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Background: Periodontal tissue remnants of odontogenesis constitute the dental 
follicle (DF) which is actually considered a stem niche in adults. However, poten-
tialities of local endothelia within this niche seem overlooked. We thus aimed at 
testing the endothelial cells expression of c-kit, the progenitor cells marker, and 
CD68, commonly regarded as a monocyte/macrophage marker, in human DFs.
Materials and methods: We performed an immunohistochemical study using  
these two markers which were applied on samples collected from ten adult patients.
Results: The markers were positively expressed in endothelial cells, as well as in 
spindle-shaped stromal cells of the DF. 
Conclusions: The origin of DF stem or progenitor cells needs reviewing in the 
light of these findings, as endothelium could be a donor site for niche inhabitants. 
(Folia Morphol 2018; 77, 3: 485–488)
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IntroDuCtIon
Odontogenesis occurs inside the dental follicle (or 

sac) (DF) which could be characterised as the remnant 
of tissues that participate in the odontogenesis and 
surround an impacted crown [25]. Various dental 
stem niches were characterised [16], including the DF 
niche which corresponds to dental follicle progenitor 
cells (DFPCs) [16, 18]. Such DFPCs are multipotent 
mesenchymal stem cell-like cells and can be isolated 
during the extraction of molar teeth [5, 8]. Thus, they 
have potential for multilineage differentiation and 
self-renewal capacity. A hypothesis has been recently 
proposed that a subset of dental stem/progenitor 
cells belong to the endothelial lineage and exhibit  
a spindle-shaped fibroblastoid morphology, similar to 
telocytes [16]. Telocytes are fibroblastoid cells with 
long, thin and moniliform prolongations, termed 
so in 2010 by Popescu and Faussone-Pellegrini [19]. 
However, similar cells were found in perivascular lo-

cations by Majno [14] in 1965 and were indicated 
as “veil cells”, as previously discussed [17, 21]. The 
hypothesis of endothelial-derived dental stem/pro-
genitor cells is in accordance with previous evidence 
of dental fibroblastoid and perivascular cells capable 
of differentiation into odontoblasts [6] and with evi-
dence of endothelial-specific Weibel-Palade bodies in 
pericytes as well as in pericytes-deriving immediate 
perivascular transitional cells within the dental pulp 
niche [2]. On the other hand, it has been reported [16] 
that also monocyte-deriving progenitors have spindle-
shaped morphologies and exhibit mixed features of 
endothelial cells, monocytes and mesenchymal cells 
[24]. We therefore hypothesised that endothelial cells 
of the DF equally exhibit a progenitor and myeloid 
phenotype. We aimed at evaluating by an in situ study 
on human samples the expressions of CD117/c-kit, 
the stem/progenitor marker, and CD68, the myeloid 
marker in endothelia of the DF.
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MatErIals anD MEthoDs
Human DFs were collected after obtaining written 

informed consent from 10 patients (14–19 years of 
age) undergoing third impacted molars extraction 
for orthodontic or therapeutic reasons at the “Dr. 
Carol Davila” University Emergency Military Central 
Hospital, Bucharest, Romania. All experiments on 
human subjects were conducted in accordance with 
the Declaration of Helsinki (http://www.wma.net/
en/30publications/10policies/b3/index).  

Tissue samples were fixed for 24 h in buffered 
formalin (8%) and were processed with an automatic 
histoprocessor (Diapath, Martinengo, BG, Italy) with 
paraffin embedding. Sections were cut manually at  
3 μm and mounted on SuperFrost® electrostatic slides 
for immunohistochemistry (Thermo Scientific, Menzel-
Gläser, Braunschweig, Germany). Histological evalua-
tions used 3 μm thick sections stained with haematoxy-
lin and eosin. Internal negative controls resulted when 
the primary antibodies were not applied on slides.

We used primary antibodies for CD117/c-kit (clone 
Y145, Biocare Medical, Concord, CA, USA, 1:100) 
and CD68 (clone KP1, Biocare Medical, Concord, CA, 
USA, 1:100).

For immunolabelling, tissues were deparaffinised and 
rehydrated, then endogenous peroxidase was blocked 
using Peroxidased 1 (Biocare Medical, Concord, CA, USA). 
For the heat induced epitope retrieval was used the De-
cloaking Chamber (Biocare Medical, Concord, CA, USA) 
and retrieval solution pH 6 (Biocare Medical, Concord, CA, 
USA), the latter being a buffer specially formulated for 
superior pH stability at high temperatures. Background 
blocker (Biocare Medical, Concord, CA, USA) was used 
to reduce non-specific background staining. The primary 
antibody was then applied. As detection system was 
used, for the CD68 antibody, MACH 4 (Biocare Medical, 
Concord, CA, USA), a two-step (probe/polymer) universal 
HRP detection method. For the CD117/c-kit antibody was 
used as detection system MACH 2 rabbit HRP polymer 
detection (Biocare Medical, Concord, CA, USA) which 
consists of a single reagent applied after the primary 
antibody. Then a HRP-compatible chromogen (DAB) was 
applied. Sections were counterstained with haematoxylin 
and rinsed with deionised water. For washing steps was 
used TBS solution, pH 7.6.

rEsults
Epithelial and connective (stromal) components 

were accurately identified on slides. There was no his-
tological evidence of an inflammatory status of the tis-

sues labelled for immunohistochemistry. Endothelial 
cells of microvessels assumed being postcapillary ven-
ules were found equally expressing CD117/c-kit and 
CD68 (Fig. 1). Expression of the two markers was also 
found in fibroblastoid stromal cells of the DF (Fig. 2).  
Epithelia of the DF were negative for CD117/c-kit and 
for CD68. Nevertheless, isolated stromal cells, mostly 
small-sized, were found expressing CD68.

DIsCussIon
Different studies of DF progenitor cells found that 

these cells express CD29, CD44, CD73, CD90, CD105 
and nestin but do not express CD14, CD31, CD34, 
CD45 and CD117 [22]. In these regards, the stem 
niche players of the DF were not related to a haema-
topoietic (CD34, CD45, CD117), or to an endothelial 

Figure 1. Human adult dental follicle microvessels express CD117/ 
/c-kit (arrow) and CD68 (arrowhead); E — follicle epithelium.

Figure 2. Human adult dental follicle spindle-shaped stromal cells 
positively express CD117/c-kit (arrows) and CD68 (arrowhead); 
E — follicle epithelium.
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(CD31, CD34), or to a myeloid (CD14) phenotype. 
However, in human midterm foetuses were found 
CD117/c-kit-expressing spindle-shaped cells of the 
DF which were building a network coating the outer 
adamantine epithelium [3]. In these regards, the stro-
mal expression of c-kit in DF stromal cells should be 
regarded as constitutive. 

A study of inflammatory cells subsets, such as 
antibodies-recognising macrophages identified by 
their expression of CD68, around partly erupted third 
molars, found that DFs did not contain increased 
number of inflammatory cells [12]. Thus, it can be 
reasonably speculated that the CD68-positive phe-
notype we found was not related to inflammation, 
and the CD68- and CD117/c-kit-expressing fibroblas-
toid stromal cells are rather related to a myeloid 
and progenitor phenotype. Such phenotype should 
indicate endothelial progenitor cells. This is because 
haemangioblasts can leave the bone marrow for non-
haematopoietic tissues. Such cells, or their progeny, 
could be a source of endothelial cells in adult; these 
endothelial progenitors can be identified by the posi-
tive expressions of CD117/c-kit, as well as CD68 [23]. 

Interestingly, positive expressions of CD117/c-kit 
and CD68 were also found in endothelial cells of the 
DFs postcapillary venules. The endothelial expression 
of CD68, of variable intensity, was previously detected 
in cells of the myeloid lineage as wells as in fibroblasts 
and endothelial cells, feeding the assumption that 
CD68 is not a selective macrophage marker but rather  
a lysosomal protein that is enriched in macrophages [7].  
This was further supported by evidence of CD68 ex-
pression in mesenchymal stromal/stem cells [11]. On 
the other hand, normal human endothelial cells, such 
as those of the umbilical vein, of normal lymph nodes 
and of the bone marrow, are known to produce stem 
cell factor (SCF, the c-kit ligand) and to possess high-
affinity c-kit receptors [1]. Therefore, it appears that in 
situ vascular endothelial cells, as well as stromal cells, 
of the DF share haematopoietic and myeloid antigens. 
On one hand, this could indicate that residents of the 
DF stroma are involved in neovessel formation, but on 
the other hand, it may suggest that endothelial cells 
can play a role in the maintenance of a local haema-
topoietic stem niche. It was shown that haematopoi-
etic stem cells (HSCs) reside in perivascular niches in 
adult [4] and, in embryo, the endothelium has the 
potential of HSC emergence [27]. This is supported 
by experiments that found the aortic endothelium 
being haemogenic, the HSCs emerging from it into 

the sub-aortic space by a new type of cell behaviour 
termed endothelial-haematopoietic transition [10]. 
On the other hand, most of circulating endothelial 
cells in peripheral blood originate from vessel walls 
[13]; thus, such cells could populate different tissues, 
including the tissue they originate from.

ConClusIons 
The origin of DF stem/progenitor cells also needs 

reviewing in the light of these findings, as endothe-
lium could be a donor site of niche inhabitants. This 
is strengthened by the positive expression of Stro-1 in 
DF cells [9, 26] because, although Stro-1 is regarded 
as a mesenchymal stem cell marker [20], it is intrin-
sically a 75 kD endothelial antigen [15]. This is also 
supported by recent findings in the dental pulp stem 
niche that indicate that pericytes and transitional cells 
partly embedded within the microvascular walls con-
tain Weibel-Palade bodies [2], which are exclusively 
indicating an endothelial phenotype.
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