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Abstract— Selective transfer of information between spin-1/2 

particles arranged in a ring is achieved by optimizing the 

transfer fidelity over a readout time window via shaping, 

externally applied, static bias fields. Such static control fields 

have properties that clash with the expectations of classical 

control theory. Previous work has shown that there are cases in 

which the logarithmic differential sensitivity of the transfer 

fidelity to uncertainty in coupling strength or spillage of the bias 

field to adjacent spins is minimized by controllers that produce 

the best fidelity.  Here we expand upon these examples and 

examine cases of both classical and non-classical behavior of 

logarithmic sensitivity to parameter uncertainty and robustness 

as measured by the  function for quantum systems. In 

particular we examine these properties in an 11-spin ring with a 

single uncertainty in coupling strength or a single bias spillage.   

I. INTRODUCTION 

Information encoded in networks of coupled spins can 
propagate without mass or change transport. Spintronic 
devices using nuclear or electron spins confined to quantum 
dots in 2D electron gas (2DEG) controlled by surface 
electrodes could overcome limitations imposed by mass or 
charge transport and hold significant promise for on-chip 
communication [1]. Linear chains and rings can be used as the 
components of quantum wires and routers. Due to the complex 
wave-like propagation of excitations in such networks, 
efficient transfer of information is non-trivial, necessitating 
effective control. One way this can be achieved is by energy-
landscape shaping via time independent controls, such as 
voltages applied to the gate electrodes, to alter the energy 
levels of the electrons confined to the quantum dots [2,3].  

Such systems are interesting from a control theory 
perspective as they exhibit unusual robustness properties. As 
demonstrated in [4] and [5], when examining the sensitivity of 
the system to uncertainty in spin couplings or leakage of the 
nominal bias field from the intended spin to adjacent spins or 
measuring the robustness of the system’s performance to these 
same uncertainties we observe trends that appear to contradict 
the classical control limitations imposed by the identity +=  where  is the sensitivity transfer matrix and  is the 
complementary sensitivity transfer matrix. To be more precise, 
we observe cases in which the probability of successful 
transfer is maximal while the logarithmic sensitivity is nearly 
zero, in contradiction to the classical intuition [4]. 

 
Sean O’Neil is with the Electrical Engineering and Computer Science 

Department of the United States Military Academy, West Point, NY 10996, 
USA. (phone: 253-548-5825; e-mail: sean.o’neil@usma.edu).  

Dr. Edmond Jonckheere is with the Department of Electrical Engineering 

at the University of Southern California, Los Angeles, CA 90089, USA. (e-
mail: jonckhee@usc.edu). 

Additionally, extending the analysis to larger, non-differential 

uncertainties through -analysis reveals instances of anti-
classical behavior with the most optimal controllers also being 
the most robust in many cases [5]. In this paper, we aim to 
expand upon the results detailed in [5] by examining a larger 
data set and looking at cases of both classical as well as anti-
classical behavior.  

II. BACKGROUND 

A.  Problem Formulation and Structure 

As discussed in detail in [2], we consider a system 

composed of N spin-  particles arranged in a ring with one 

excitation present between the N spins. We aim to find a 
control D that maximizes the probability of transfer of the 
single excitation from a particular spin  to a specific target 
spin  at a given time  or over a time window [ ,  +]. We can then identify the state of the quantum system with 
the excitation localized at the initial spin as the state |  and 
identify the desired final state with the excitation localized at 
spin  as | . Taking the control  as a diagonal ×  
matrix describing the bias applied to each spin to affect the 
desired transfer, we see that the system is governed by the 
equation | = ( + )|  where  is the single 
excitation subspace Hamiltonian of the ring (here a constant 
circulant matrix). The probability of transfer at a given time  

is then equal to the squared fidelity         ( ) = ( ) = .  (1) 

Departing from this nominal model, we consider two 
categories of perturbations as described in [5].  The first is an 
uncertainly in the assumed uniform coupling strengths 
between spins.  We model this perturbation as an element , ,  appended to the nominal Hamiltonian. Here , is an ×  matrix that provides a specific structure to 

the perturbation with the only non-zero elements being 1’s in 
the ( , + 1) and ( + 1, ) positions for <  and in the ( , 1) and (1, ) positons for = .  Additionally ,  

provides the size of the perturbation to the nominal coupling 
strength. The other category of perturbation we consider is that 
of a leakage of the bias field intended for spin k to its 
neighbors.  We model this perturbation as a term  
added to the Hamiltonian. As before   provides the size of 
the perturbation with respect to spillage at spin k, and  is a 
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matrix that carries the structure of the perturbation. Here  is 

a matrix of all zeros save for 1 in the ( , ) position and  in 

the ( 1, 1) and ( + 1, + 1) positions.  is a scalar 
that represents the bias intended for the kth spin (i.e. the ( , )  
element of the diagonal matrix of controls ).   

B. Sensitivity Analysis 

In classical multivariable control, we see the tension 
between tracking error and logarithmic sensitivity to 
parameter variation in the identity + = . This tension is 
evident with identification of the log-sensitivity with  
through the relation ( ) = ( )   [4].   

To relate this to the quantum system of interest, we first 
define a “tracking error” in the sense of the difference 
between the achieved probability of transfer and unity 
(perfect state transfer). Matters are complicated by the fact 
that in the case of maximum fidelity we have  ( ) = 1 which implies that ( ) =( )|  for some global phase factor (t) that is hidden 
in the computation of the fidelity squared. Therefore, if we 
take the tracking error as the “closeness” of the state achieved 
at time  to the desired state | , we get from [4] | = 2 1 =                                                            2                                      (2)  

Note that to minimize this error does not require that  

 approach |  in the sense of an ordinary signal, 

but that the norm in (2) be minimized with respect to ( ), 

and as such is referred to as the projective tracking error [4].   

With this relation of the error to the “reference signal” | , we then see that computing the logarithmic sensitivity 
of the system to parameter uncertainty is tantamount to taking 

the derivative 
( )

 which, with = (1 ) 

allows for concordance between the size of 
( )

   and ( ) = ( ) ( ) . 
Now we can evaluate 

( )
 for a single perturbation  

as per [2]: 

                            ( )  
= 2 12,                               × sin 12 ( + )                         (3) 

Here  and =  are taken from the eigen-

decomposition of =  where  is the perturbed 

Hamiltonian defined as + + , , +, ,  for the case of coupling uncertainty or + +  for bias spillage.  An integral of (3) over the 
readout window centered on  then yields a measure of the 

windowed fidelity’s error to differential parameter variations 
and thence to the log-sensitivity.   

C. -Analysis 

To analyze the robustness of the system via the -function 
we represent the systems described by the two forms of 
perturbations as in Figs. 1 and 2 in accordance with [6, Chapter 
8] where the perturbations are limited to that of a single .  

Importantly, note that although we have the controller  
located in the feedback path, there is no measurement 
performed on the wavefunction to be compared against a 
reference signal in order to drive the dynamics.  Rather, the 
controller alters the energy landscape of the system to modify 
the natural evolution of the system in a pre-determined manner 
[2].   

Here, we define the initial condition as a disturbance at the 
plant input so that = |  is our generalized disturbance. 
We assign the generalized error as in [5] as = |  where 

 is an ( 1) ×  matrix with rows that form a basis for the 
orthogonal complement of our desired output | . In both 

cases  is an ×  diagonal matrix that consists of ,  or 

 times the identity matrix.  and  are signals used to close 
the loop around the uncertainty that’s been “pulled out” of the 
system.  Solving in terms of the generalized inputs and outputs 
yields the following for the coupling uncertainty and bias 
spillage cases respectively: 

= , , ,C C C =     (4) 

                           = C C C =              (5) 

where we use = ( + )  to simplify the notation as in 
[4]. From this point we perform a lower linear fractional 
transformation as per [6, Chap. 8] to pull the controller into the 

 
Fig. 1.  Block diagram representation of the system with a single 
uncertainty in the coupling strengths between spins modeled as an inverse 

additive uncertainty around the plant. 

 
 
Fig. 2.  Block diagram representation of the system with a single 

uncertainty in the applied bias modeled as an additive uncertainty around 

the control. 
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generalized plant yielding = ( , i ) for = 1,2 and 

 is partitioned appropriately to yield: = ( + )  = ( + )  = ( + )  = ( + )  

Finally, we can absorb the structured uncertainty into the 

plant-controller system yielding = = ( , ) =+ ( ) . Closing the loop from  to  
with a fictitious, full uncertainty matrix  with dimensions 

consistent with  and  we obtain the system in Fig. 3 where =  00  and has an obvious block diagonal structure.   

This use of a full uncertainty matrix  arises from a 

constraint of MATLAB’s mussv function which requires a full 
uncertainty matrix for calculation of  when the perturbations 
are complex.  As  closes the loop from the generalized error 

 to the generalized disturbance = | = | (0)  we 
should expect  to be structured to only permit influences 

from an error in the initial state preparation to affect the 
generalized error, or should be rather sparse with the only non-
zero columns corresponding to entries in the state vectors that 
carry the complex uncertainty in the initial state preparation. 
As such, the results produced by mussv may be overly 
conservative.   

From here we can examine the robust performance of the 
system in seeking a bound  such that <  for all 

 which from [7, Chap. 10] amounts to finding a lower 

bound on the function ( ) allowing us to leverage the tools 
of -analysis to determine a measure of robustness of the 
system. Before proceeding, however, we must state the caveat 
as in [5] that though classically, nominal and robust stability 
are prerequisites of robust performance, in this study, the 
system is not asymptotically stable in the usual sense, as the 
control is state selective and time-sensitive.  So while we 
presently use the tools of -analysis to study robustness of the 
excitation transfer over a finite time window, it must be kept 
in mind that other tools may be necessary to study robustness 
in such a non-classical system generally.   

III. RESULTS 

A. Simulation Procedure 

As in [5] we use the model of an 11-ring with nominal XX-
coupling as our system of interest.  For this ring size, we 
consider first the controllers optimized to maximize the 
transfer fidelity over a window [ 0.1, + 0.1] [2]. For 

each transfer from  |1 |1  through |1 |6  the 

previously executed optimization algorithm produces a data 
set of up to 2000 diagonal controllers  along with the time-
averaged probability [8]. With each of these variables ordered 
by decreasing value of probability, we then use the simulation 
to test the trend between both log-sensitivity and robustness 
and the probability of transfer.        

The log-sensitivity is calculated in accordance with II-B for 
each ( ) optimized for the six possible transfers within the 
11-ring, taking into account the 11 possible cases of coupling 
uncertainty and separate 11 cases of bias spillage for each 
possible transfer. This produces a total of 132 test cases to 
measure the relationship between probability of transfer and 
log-sensitivity. 

For the calculation of ( ( ( ))) we begin with each set 
of 2000 controllers for each of the six possible transfers and 
used the system set-up detailed in II-C while leveraging 
MATLAB’s mussv function to evaluate the lower bound on 
each ( ( ( ))). As in [5] we evaluate = ( + )  
at = 0 to reflect that with the input as a constant in time, it 
is part of the exponential regime  and thus the output 
attributable to the input is also part of this regime. Finally, we 

take the matrix  as an element of ×  structured block-
diagonally with the upper-left block consisting of ×  for 
the model uncertainty and the lower-right block composed of 
a full 11 × 10 matrix. This process is repeated for each test 
case described above to permit a comparison of robustness 
and probability.  

In addition to the data set described above, and to allow for 
a continuation of the results detailed in [5] we also consider 
the set of 1000 controllers optimized to provide maximum 
fidelity within a shortest time  for a |1 |3  transfer. 

These controllers are reordered in descending rank based on 
their time-averaged probability of transfer via a numerical 
integration over the period [ 0.1, + 0.1]. Then for each 

case of coupling uncertainty from 1-2 through 11-1 and bias 
spillage over all eleven spins we compute the log-sensitivity 
and structured singular value for each of the set of 1000 
reordered controllers at our disposal. This provides another 44 
test cases for our study though all were limited to a |1 |3  
transfer for this data set.   

B. Hypothesis Test and Statistical Analysis 

 As in [4] and [5], the data gathered in the study is 
extremely noisy making empirical calculation of trends nearly 
impossible. Thus, with the large number of test cases at our 
disposal, we turn to statistical analysis to determine the trend 
or lack thereof between the metrics of interest: probability vs. 
log-sensitivity and probability vs. robustness. 

We establish the hypothesis test using the Kendall  to 
measure the level of concordance between metrics. We set the 
null hypothesis  to align with the mean of = 0, indicating 
no rank correlation between probability and log-sensitivity or 
robustness. We take the alternative hypothesis  as negative 
correlation between the same metrics. Thus failure to reject 

 indicates results inconsistent with the expectations of 
classical control theory.   

To provide bounds on the hypothesis test we first note that 
the sample size in each test case is either 2000 or 1000. As 
such we note that with such sample sizes, the Kendall  tends 

 
Fig. 3.  Transformation of system to allow for -analysis with structured 

perturbation a block-diagonal . 

= , =
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to a standard normal distribution [9] under the null hypothesis 

with a Z-score of =   where = ( )( ) . Here we 

use  to denote the number of samples (controllers) within 
the given data set.  As such we can set the value of Type I 
error as = 0.05 in a single-tailed, negative-tailed test using 
the value of  as the test statistic. We then take  < 1.645  
as the indication for rejection of the null hypothesis and a 
strong indication of non-classical behavior since ( ) =< 0.05 under this condition. Furthermore, for each case in 
which we reject  we can associate a power to the test based 
on associating the true population Kendall  with the observed 
sample Kendall , in which case < 2.486 would indicate 
a power of 0.80 or greater for the case of our 2000 controller 
data sets and < 2.487 would provide the same for the 
1000 controller set.   

 We apply this hypothesis to the trends of log-sensitivity 
versus probability and  versus probability for each of the 308 
test cases described above, allowing for a decision on the 
rejection or failure to reject non-classical behavior for each 
transfer and each type of perturbation based on the p-value 
calculated above. To get a better result for the overall trends, 
however, we look to combine the data in such a manner as to 
indicate the overall decision on the existence of non-classical 
behavior for the entire set of possible perturbations within 
each excitation transfer. As such we use Stouffer’s method to 
combine the 11 values of  for the coupling uncertainty and 

bias spillage test cases using =  , allowing for 

calculation of the overall p-value for each distinct transfer 
based on a Stouffer p-value of = ( ) [10 and 11].  

As a precondition for using Stouffer’s method to synthesize 
p-values, however, it’s necessary that each experiment (test 
case) be independent. We justify the independence among all 
test cases by the randomness of the numerical optimization 
scheme [4]. 

C. Coupling Uncertainty Results  

The results of the hypothesis test applied to the log-
sensitivity and robustness to coupling uncertainty are 
summarized in Table I. Note that the relationship between 
probability and both log-sensitivity and  reject the null 
hypothesis with an overall p-value of zero to four decimal 
places, indicating a very strong negative correlation among 
the metrics for the transfers |1 |1 , |1 |2 , and |1|3 . The transfers to the remaining spins then show highly 
classical behavior in response to the set of coupling 

uncertainties with p-values of unity to four decimals places.  
Thus we see that using Stouffer’s Method to allow for the 
combination of p-values almost produces a “zero-one” 
hypothesis test for the existence of anti-classical behavior 
with a sharp change in the system behavior as we move from 
the |1 |3  to |1 |4  transfers. This agrees with the 
results of [4] in which we see the highest levels on non-
classical behavior to coupling uncertainty in the transfers that 
are in physical proximity to the initial spin.  As the target spin 
is moved to the antipodal point on the ring, however, we 
regain the classical relations between probability and log-
sensitivity and robustness that one would expect.  In Fig. 4 we 
see an illustration of these non-classical trends as borne out 
by the statistical tests. In like manner, the relation in Fig. 5 
between the probability and log-sensitivity shows that the ring 
exhibits almost zero sensitivity to parameter variations for 
those controllers that allow for nearly perfect fidelity, again 
in contradiction to classical expectations. 

On the other hand, in Fig. 6 we see an illustration of the 
classical behavior for coupling uncertainty between spins 5 

Table I: Results of hypothesis test applied to the case of coupling 

uncertainty.  Shaded boxes indicate rejection of the null hypothesis and 

strong non-classical behavior.  
 

 

Coupling Uncertainty Summary - 11 Ring dt-Data

Transf
Probability and Probabillity and Log Sensitivity

Mean Mean Z Stouffer p Mean Mean Z Stouffer p
1->1 -0.3084 -20.6694 0.0000 -0.3481 -23.3296 0.0000
1->2 -0.0436 -2.9201 0.0000 -0.4411 -29.5646 0.0000
1->3 -0.0683 -4.5793 0.0000 -0.1643 -11.0142 0.0000
1->4 0.1670 11.1923 1.0000 0.2407 16.1319 1.0000
1->5 0.2258 15.1345 1.0000 0.6637 44.4840 1.0000
1->6 0.2229 14.9395 1.0000 0.7058 47.3063 1.0000

Fig. 4.  Plot of the logarithm of  versus logarithm of probability for a 1 to 
2 transfer with coupling uncertainty between spins 11 and 1 illustrating the 

overall trend of decreasing robustness with decreasing probability 
especially in the 1 to 700 controller index region. 

Fig. 5.  Plot of the log-sensitivity versus probability for coupling 

uncertainty between spins 11 and 1 in an excitation transfer from spin 1 to 
spin 2 illustrating the overall negative trend between the two metrics.  Note 

that the controllers that allow for almost perfect fidelity also have 

vanishing sensitivity, in contradiction to the expectations of classical 
control. 
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and 6 of a |1 |6  transfer.  Here the hypothesis test rejects 
the possibility of non-classical behavior with p-values of near 
unity for both log-sensitivity and  versus probability.  This 
classical trend is easily observed from the graph.  

For the case of the 1000 controller data set used in [5], 
Table II provides the results of the hypothesis test applied to 
each case of coupling uncertainty for the |1 |3  transfer.  
For the 22 available test cases, we see that 20 present non-
classical trends and of these 20, 18 cases reject the null-
hypothesis with a power of 0.80 or greater, indicating very 
strong non-classical behavior.  We do note, however, that the 
only test cases that fail to reject the null hypothesis with this 
power threshold are those with coupling uncertainty or bias 
spillage on the spins in the shortest physical path between the 
initial and target spin, indicating a trend toward more classical 
behavior with perturbations in these locations.     

D. Bias Spillage Results  

As with the coupling uncertainty results, the results of the 
hypothesis test when taken over bias spillage are summarized 
in Table III.  Here we see rejection of the null hypothesis in 
only three situations: between both  and log-sensitivity and 
probability for the case of localization about the initial spin 
and between log-sensitivity and probability for the case of a  |1 |2  transfer. Though the overall results of the 
hypothesis test indicate far more classical behavior for 
perturbations in the form of bias spillage, we do again see that 
the excitation transfers with a target spin closest to the initial 
spin exhibit the most non-classical behavior.   

As Fig. 7 reveals for the case of localization of the 
excitation about |1 , both  and log-sensitivity steadily 
increase as the probability of transfer decreases.  This should 
be somewhat expected as these cases are indicative of 
Anderson localization, perhaps the most non-classical 
behavior possible in a quantum ring.      

Finally, as an illustration of the classical behavior 
indicated by acceptance of the null-hypothesis, we can refer 
to the graph of Fig. 8.  Here it is clear that both  and log-
sensitivity decrease in concordance with the probability.    

 Table IV summarizes the results of the hypothesis test 
applied to the 1000-controller set specific to a  |1 |3  
transfer.  We note the overall mixed results of the hypothesis 
test in these cases but also again see the trend of more classical 
behavior as either the bias spillage or coupling uncertainty is 
in physical proximity to the transfer path.   

IV. CONCLUSION 

We have demonstrated that in examining the log-sensitivity 
and robustness of quantum rings controlled by static fields to 
maximize the probability of transfer of a single excitation that 
the limits imposed by classical control need not necessarily 

Fig. 6.  Consolidated plot of metrics for the case of a 1 to 6 transfer and 

coupling uncertainty between spins 5 and 6.  Note the very close 
concordance between the log-sensitivity and the probability, especially in 

the region for controllers between 1000 and 2000.  

Table II: Results of hypothesis test for the case of a 1 to 3 transfer with 

the 1000-controler data set and taken across all possibilities of a single 
coupling uncertainty. Note that the only test cases that fail to reject the 

null hypothesis with a power of at least 0.80 are those in which the 

coupling uncertainty is physically located between the initial and target 
spins. 

 

 

Coupling 

Uncertainty

for 

Prob and Z-Score p

Accept or 

Reject 

Classical 

Limitations

Would Power 

> 0.80 Under 

= ctual

1-2 -0.0506 -2.394 0.0083 Reject No
2-3 -0.04576 -2.166 0.0151 Reject No
3-4 -0.1137 -5.383 0 Reject Yes
4-5 -0.1385 -6.558 0 Reject Yes
5-6 -0.1601 -7.580 0 Reject Yes
6-7 -0.1633 -7.732 0 Reject Yes
7-8 -0.1557 -7.372 0 Reject Yes
8-9 -0.1633 -7.732 0 Reject Yes

9-10 -0.1601 -7.580 0 Reject Yes
10-11 -0.1387 -6.567 0 Reject Yes
11-1 -0.1219 -5.772 0 Reject Yes

Stouffer Statistics: -20.1518 0.0000 Reject

Coupling 

Uncertainty

for Prob

and Log 

Sensitivity

Z-Score p

Accept or 

Reject 

Classical 

Limitations

Would Power 

> 0.80 Under 

= ctual

1-2 0.1947 9.219 1 Accept
2-3 0.1947 9.219 1 Accept
3-4 -0.1166 -5.521 0 Reject Yes
4-5 -0.4138 -19.59 0 Reject Yes
5-6 -0.4393 -20.80 0 Reject Yes
6-7 -0.3971 -18.80 0 Reject Yes
7-8 -0.4075 -19.29 0 Reject Yes
8-9 -0.3971 -18.80 0 Reject Yes

9-10 -0.4393 -20.80 0 Reject Yes
10-11 -0.4138 -19.59 0 Reject Yes
11-1 -0.1166 -5.521 0 Reject Yes

Stouffer Statistics: -39.2791 0.0000 Reject

Table III: Results of hypothesis test applied to the case of bias spillage.  

Shaded boxes indicate rejection of the null hypothesis and strong non-
classical behavior.  

Bias Spillage Summary - 11 Ring dt-Data

Trans
Probability and Probabillity and Log Sensitivity

Mean Mean Z Stouffer p Mean Mean Z Stouffer p
1->1 -0.1151 -7.7136 0.0000 -0.1720 -11.5289 0.0000
1->2 0.0451 3.0204 1.0000 -0.3522 -23.6038 0.0000
1->3 0.0096 0.6442 0.9837 0.1229 8.2375 1.0000
1->4 0.1662 11.1362 1.0000 0.4160 27.8787 1.0000
1->5 0.1345 9.0153 1.0000 0.7015 47.0175 1.0000
1->6 0.1363 9.1347 1.0000 0.7508 50.3181 1.0000
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apply in all cases.  In particular we see a general trend of 
greater non-classicality for transfers between spins in 
relatively close physical proximity. 

We also note that for cases in which the physical location 
of the uncertainty in coupling strength or bias spillage is in 
proximity to the excitation transport path, the results more 
closely follow those anticipated by classical control.  
Paradoxically, when the source of uncertainty is physically 
located on the opposite side of the ring from the excitation 
transfer, we are more likely to see non-classical trends.  

Looking forward, it’s necessary to extend these results 
beyond that of an 11-ring to see if these trends can be 
generalized to systems of arbitrary rings with arbitrary 
transfers. Finally, it still remains to formulate a model that 
explains the change from non-classical to classical behavior 
as the target spins moves to the anti-podal points of the ring.    
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Fig. 7. Consolidated plot of metrics for localization at the initial spin and 

bias spillage on spin 6. Note the steady increase in the log sensitivity as the 

probability of transfer decreases from unity and the sharp uptick in . 

Table IV: Results of hypothesis test for the case of a 1 to 3 transfer with 

the 1000-controller data set and taken across all possibilities of a single 
bias spillage.   

 

 

Spillage 

Spin

for Prob 

and 
Z-Score p

Accept or Reject 

Classical 

Limitations

Would Power > 

0.80 Under = 

ctual

1 -
0.006192

-0.2931 0.3846 Accept

2 -0.03959 -1.874 0.0304 Reject
3 -0.02711 -1.283 0.0996 Accept
4 0.2018 9.555 1 Accept
5 -0.2133 -10.10 0 Reject Yes
6 -0.2507 -11.87 0 Reject Yes
7 -0.2430 -11.50 0 Reject Yes
8 -0.2430 -11.50 0 Reject Yes
9 -0.2507 -11.87 0 Reject Yes

10 -0.2134 -10.10 0 Reject Yes
11 0.2062 9.763 1 Accept

Stouffer Statistics: -15.3988 0.0000 Reject

Spillage 

Spin

for Prob 

and Log 

Sensitivity

Z-Score p

Accept or Reject 

Classical 

Limitations

Would Power > 

0.80 Under = 

ctual

1 0.4057 19.21 1 Accept
2 0.4107 19.44 1 Accept
3 0.4057 19.21 1 Accept
4 0.3812 18.05 1 Accept
5 0.1541 7.296 1 Accept
6 -0.06087 -2.882 0.0019 Reject Yes
7 -0.0523 -2.476 0.0066 Reject
8 -0.0523 -2.476 0.0066 Reject
9 -0.0608 -2.878 0.00199 Reject Yes

10 0.1541 7.296 1 Accept
11 0.3812 18.05 1 Accept

Stouffer Statistics: 29.4999 1.0000 Accept

Fig. 8.  Consolidated plot of metrics for a transfer from spin 1 to spin 5 and 
bias spillage on spin 3.  Here we see a decrease of both log-sensitivity and 

 in concert with decreasing probability, save for a spike in both metrics 
around controller index 1000.  

6142


	United States Military Academy
	USMA Digital Commons
	12-2017

	Sensitivity and Robustness of Quantum Spin-1/2 Rings to Parameter Uncertainty
	Sean O'Neil
	Edmond Jonckheere
	Sophie Schirmer
	Frank Langbein
	Recommended Citation


	Sensitivity and Robustness of Quantum Spin-1/2 Rings to Parameter Uncertainty

