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Abstract— Since technology is rapidly advancing, systems 
engineers must now design for adaptability, such that the system 
can be updated with new components as they become available. 
Designing for adaptability typically requires analyzing and 
evaluating technologies at various stages of maturity to 
determine if they should be incorporated into the design. As 
such, technology roadmaps are a useful tool to identifying the 
change in a technology with time. Though traditional technology 
roadmaps are based on raw performance data, a technology 
roadmap based on value modeling would be more appropriate 
for system design. Value modeling is a technique used for 
evaluating different design decisions while focusing on the needs 
of the stakeholder. A qualitative model is built to determine what 
value measures are of concern to the stakeholder; a quantitative 
model is then built to convert raw performance data into a value 
score for evaluation. This process can be expanded to show the 
change in value score based on new technologies through the 
inclusion of uncertainty and the time domain. The SIPMath® 
Tool is Microsoft Excel provided a useful tool for building this 
model. A case study for different unmanned aerial vehicle 
batteries is presented to display this process. 

Keywords—Technology Roadmap, Adaptability, Value 
Modeling 

I. INTRODUCTION  

Technology is rapidly and unpredictably advancing, 
resulting in many systems to use obsolete components by the 
time that they are fielded. Therefore, modern system design 
requires that a system be designed for adaptability, such that 
the system can be updated with new components as they 
become available [1]. Designing for adaptability requires that 
the system designers be able to predict the future development 
of different technologies. This process is typically done 
through market research and discussions with subject matter 
experts. These technologies must then be evaluated to 
determine which ones are relevant as design considerations. 
Stochastic value modeling offers a method for performing 
these evaluation processes. 

Value modeling is a technique to evaluate different design 
decisions while focusing on the needs of the stakeholder [2]. 
The technique involves determining the criteria that is valued 
by the user, or value measures, and using these measures to 
derive scores for different design alternatives allowing for easy 
comparison. This approach can be applied to comparing 

different technologies at different stages of maturity. However, 
due to the lack of performance data available for immature 
technologies, the value model will need to be stochastic. By 
calculating the projected range of values for each of the future 
design alternatives and projecting the availability date, a 
timeframe-value diagram can be built. This chart can be used 
to inform design decisions as well as investment opportunities. 

This paper discusses the use of stochastic value modeling 
to create a timeframe-value diagram, which identifies the 
increase in a given technology’s value as a function of time. A 
case-study is presented for rechargeable battery technologies 
for an unmanned aircraft system (UAS). 

II. OVERVIEW OF TRADITIONAL VALUE MODELING 

The value model development process is discussed in detail 
in [2]. At its most basic level, a value model assigns a score 
between 0 and 100 to different design alternatives to allow for 
comparison. The value modelling process ensures that these 
scores represent the stakeholders’ needs. The model consists of 
qualitative and quantitative components, which translate raw 
performance data into value scores for each design alternative, 
as shown in Figure 1. These models translate raw performance 
data into value scores for different design alternatives. These 
value scores can then be compared in a cost-value analysis. 

A. Qualitative Value Model 

Systems engineers must perform a functional 
decomposition of their system early in the design process, 
where they decompose the main system objectives into a set of 
functions [3]. This decomposition typically takes the form of a 
functional hierarchy. The qualitative value model is built on 
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Fig. 1. Steps for a traditional value model. Traditional value modeling
involves developing a qualitative and quantitative value model to develop
value scores that can be used in a cost-value analysis. 



this functional hierarchy; each function is assigned objectives 
with a supporting value measure, creating a value hierarchy. 

The value hierarchy for the case study presented in Section 
IV is depicted in Figure 2. The value hierarchy consists of 
four levels: the fundamental objective, the critical functions 
that the system must be able to produce, the objectives of each 
specific function, and the associated value measure. A value 
measure is a direct or proxy measure that quantifies 
achievement of the supporting objective. Simply put, the 
value measures are the critical design parameters that will 
drive the selection of a design alternative. 

B. Quantitative Value Model 

The quantitative value model takes each value measure and 
places them onto a swing weight matrix. The swing weight 
matrix, as shown in Figure 3, evaluates each value measure in 
regards to importance and technology gap. The technology gap 
identifies how far current solutions are from meeting the 
stakeholder needs. Each value measure is given a swing weight 
between 0 and 100 based on its location on the matrix [4]. 
These weights are then summed for all the value measures and 
normalized to get a global weight between 0 and 1. 

A value function is then built for each value measure. The 
value function takes the raw performance data as an input and 
outputs a score between 0 and 100, where 0 is the minimum 
acceptable value and 100 is the ideal value. The value function 
translates the raw performance data into a common measure 
which is necessary because value measures typically have 
different units. Value functions can be either continuous or 
discrete; examples of both types are shown in Figure 4. 

C. Cost-Value Diagram 

The value model combines raw performance data with 
value functions and a swing weight matrix to calculate a value 
score for each alternative as shown in (1).  

                                                            (1) 

In (1), v(x) is the total value of a design alternative, i=1 to n 
for the number of value measures, xi is the raw performance 
score of the design alternative on the ith value measure, vi (xi) 
is the converted raw performance score value for the ith value 
measure, and wi is the global weight assigned to the ith value 
measure. The value score reflects the degree to which a design 
alternative satisfies stakeholder value. [2].  

The resulting value score can be plotted against the 
associated lifecycle cost in a cost-value diagram. This diagram 
allows for a trade-off analysis between cost and value between 
the different design alternatives. Additionally, this diagram 
displays when a design alternative should not be considered 
because it is dominated, where another solution has a higher 
value at a lower cost. 

III. MODIFICATIONS TO TRADITIONAL VALUE MODELLING FOR 

INFORMING TECHNOLOGY ROADMAP 

The value modeling process can readily be used to support 
technology roadmapping efforts. Several studies have 
addressed the need for a value-focused approach for the 
roadmapping of complex systems [5-7]. Though each study 
uses different processes to capture the value of a design 
alternative, these processes align with the traditional value 
modeling process outlined in the previous section. 

While traditional value modeling works well with existing 
technologies, modifications must be made to the process to 
account for technologies at varying stages of maturity. The 
first change involves accounting for the uncertainty in the raw 
performance data. The second change requires that the model 
accounts for the projected date that a technology will be cost-
feasible. These changes allow for the building of a technology 
roadmap which can show the increase in value of a technology 
with time. This modified process is shown in Figure 5. 

A. Adding Uncertainty into Value Models 

Traditional value models require accurate performance data 
to feed into the value functions. Immature technologies may 
not have accurate performance data available; however, a 
range of possible values can be estimated. The size of this 
range will depend on a number of parameters including 
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technological maturity, data availability, stakeholder needs, 
and environmental scenarios [8].  

Since the qualitative and quantitative value models are 
based on stakeholder needs, the models themselves do not 
change. However, the solution scoring is based on the 
specifications of each design alternative; as such these steps 
will change to incorporate uncertainty. The distribution of raw 
values will propagates through the value model to create a 
distribution of value scores, as shown in Figure 5 [9]. 

Both discrete and continuous distributions can be used for 
capturing the raw data, as shown in Figure 6. The most 
common distribution is a triangular distribution, which is 
defined by a minimum, most likely, and maximum point. The 
minimum point is often based on the current state of the 
technology. The most likely point is the projected raw data 
value with the anticipated development. The maximum point is 
the raw data value with an increased development effort. Other 
distributions can also be applied including normal or uniform. 

Unless all of the raw data distributions are discrete, the 
overall value for a design alternative will have a continuous 
distribution. This distribution will not likely have a standard 
form; however, it is often approximated as being of a triangular 
form based on the median value, the 5th percentile value, and 
the 95th percentile value [10]. 

B. Adding the Time Domain 

Though traditional value modeling focuses on how much a 
solution costs, a technology roadmap focuses more on when 
technology will not be cost prohibitive. Typically, this time 
frame is associated with the projected dates for commercial 
availability. These projections are determined through market 
research and discussions with subject matter experts.  

Similar to the performance data, there is uncertainty 
associated with the availability date. Therefore, the availability 
date needs to be modeled as a distribution as well. The 

distribution can treated as a uniform distribution based on the 
Technology Readiness Level (TRL). For example, a TRL-6 
technology can readily be available in 4-6 years; meanwhile a 
TRL-2 technology could potentially require 7-15 years [11]. 

C. Use of SIP Math Tool for Analysis 

Microsoft Excel is a powerful tool for building value 
models; simple value models are typically built in Microsoft 
Excel [2]. Excel is useful for collecting and cataloging data, 
building functions, and performing the calculations discussed 
in Section 2. Additionally, Excel has plotting capabilities, 
allowing for graphical outputs, such as a cost-value diagram. 

The Stochastic Information Packet Math (SIP-Math) add-
on into Excel allows for the inclusion of uncertainty into the 
value-model [12]. The SIP-Math tool allows a user to define a 
distribution of values in a single cell in Excel. That cell can 
then be used as an input to equations, allowing the distribution 
of values to propagate through a set of calculations. The SIP-
Math tool then runs a Monte-Carlo simulation, selecting a 
value from each distribution and executing all calculations; this 
process is repeated numerous times to create a distribution of 
output values. Note that there are other software packages that 
can perform Monte Carlo simulations; the authors selected the 
SIPMath Excel add-on for its ability to support model 
development without having to rerun new simulations when 
changing parameters. 

D. Value vs. Availability Date Analysis 

By combining traditional value modeling with uncertainty 
and the time domain, a timeframe-value diagram can be 
produced. A timeframe-value diagram shows the impact of 
new technology developments on the value score for a system. 
A higher value score indicates that a solution is more in-line 
with the user’s needs.  

A sample timeframe-value diagram is shown in Figure 7. 
The technology roadmap shows that the current technology has 
a value score of approximately 20. Though there is some 
uncertainty in the current technology value, it does not change 
by more than 2 points. A value score of 20 indicates that the 
solution barely meets the minimum requirements for the user. 

A next generation technology appears to become available 
between 2020 and 2023; this technology has a value score of 
approximately 40, which is substantially higher than the 
current technology. Since this technology is not fully matured, 
there is uncertainty in both its value and the date of 
availability. These uncertainty ranges are expected to decrease 
as the technology matures. 

Two competing technologies become available between 
2024 and 2028. These two long-term technologies have 
substantial overlap between their value scores and availability 
dates. As such, a systems engineer would continue to monitor 
both solutions in parallel. If possible, they will try to ensure 
that their system is designed to accept either technology as 
they become available. If that is not feasible, they can accept 
risk by selecting the component with the higher projected 
value. Alternatively, they can also wait until the technologies 
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matures to make a decision. In this case, the uncertainty ranges 
will decrease, allowing for less risk to be assumed. 

A dominated solution appears in 2024. The next generation 
technology is available by this time frame and is more suitable 
for incorporation into the design based on its higher value 
scores. Note that there is no overlap between the value scores 
or availability dates, making that solution completely 
dominated. If such overlap did exist, the design alternative 
could be partially dominated, and the systems engineer would 
have to decide how much risk they are willing to accept by 
eliminating the design alternative from consideration. 

The timeframe-value diagram created through stochastic 
value modeling allows the systems engineer to evaluate 
different design alternatives at various stages of maturity. This 
analysis allows the systems engineer to decide on which 
technology solutions to include on a technology roadmap and 
incorporate into the system design. 

IV. CASE STUDY –BATTERY TECHNOLOGIES  
FOR AN UNMANNED AERIAL SYSTEM 

A case study is presented to demonstrate the use of 
stochastic value modelling to create a technology roadmap that 
can be used to assess different technologies at various stages of 
maturity. The case study applies this methodology to 
rechargeable battery solutions for a military-grade unmanned 
aerial system (UAS). 

A. Overview of Requirements 

A military-grade UAS has numerous operational 
requirements related to its power system. The power system 
must support the mission for the UAS, providing enough 
power for take-off and landing, maintain an energy capacity 
large enough for the duration of the flight, and be able to 
survive landing. After the mission, the power source must be 
reset, allowing for the next mission. The preference for a UAS 
power source is a battery, especially for small and mid-size 
variants. Batteries can typically meet the requirements for a 
UAS while maintaining a compact, simple system [13].  

These operational requirements turn into technical 
requirements for the battery component. First, the battery shall 
have a high power density, allowing it to provide enough 

power for take-off while remaining lightweight. Similarly, it 
shall have a high energy density to allow it to maximize the 
mission duration. The power system shall also be durable, 
rapidly recharged, and last for numerous cycles.  

Since requirements must be achievable, the threshold 
values for these requirements can be set to the state of current 
technology. Therefore, the threshold values for the power 
density is 400 W/kg, energy density is 250 WHr/kg, number of 
cycles is 200, and recharge rate is C/2 [14]. Additionally, the 
battery should be as durable as commercial batteries. 

B. Value Model 

The value hierarchy for the rechargeable battery solution is 
shown in Figure 2. The value hierarchy breaks the fundamental 
objective of the power system into the following three primary 
functions: provide electric power, accept recharge current, and 
be safe. Five value measures are derived from these functions 
that align with the technical requirements.  

Each value measure was put onto a swing weight matrix, as 
shown in Figure 3. The more heavily weighted value measures 
are power density, energy density, and number of cycles. The 
lower weighted value measures include durability and recharge 
rate. Based on the position in the swing weight matrix, the 
global weight (wi) was determined for each value measure. 

A value function was created for each value measure; two 
of these value functions are shown in Figure 4. A simple 
strategy was used for defining these value measures. The 
minimal acceptable value for each value measure equates to a 
score of 0. The threshold value earns a score of 30. The 
objective value earns a score of 80. And the ideal value earns a 
score of 100; the ideal value is typically set to a value at which 
any further improvement in that value measure would result in 
a minimal improvement for the UAS.  

C. Different Technology Candidates 

Lithium-ion (Li-ion) batteries dominate the commercial 
rechargeable battery market. They are ubiquitous, being used 
in devices ranging from cellphones to laptops to electric 
vehicles. Li-ion batteries are built such that lithium ions move 
from the cathode through an electrolyte to the anode during 
discharge and back when charging; this movement of ions 
generates a current that can power devices.  

Li-ion batteries have been showing a steady increase in 
energy and power density over the past decade due to better 
manufacturing processes, wider and longer cell designs, and 
new battery cooling systems. However, these increases have 
started to plateau; as such, engineers have started looking 
towards alternative technologies to achieve improved batteries.  

A near term improvement in battery technology comes 
from changing the cathode. Scientists are developing materials 
that can compactly store a large amount of lithium ions. A 
promising chemistry is Lithium Nickel Cobalt Aluminum 
Oxide (LiNiCoAlO2), which has improved energy densities 
over traditional Li-ion batteries. However, it has a slightly 
lower power density and recharge rate than traditional Li-ion 
batteries. Additionally, the cycle life and durability rating are 
on-par with traditional Li-ion batteries [15]. 
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Another advancement in battery technology comes from 
developing better anodes. Currently, Li-ion batteries use 
graphite at the anode to store the lithium ions. However, 
advancements in material science will allow for silicon anodes. 
Lithium-silicon anode (Li-Si anode) batteries have 
substantially higher energy densities, power densities, and 
recharge rates. However, the material properties in the anode 
result in a less durable battery with a shorter cycle life [15]. 

A longer term improvement in battery technology can 
come from changing the electrolyte solution from liquid to 
solid. Solid-state Li-ion batteries can achieve substantially 
higher energy densities. Additionally, the solid electrolyte 
makes the battery more durable with an increased cycle life. 
However, the ions move significantly slower through a solid 
material than a liquid electrolyte. As such, the solid-state 
batteries have a limited power density and charge rate [16]. 

Longer term, two battery chemistries are showing 
substantial promise as possible replacements to traditional Li-
ion. The first, Lithium-air, use porous carbon that captures 
oxygen at the anode; the lithium ions move across the 
electrolyte into the porous carbon to bond with the oxygen. 
This technology has been shown to work as non-rechargeable 
batteries, achieving a 10x increase in the energy density. A 
large effort is underway to develop a rechargeable variant, 
which has had limited success due to a low cycle life. When 
that issue is resolved, Li-air chemistry will provide a very 
energy dense batteries with a moderate power density [17]. 

The second promising novel battery chemistry is Lithium-
sulfur (Li-S). These batteries use a sulfur/carbon cathode with 
a lithium anode, and are expected to be lighter, cheaper, and 
more powerful than traditional Li-ion batteries. However, they 
have mechanical issues related to volume expansion. New 
materials, such as graphene are being integrated into these 
batteries to attempt to handle these issues [18]. 

D. Timeframe-Value Diagram 

Data was collected for each battery chemistry in regards to 
each value measures. A stochastic value model was built in 
Excel with the SIP-Math® Tool to convert the projected 
performance data into value scores. These raw score were 
plotted against the anticipated year of availability to create a 
technology roadmap as shown in Figure 8. 

Traditional Li-ion batteries have a value score between 30 
and 35. This follows from the value functions being designed 
such that the current performance specifications equate to a 
value score of 30. Since multiple sources were used, a range of 
performance specifications resulted in a range of value scores. 

The LiNiCoAlO2 battery will be available in the next few 
years. Though this battery chemistry has a higher energy 
density than traditional Li-ion, it has a lower power density and 
recharge rate. Since the value measure for power density is 
weighted more heavily than the energy density, this results in a 
reduced projected value score.  

The next battery chemistry that is available is Li-Si Anode. 
This battery chemistry has a range of values between 43 and 
62. The increased energy density, power density, and recharge 
rates of Li-Si Anode offset the lower durability and cycle life. 

The battery technology is projected to be available between 
2020 and 2025. This large range is due to the substantial 
research still required to handle the swelling of the silicon 
matrix during charging. 

Rechargeable Li-S batteries are expected to be available 
between 2024 and 2026. The main benefit of Li-S technology 
is the reduced cost, as opposed to increased performance. As 
such, the range of value scores for Li-S overlaps significantly 
with Li-Si Anode, with the expected value being slightly less. 

The battery technology with the highest expected value 
scores is Solid-state Li-ion batteries. These batteries are 
expected to have both high energy densities with high cycle 
life and durability. The power densities and recharge rates are 
high, though lower than Li-Si anode. As such, though the 
average value score is higher, the range of values overlaps 
significantly with Li-Si anode and Li-S. 

Li-air batteries are projected to be available between 2026 
and 2031. Li-air batteries are expected to have a very high 
energy density, but a low power density and recharge rate. The 
low performance in these value measures makes it marginally 
better than traditional Li-ion, but substantially less than other 
battery technologies that will be available in that timeframe. 

E. Analysis of Timeframe-Value Diagram 

Figure 8 shows that each solution can be grouped into one 
of the following categories: near-term, mid-term, long-term. 
Near-term solutions are currently available, mid-term solutions 
are available in the next five years, and long-term solutions are 
available in the next ten years.  

The near-term solution is the traditional Li-ion battery. The 
technology is well established and commercial cells can be 
packaged to meet the specific needs of the UAS. Though this 
battery technology meets the threshold requirements, there is 
substantial room for improvement. 

In the mid-term range are LiNiCoAlO2 and Li-Si Anode 
batteries. The LiNiCoAlO2 chemistry is dominated by the 
traditional Li-ion chemistry. As such, the new chemistry will 
likely not be useful for the UAS application. The traditional Li-
ion batteries can be used for the UAS application until the next 
battery chemistry is developed, which is likely the Li-Si anode 
batteries that will be available between 2020 and 2024.  
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Longer term, four different batteries have increased value 
over traditional Li-ion. One of the solutions, Li-air, is 
dominated by the other three solutions; as such, it is not a 
contender to serve as the power source for the UAS. The other 
three chemistries, Li-Si Anode, Li-S, and Solid-state Li-ion, 
are all non-dominated, and hence cannot be discounted. As 
these technologies mature, the uncertainty ranges will 
decrease, allowing the systems engineer to select the 
appropriate battery chemistry. 

It is projected that the Li-Si anode battery will be the first 
battery available. As the battery chemistry is further 
developed, the uncertainty in the value and date available will 
decrease. Therefore, the battery development should be 
monitored in the 2020 timeframe to determine more accurate 
numbers for the value score and availability date. If the 
performance fails to meet expectations or the availability date 
is pushed back, Li-S would be an attractive alternative, 
especially if it is over-performing and ahead of schedule. 
Similarly, Solid-state Li-ion could potentially have the highest 
value and be available first if the development effort goes 
substantially ahead of schedule. 

The results from this analysis allows for the system 
engineer to make design decisions on what technologies to 
incorporate into the technology roadmap. Since the only 
battery technology currently available is the Li-ion battery, the 
system needs to be designed for this chemistry. However, the 
power system should be designed to account for the advances 
in battery technology. If possible, the systems engineer would 
design the system to accept Li-Si Anode, Li-S, and Solid-state 
Li-ion batteries as they become available. If it is not possible to 
incorporate all of these technology, they can either accept risk 
by selecting the technology with the highest projected value or 
wait until the technologies are more developed. 

V. CONCLUSIONS 

Systems engineers must often design systems in technical 
fields that are rapidly evolving. They can account for these 
advances by ensuring that their system be designed with the 
capacity to accept new technologies as they become available. 
To design for adaptability, they must be able to project and 
assess current and future performance for design alternatives. 

A technique to assess new technologies through value 
modeling is presented. Value modeling is a technique used for 
evaluating different design decisions while focusing on the 
needs of the stakeholder. Traditional value modeling includes a 
qualitative and quantitative model. The qualitative model 
stems from the functional decomposition of the system and 
determines what value measures are of concern to the 
stakeholder. A quantitative model is then built to convert raw 
performance data into a value score for evaluation. 

Traditional value modeling can be adapted to create a 
timeframe-value diagram, which displays the value score of 
different technology solutions with time. In addition to 
incorporating the time domain, the model must also include 
uncertainty, since performance data is not fully defined for 
immature solutions. The SIPMath® Tool is Microsoft Excel 
provided a useful tool for building this model.  

A stochastic value model was built do demonstrate this 
process as it relates to a battery solution for an unmanned 
aerial system. The associated technology roadmap shows that 
current Lithium-ion battery solutions earn a score of 
approximately 30. However, with the projected advances in 
battery technology, three different chemistries—Lithium-
silicon anode, Lithium-sulfur, and Solid-state Lithium-ion—
will increase that score to approximately 60 within the next 10 
years. The timeframe-value diagram can be used to project 
design decisions for a technology roadmap. 
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