 17.8, 149.6 ±  
± 14.9, 153.8 ± 15.4 μm2 for IF, RLi and CLi, respectively)  
with large, clearly visible nucleus. Neuronal dendrites 
were poorly branched with variable organisation  
(Fig. 3G–I). Evaluation of the density of the cells re-
vealed differences between the structures. Neuro-
nal density in the CLi and IF was moderate to high  
(QA = 232.1 ± 69.8, AA = 0.03 for CLi and QA = 284 ±  
± 118, AA = 0.04 ± 0.01 for IF, respectively) whereas 

Figure 3. High-power photomicrographs show morphology of tyrosine hydroxylase-immunoreactivity in neurons. A. Substantia nigra compact 
part lateral tier (SNCL); B. Substantia nigra compact part dorsal tier (SNCD); C. Substantia nigra compact part medial tier (SNCM); D. Parabra-
chial pigmented nucleus (PBP); E. Paranigral nucleus (PN); F. A8 dopaminergic cell group (A8); G. Interfascicular nucleus (IF); H. Rostral linear 
nucleus (RLi); I. Caudal linear nucleus of the raphe (CLi). Scale bar relates to all pictures = 20 µm.

A B

C

D
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in the RLi labeled cells were found in low density  
(QA = 100 ± 41.8, AA = 0.01 ± 0.01).

Distribution of tyrosine hydroxylase  
in the A8 dopaminergic cell group

The A8 group neurons have moderate size  
(213.4 ± 20.5 μm2), oval or triangular shape, with loose-
ly packed dendrites. This group is formed by sparsely 
scattered cell bodies (Fig. 2E, F; Fig. 3F). In contrast to 
other tyrosine hydroxylase-expressing cell groups, within 
A8 group the lowest density of neurons was found of 
all studied nuclei (QA = 54 ± 11, AA = 0.01 ± 0.00).

DISCUSSION
Our current research based on TH-immunohis-

tochemical staining provides the first report about 
the morphometry, distribution and organisation of 
the dopaminergic cells within the A9, A10 and A8 
nuclei in the midbrain of the marsupial Acrobates 
pygmaeus. We used tyrosine hydroxylase staining 
because many neurobiological researches prove that 
TH is a key enzyme for dopamine synthesis in the mid-
brain, making TH a reliable dopamine marker in this 
area. The VTA-SN complex and retrorubral field have 
been previously studied in various species of placental 
mammals [3, 4, 6, 8–12, 16, 17, 23–25, 27, 33, 34, 
40–43, 46–53, 55, 59–61, 68, 70, 76]. These previous 
studies, mainly referring to the rodents, showed that 
individual variability, lifestyle, and evolutionary trends 
do not lead to a significant variation of dopaminergic 
nuclei between species belonging to the same order, 
but described subtle differences in the structure of 
dopaminergic nuclei between different orders of the 
placental mammals [45].

Despite these numerous studies describing ana-
tomical and morphological organisation of the dopa-
minergic system of the placental mammals, data per-
formed on Marsupials are more general and limited  
to species from the family Didelphidae (opossums)  
living in Southern and Northern America [5, 15, 32, 44].  
For example, Klejbor et al. [37] investigated distribu-
tion and morphology of the neurons expressing TH 
and calretinin in the midbrain nuclei: VTA, SN and 
periaqueductal gray (PAG) of the laboratory, grey 
short-tailed opossums a small, nocturnal marsupial 
native to Brazil and Bolivia [36, 74]. These studies 
showed that its dopaminergic cells are heterogeneous 
in morphology and chemistry, which may be related 
to the ability of this species to adapt to environmental 
challenges with its variable motor functions.

Simpler anatomical organisation of the Acrobates 
pygmaeus A9 dopaminergic cell group

Substantia nigra is divided into two main parts, 
ventrally located SNR and dorsally SNC [56, 71]. Based 
on the TH immunohistochemistry, SNC might be fur-
ther subdivided into four tiers: dorsal, lateral, medial 
and ventral, respectively [23, 29, 57, 62]. In our cur-
rent study, we did not find a region related to the 
rodents’ SNCV described by Gerfen et al. [26], which 
is located in the caudal SN. As far as we know, this is 
the first report on the lack of ventral tier of the SNC 
in Acrobates pygmaeus. 

Ventral tier of the SN is the main source of ni-
grostriatal neurons, projecting to the striatal patches, 
which regulate basal ganglia information processing. 
Disruption of these pathways causes motor dysfunc-
tions. For example, movement disorders in Parkinson’s 
disease are related to selective loss of dopaminergic 
neurons in the SN [7]. It has been shown that do-
paminergic cells’ degeneration starts and is more 
strongly expressed in the SNCV than in the SNCD  
[18, 28]. In addition, this area in rodents and primates 
differs. Hardman et al. [31] showed that rat’s SNCV 
is relatively smaller than in primates. These results 
have been recently confirmed in studies on a mouse 
[23], rock cavy [11] and bat [51]. With regard to these 
many reports, one of the possible explanations of our 
results is that the Marsupial’s striatonigral dopamin-
ergic system has simpler organisation. Our data have 
shown that the organisation of the substantia nigra in 
Acrobates pygmaeus is different than in rodents. Two 
morphologically distinctive dopaminergic tiers of the 
SN are not separated into different anatomical com-
partments: SNCV and SNCD, but are present as one 
tier. Our hypothesis about the simplified organisation 
of the substantia nigra in Acrobates pygmaeus seems 
to be supported by Gerfen et al. [26] connectivity 
study. Other studies [32] describing connections of 
midbrain dopaminergic neurons of another marsupial 
species (North American Dydelphis opossum) also 
confirmed that although the general organisation 
of midbrain neurons in the opossum is similar to the 
placental mammals, it is clear that differences exist.

Furthermore, we could not recognise TH cell group 
named the “tail” of the SNC (tSN) that was reported 
in some species [12, 51, 55]. Morphological features 
of the dopaminergic SN neurons are generally com-
parable and similar to those described previously in 
other species, especially SNCL [23, 32, 37, 44, 51], 
which suggests high evolutionary conservatism of this 
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tier. In the SN, the TH-positive neurons with largest 
somas are located in the SNC, which corresponds 
to results of other studies [23, 37, 51]. Surprisingly, 
differences were also noted in the medial tier of SN 
in the mouse and bat dopaminergic neurons in the 
SNCM are relatively small, whereas we found mainly 
large cells.

Organisation of the A8 and A10 dopaminergic cell 
groups is highly similar to that in other species

Ventral tegmental area in the Acrobates pygmaeus 
midbrain exhibits similarities to this region in rodents 
[23, 49, 58]. We were able to delineate all seven nu-
clei: CLi, IF, PBP, PIF, PN, RLi and VTAR. Unlike in the 
pygmy acrobat SN, in the VTA we did not find any 
anatomical differences with other species. Careful 
analysis of VTA organisation reported in other species, 
including Marsupials, let us conclude, that despite 
adoption of different nomenclature, all nuclei are 
arranged in the same rostro-caudal and latero-medial 
order [23, 32, 37, 50, 51].

Morphometric analysis has revealed general con-
sistency of organisation among species [23, 37, 51]. 
However, small differences have been noted. How-
ever, small difference has been noted. Medeiros et 
al. [51] have shown relatively small neurons in the 
PBP compered to our results and study on mice [23], 
where have been found mostly large neurons. Some 
remaining minor differences might come from dis-
tinct methodological strategies.

A8 dopaminergic cell group is a dorso-caudal 
continuation of the pygmy acrobat SNC. Cells were 
mostly middle to large in size, what is consistent with 
previous reports in the mouse and bat [23, 51]. We 
found that tyrosine hydroxylase neurons of the A8 
cell group was the smallest fraction of the dopamin-
ergic neurons. Similar findings have been shown in 
a monkey, only 10% of neurons in the A8-A10 cell 
groups belong to the retrorubral field [22].

CONCLUSIONS
In conclusion, general distribution and charac-

teristics of the dopaminergic cells within midbrain 
nuclei of the feathertail glider are similar to those 
in other species. Our results do not challenge this 
general model, in spite of some variations like the 
above-mentioned lack of the SNCV and tSN, while 
they significantly broaden our knowledge of neu-
roanatomy of this area in the species and provide  
a basis for its functional study.
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