United States Military Academy
USMA Digital Commons

ACI Journal Articles Army Cyber Institute

2-15-2018

Explaining Decisions of a Deep Reinforcement
Learner with a Co gnitive Architecture

Sterling Somers
Constantinos Mitsupoulos
Christian Lebiere

Robert Thomson
Army Cyber Institute

Follow this and additional works at: https://digitalcommons.usmalibrary.org/aci ja

Recommended Citation

Somers, Sterling; Mitsupoulos, Constantinos; Lebiere, Christian; and Thomson, Robert, "Explaining Decisions of a Deep
Reinforcement Learner with a Cognitive Architecture” (2018). ACI Journal Articles. 124.
https://digitalcommons.usmalibrary.org/aci_ja/124

This Conference Proceeding is brought to you for free and open access by the Army Cyber Institute at USMA Digital Commons. It has been accepted
for inclusion in ACI Journal Articles by an authorized administrator of USMA Digital Commons. For more information, please contact

nicholas.olijnyk@usma.edu.

https://digitalcommons.usmalibrary.org?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usmalibrary.org/aci_ja?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usmalibrary.org/aci?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usmalibrary.org/aci_ja?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usmalibrary.org/aci_ja/124?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicholas.olijnyk@usma.edu

Explaining Decisions of a Deep Reinforcement Learner with a Cognitive
Architecture

Sterling Somers (sterling @sterlingsomers.com)
Constantinos Mitsopoulos, Christian Lebiere ([cmitsopoulos, cl]@cmu.edu)
Department of Psychology, Carnegie Mellon University, 5000 Forbes Ave
Pittsburgh, PA 15213 USA

Robert Thomson (robert.thomson @usma.edu)
Army Cyber Institute, United States Military Academy, 2101 New South Post Road
West Point, NY, 10996 USA

Abstract

The work presented is an evaluation of a method for devel-
oping a hybrid system, consisting of a Deep Reinforcement
Learning (RL) agent and a cognitive model, capable of provid-
ing explanations of its action decisions. The methodology uses
a symbolic/sub-symbolic cognitive architecture to introspect
on the activity of the network to understand its representation.
The entropy in the system’s behavioral predictions could be
used as a signal to affirm or deny ascribing a representation to
the network.

Keywords: deep reinforcement learning; cognitive modeling;
introspection

Introduction

Deep Neural Networks (DNNs) have demonstrated an in-
creasing success in various scenarios where they are used
as function approximators. Their success is based in pass-
ing low-level sensory information through their structure, and
creating higher-level abstractions of that information. The
output of the network can be used either to classify inputs,
predict, or in the case of RL, which is a learning paradigm
for decision-making processes, to make decisions. As DNNs
proliferate in both academic and private sectors, there will
be an increased value to developing Deep RL agents that
can be introspected upon. Being able to understand the con-
cepts abstracted by the DNNs and how those concepts are
factored into action decisions will allow us to develop spe-
cialized agents trusted to achieve their purpose.

The aim of this work is to develop a methodology for pro-
viding symbolic-level explanations for the action decisions
of a Deep Reinforcement Learning (RL) agent. Our approach
uses a cognitive architecture to model the internal represen-
tations of an RL agent at a symbolic level. In the long-term
we envision a system that can inform a human observer why
the RL agent made the decisions it made. This is particularly
important whenever there is a mismatch between the knowl-
edge of the observer and the knowledge of the RL agent. A
mismatch could occur: a) when the RL agent produces an
optimal but atypical solution, or b) when the RL agent fails
to find a solution known to a subject matter expert (SME),
or ¢) when the feature and action space are too complex for
an SME to determine efficiently why a RL agent has made
certain decisions. We envision that in a) and c), our system
would be able to identify the most salient features of the en-
vironment attended by the RL agent, thereby explaining what

features it is responding to. In b) our system would be able
to identify representations available to an SME that are not
shared by the RL agent. In this work we attempt to address b)
by outputting symbolic state/action combinations consistent
with the terminology used by an SME.

We believe that such a system should be generative and/or
adaptive. While state and action category names should come
from the SME, the system should be able to learn the mapping
between states and actions for some subset of the RL agent’s
behavior.

The explanations produced by the system should also be
constrained by human cognitive capacities. A deep RL agent
is not limited with respect to the number of features it can
attend to. An explanation system that fails to reduce the cog-
nitive load on the observer is not useful as an explanation
because the onus of determining the most salient features re-
mains with the human observer.

In this work we evaluate a methodology where we create
an adaptive cognitive model of an RL agent trained to play
a simple mission in the real-time strategy game, StarCraft 2
(SC2). Our approach involves introspecting into the RL agent
by mapping the activity of neural layers, as it makes action
decisions, to symbolic output that can be used to generate
explanations. This approach is reminiscent of Vinokurov et
al. (2011), where they combined the hybrid cognitive archi-
tecture, ACT-R, with the neural-network-based architecture,
Leabra (O’Reilly & Munakata, 2000) in an image classifica-
tion task. We believe the computational cognitive architec-
ture, ACT-R, is well suited for such a task because it is con-
strained by cognitive capacities that, in turn, will constrain
explanations; it creates a symbolic model trace that can be
tractably transformed into explanations; and it operates on
sub-symbolic equations that are compatible with distributed
representations in DNNs.

The cognitive model is initialized with knowledge consis-
tent with an SME and evaluated against an RL agent with a
sub-optimal policy. A sub-optimal policy represents knowl-
edge mismatch situation b), described above, where the RL
agent has failed to find a solution readily available to an SME.
Although it may be possible to create an RL agent that per-
forms the task optimally, our aim is primarily focused on ex-
planation. Our explanation system is tasked with identify-

ing and reporting to a human user when the representations
provided by the SME are not appropriate for describing the
internal representations used by the network and to provide
instead a representation that better describes the RL agent’s
internal state.

Our cognitive model attempts to adapt its internal represen-
tations to better match the action decisions of the RL agent.
The cognitive model provides a model trace that can be used
to infer an explanation. We use this trace in this investigation
to determine if the RL agent has made an inference consis-
tent with an inference made by an SME. High entropy in the
model, in categories related to the inference, indicate that the
RL does not make the inference. We confirm the accuracy
of the model trace using t-SNE (Maaten & Hinton, 2008)
to cluster the activity of the network. The t-SNE clustering
confirms that the network makes three distinct abstract rep-
resentations from the input space, which correspond to three
state/action categories instead of the four that would result
from making the same inference as the SME.

Task and Environment

StarCraft 2 is a real-time strategy game where players control
units from a third-person perspective with the aim of elimi-
nating opponents. In the screen-shot depicted in Figure 1, a
military unit is selected and two beacons are present on the
map.

Figure 1: Screenshot of a StarCraft 2 beacon mission.

SC2 provides a rich and complex environment for exper-
imenting on various types of agents. The specific domain
presents multiple challenges: imperfect information, macro
and micro management of resources, strategic acting and
multi-agent interactions. In addition, the SC2 Editor provides
complete freedom to the mission’s design, although anything
beyond very basic missions provides a significant learning
challenge for Deep RL agents (Vinyals et al., 2017).

The mini game we present here is straight forward. The
goal of the game is to get the agent to one of two beacons:
either the green beacon or the orange beacon. The green bea-
con presents a low-value target while the orange beacon rep-
resents a high-value target.

Despite the simplicity of the mission, the network learned a
sub-optimal strategy. The agent clicks the highest rewarding
beacon presented in every case. This strategy is successful
in every case but one: where the green beacon is in the di-

rect path between the agent and the orange beacon (blocking
scenario). Clicking directly on the highest rewarding beacon
makes the agent move in a direct line between its location
and the beacon. In the blocking scenario, the agent moves to-
wards the orange beacon, hits the green beacon, receives the
low-value reward, and the game is reset.

Deep Reinforcement Learning Agent

The core of the agent consists of a deep neural network that
attempts to solve a Markov Decision Process (MDP) defined
as a tuple (S5, 4,7 ,7,R) where S is a finite set of states, 4 a
finite set of actions, 7 is the transition probability for arriving
in state s/ when executing action a from state s, R is the re-
ward function that defines the reward received for performing
the aforementioned transition, and 7y a reward discount fac-
tor. The goal of the agent is to maximize the expected return
G =Y Y'riis1 from each state s,. The solution of the
MDP consists of a function, named policy 7t(.|s;), that maps
a state s, to a distribution over actions that lead the agent to
higher sums of rewards. The probability of performing action
ay in state s, is denoted as 7t(a;|s;).

The network parametrizes the policy Tg with parameters
0. In this paper, we utilize the Advantage Actor Critic (A2C)
algorithm which is the synchronous version of the A3C (Mnih
et al., 2016). We adopt the same architecture (Figure 2) and
implementation details as in Vinyals et al. (2017).

We consider the standard interaction between agent and en-
vironment. At each time step ¢ the agent receives an obser-
vation s; from the Starcraft II API and selects an action a;
according to its policy (.|s;):

e Observations: consist of a set of image-like feature layers
that represent the existence of a specific feature at a specific
location on a screen. For example, in a 32x32 resolution
map a feature that corresponds to enemy units type will be
represented as a matrix with the same dimensions as the
map. This feature matrix will have zero values apart from
the elements that correspond to the pixels that are occupied
by the enemy units. The value of these elements will be
equal to the unit type identification number provided by
the API. Generally, there are three main types of features:
map features (entire map), screen features (part of map)
and non-pixel information (e.g. player resources).

e Actions: There are two action categories: the action type
and the action arguments. For example click on (action
type), and x,y location (action arguments). In our exam-
ples, the action arguments will be the spatial location for
performing the particular action type.

We trained the agent in the beacon task until it reached a
steady performance relative to a human optimal score. We
observed that the agent clicked on the highest value target in
all cases. The RL agent exhibited no avoidance behavior in
the blocking scenario.

conv 1

screen features

conv 2

ACTR

fc layer
module

» Value
prediction

action
type

v

non-pixel
information

observation

2 -h

map features

Y 4

feature concatenation

spatial action policy

Figure 2: The Hybrid architecture: From observations, image-like features are generated for screen and map information. These
are passed through two convolution layers and are concatenated with the non-spatial features. The value prediction, which
represents the expected reward from the current observation, and the action type are determined by the concatenated feature
representation passed through a fully connected (fc) layer with 256 units. The activities of this layer are sent to the ACT-R
module for further processing. The spatial action is sampled from the probability distribution formed by a 1x1 convolved

representation of the feature concatenation.

Cognitive Model

Our model is introspective in that it uses the activity of the
network as the basis for ascribing representations. The RL
agent and the model share a common ground: both play the
game at the same time, the RL agent receiving numerical
values describing the ground truth of the game state, while
the model receives a symbolic version. Symbolic content
comes from both interpreting signals from the game (pres-
ence of beacons) and an ontology created by SMEs. The
ontology represents the kind of knowledge that a competent
player should have. In the missions presented in this paper,
the ontology is sparse: click on the green-beacon in green-
only scenarios, click on the orange in orange-only scenarios,
click on the orange in non-blocking scenarios, and go around
the green beacon in blocking scenarios. Our cognitive model
is developed in the ACT-R cognitive architecture.

ACT-R

ACT-R is a computational implementation of a unified theory
of cognition (Anderson et al., 2004). It accounts for infor-
mation processing in the mind via task-invariant mechanisms
constrained by the biological limitations of the brain (see An-
derson 2007 for an overview). The ACT-R architecture is
organized as a set of modules, each devoted to processing a
particular kind of information, which are integrated and coor-
dinated through a centralized production system module.
The declarative memory (DM) and production system
modules, respectively, store and retrieve information that cor-
responds to declarative knowledge and procedural knowl-
edge. Declarative knowledge is knowledge that a person can
attend to, reflect upon, and usually articulate in some way.
Procedural knowledge consists of the skills we display in our

behavior, generally without conscious awareness. Declara-
tive knowledge in ACT-R is represented formally in terms
of chunks. The information in the declarative memory mod-
ule corresponds to personal episodic and semantic knowledge
that promotes long-term coherence in behavior. In this sense,
a chunk is like a data frame, integrating information available
in a common context at a particular point in time in a single
representational structure.

Each chunk has a base-level activation that reflects its past
recency and frequency of occurrence. When a retrieval re-
quest is made, the most active matching chunk is returned
from long-term declarative memory by an activation process.
This process is computed as the sum of base-level activation,
spreading activation, mismatch penalty and stochastic noise.
Activation spreads from the current focus of attention, includ-
ing goals, through associations among chunks in declarative
memory. These associations are built up from experience,
and they reflect how chunks co-occur in cognitive process-
ing. The spread of activation from one cognitive structure to
another is determined by weighting values on the associations
among chunks.

Chunks are also compared to the desired retrieval pattern
using a partial matching mechanism that subtracts from the
activation of a chunk its degree of mismatch to the desired
pattern, additively for each component of the pattern and cor-
responding chunk value. Finally, noise is added to chunk ac-
tivations to make retrieval probabilistic, governed by a Boltz-
mann distribution.

While the most active chunk is usually retrieved, a blend-
ing process (Lebiere, 1999) can also be applied that returns a
derived output reflecting the similarity between the values of
the content of all chunks, weighted by their retrieval probabil-

ities reflecting their activations and partial-matching scores.

The flow of information is controlled in ACT-R by a pro-
duction system, which operates on the contents of the buffers.
Each production consists of if-then condition-action pairs.
Conditions are typically criteria for buffer matches, while the
actions are typically changes to the contents of buffers that
might trigger operations in the associated modules. The pro-
duction with the highest utility is selected to fire from among
the eligible productions.

Mental Model

Our model is instance-based (Gonzalez et al., 2003). When-
ever the model makes an action decision, it does so based on
the similarity of the current situation to situations that it has
stored in declarative memory. Instances are represented in
the model as a chunk with the following five slots: green, or-
ange, blocking, vector, and action. The slots green, orange,
and blocking are binary True/False, the vector slot is pop-
ulated with a chunk holding a 256-dimension vector, repre-
senting activity in the network (described below), and values
for the action slot can be either: select-green, select-orange,
or select-around.

Unlike many previous instance-based models in ACT-R,
this instance-based model does not use ACT-R’s blending
mechanism since the output action is categorical in nature. In-
stead of blending a value estimate of the action category, our
model simply selects the action from the stored instance that
most closely matches the network activity of the RL agent.

Instances

We populated the model instances by tracing the RL agent
while it plays different scenarios. In total, the RL agent
played 50 games. Each game consists of a two-minute time
period where a configuration of beacons is presented. The
number of configurations presented varies based on the time
it takes for the RL agent to reach a beacon. Once the agent
reaches a beacon, a new configuration is presented, until the
two minutes elapsed. Symbolic terms describing the scenario
were stored in the instance (green-only, orange-only, green-
and-orange). We populated the action slot of the model’s
declarative memory with the action an expert would choose:
select-green in a green-only scenario, select-orange in both
orange-only and non-blocking scenarios, and select-around
(as an abstract action) in the blocking scenario. Importantly,
given these instances, the model would never predict that the
RL agent would select the orange beacon in a blocking sce-
nario. Finally, stored for every instance in declarative mem-
ory, was a chunk containing a vector representing the network
activity at that instant of game-play (introspection).

Introspection We augmented the symbolic context repre-
sentation in the instance chunks with a vector that represents
the network activity from the fc layer (top right, Figure 2).
We chose this layer for two reasons. First, we wanted a layer
that would be abstract enough to represent scenarios (as op-
posed to features in the scenarios). Second, we wanted a layer

that was spatially invariant. The fc layer corresponds to the
non-spatial action selection and chooses which action type to
take but does not choose the screen location of that action to
be executed. For example, it might be responsible for choos-
ing a click-action but is not responsible for choosing where to
click.

For efficiency, we follow Sanner et al. (2000), and limit
the number of instances that are stored. In our case, new
instances are limited to 10 items per category such that the
distance of the new vector must be greater than the minimum
distance between vectors across all categories. After initial
testing, we limited the total number of instances per category
to ten. Since each instance also stores a vector of network ac-
tivity and the vectors drive the similarity measure in ACT-R,
we attempted to capture a large space of vectors in each cat-
egory. We chose to filter the creation of categories by maxi-
mizing the euclidean distance between vectors.

Instance-Based Learning and Instance Retrieval

Once we populated the initial set of instances in ACT-R’s
declarative memory, it tries to classify new game states. We
use ACT-R’s partial matching mechanism such that it tries to
retrieve from memory instances that are most similar based
upon a vector representing network activity. The similarity
metric we used was euclidean distance between vectors, nor-
malized to a scale of 0 to -1, for all vectors in the category. All
other slots are not matched upon. The result of this process is
that the instance with the closest vector is recalled, regardless
of the symbolic content of that memory. It is possible, there-
fore, that symbolic content of the recalled instance does not
match the symbolic content of the current game state. In fact,
we are expecting that in blocking cases, the model will re-
trieve a non-blocking category. Once an instance is retrieved,
a production that matches the action stored in the instance
will fire. The production that fires is recorded for evaluation.
A side effect of the production is to combine the data from the
current game state and the instance retrieved from memory to
create a new memory.

Memory Creation for Model Adaptation The process of
creating new memories is the central feature that makes the
model adaptive. As we allow for a mismatch between the
symbolic content of the game state and the symbolic content
of the recalled instance, the model is capable of creating new
state/action categories. The new state/action categories can
then be used by the model as it continues to play the game.
The new memories store the vector for the current activity
of the RL agent network, the current game state (green, or-
ange, blocking), and the action from the retrieved instance,
combined as a new chunk.

Evaluation

The goal of our system is to provide symbolic terms, and a
model trace that can be used to infer an explanation. Our
models introspects on the network and ascribes plausible rep-
resentations to it.

Although it is typical to assess a model on how well it pre-
dicts behavior, our interest is not how well the model fits the
network but what the performance might tell us about the
appropriateness of an ascribed mental state or explanation.
Since we conducted an evaluation of the network’s compe-
tency, we know ahead of time that the network does not ap-
pear to represent a spatial relationship between the agent and
the beacons. We inferred from this behavior that the net-
work does not make a spatial inference. We hypothesized
that by using partial matching on the vector slot only, the
model would conflate blocking and non-blocking scenarios,
occasionally retrieving the select-orange action (appropriate
in non-blocking scenarios) and create a new instance cate-
gory: green, orange, blocking, select-orange.

Analysis

Since each prediction that the model makes is categorical (an
action), we treat each guess as binary (correct/incorrect).

We ran the model 100 times. Each run consisted
of 10 episodes of the game, and each episode consists
of roughly 25 randomly generated scenarios: green-only,
orange-only, green-and-orange-non-blocking, and green-and-
orange-blocking. It was difficult to estimate a number of sim-
ulation runs that would be practical and provide a reason-
able estimation of the model’s performance. Variance was
observed to be stable at 100 runs. Importantly, since we are
not overly concerned about model fit, finding a true mean was
not absolutely essential.

Percent Correct The model correctly predicted the actions
of the RL 70.09 % of the time across all runs. In green-
only scenarios, the model predicts 99.95 % of the actions.
In orange-only scenarios, the model predicts 89.39 % of the
actions. In green-and-orange (Blocking and Non-Blocking)
scenarios, the model predicts 44.85 % of the actions. This
can be broken down further into two sub-categories: block-
ing and non-blocking scenarios. In blocking scenarios, the
model predicts 36.04 % of the actions. In non-blocking sce-
narios, the model predicts 49.04 % of the actions.

New Categories As previously mentioned, the model has
knowledge of what action to choose in a green-only scenario,
an orange-only scenario, non-blocking scenarios, and block-
ing scenarios. The model attempts to make new categories
based upon the RL network activity.

Table 1 summarizes what scenario/action pairs were used
and created by the model. The top of the table are the
state/action categories that the model was initialized with and
the bottom of the table are the state/action categories cre-
ated by the model, during game play. The left most column
is the scenario categories. Column 2 (Action) is the asso-
ciated action taken by the network in that scenario. Col-
umn 3 (Cat./Run) represents the average frequency the sce-
nario/action category was created per model run. Column 4
is measure of how often the associated action was chosen in
the given scenario. Note that the symbolic content in the table

(e.g. blocking, select orange) are the categorical output of the
cognitive model, that can be used to infer explanations.

Table 1: Category Creation and Use

Scenario Action Cat./Run Chosen (%)
Green-Only Select-Green default 99.95
Orange-Only Select-Orange default 88.39
Non-Blocking Select-Orange default 49.04
Blocking Select-Around default 63.88
Blocking* Select-Orange 9.98 36.04
Green-Only Select-Orange <0.01 0.03
Orange-Only Select-Green 3.03 3.63
Non-Blocking Select-Green 0.40 0.18
Blocking Select-Green 0.30 0.17
Green-Only Select-Around 0.01 0.02
Orange-Only Select-Around 5.48 7.98
Non-Blocking* Select-Around 10.00 50.80

* indicates expected categories.

Clustering We performed t-SNE clustering (Maaten &
Hinton, 2008) on the activity of the fc layer of the RL network
in order to investigate the network’s representations. The re-
sults of the clustering are illustrated in Figure 3. As illus-
trated, the network has distinct categories for both the green-
only and orange-only scenarios. Also illustrated in the fig-
ure, green-and-orange (non-blocking) and blocking scenarios
show a complete overlap.

t-SNE of fc layers representations (256neurons)

o®

" ¢ 2
Q@
R (9-,,.- g
.’) e
‘.Q .%B. go £

{:‘.o o’ 3
‘.. blocking

orange+green
green
orange

Figure 3: The RL network’s representations formed at the
fully connected layer are naturally clustered depending on the
scenario that the agent is facing. The t-SNE process identifies
3 clusters, coloring is the result of semantic labelling.

Discussion

We know from evaluating the RL agent that it does not per-
form an action consistent with Select-Around. There are two
ways to interpret this behavior: first, that the RL agent does
not know how to go around; or second, that the RL agent
does not have the concept, ‘blocking’, and therefore does not
distinguish blocking scenarios from non-blocking scenarios.

The results of our model suggest that the latter is the case.
Our model attempts to use the concept ‘blocking’ and creates
a new state/action category: Blocking/Select-Orange, con-
sistent with the behavior of the RL agent. Although this
state/action category reflects the action of the agent, the cog-
nitive model only approaches 50 % success in its predictions.
This is a first indication in the trace that the model does not
create the ‘blocking’ category (as opposed to an inability to
go around).

Although we had not originally expected it, the
cognitive model creates the state/action category Non-
Blocking/Select-Around. The creation (and high usage) of
the Non-Blocking/Select-Around in combination with the
Blocking/Select-Orange category suggests that the RL agent
cannot distinguish between green-and-orange-non-blocking
and green-and-orange-blocking: that is, it suggests the RL
agent does not have the category ‘blocking’.

These findings are confirmed in the t-SNE clustering. In
particular, the overlap between the pink and red dots in Figure
3 suggest that RL agent conflates blocking and non-blocking
categories. Just as in the model, the clustering algorithm re-
veals only three main categories: green-only, orange-only,
and green-and-orange.

Other categories created by the cognitive model (e.g.
Orange-Only/Select-Around), although unexpected, are
likely due to noise in either our similarity measure (not sensi-
tive enough) or the RL’s distributed representation. For the
most part, those categories have both a low category cre-
ation rate and low usage percentage. It is worth pointing out
that the Orange-Only/Select-Green and Orange-Only/Select-
Around have a high-category creation per run (3.03, 5.48 re-
spectively) and percent chosen (3.63 percent and 7.98 per-
cent of the time) compared to the other unexpected categories.
Overall, their usage remains quite low.

Conclusion

The work presented in this paper is an initial evaluation of a
methodology for generating explanations for the behavior of
Deep Reinforcement Learners. We use a computational cog-
nitive model to introspect upon the activity of the network.
Given an initial set of classifications, defined by categories
present in an ontology, the model either uses existing cate-
gories to choose an action (a prediction of the network’s ac-
tion) or creates a new instance by combining content from
the current game-state and the retrieved declarative memory
instance.

We believe the output of the model can be used to generate
explanations and, in particular, our system is able to detect
when concepts from the ontology (the concepts humans use)
are not realized in the RL agent. The model presented only
begins to scratch the surface of what can be accomplished in
the overall methodology.

We are currently pursuing three lines of research to expand
our approach. We have developed a method for leveraging
the blending mechanism in ACT-R to determine which fea-

tures are most salient in an action decision. Providing the
key features that were used in an action decision helps make
the explanation more tractable for a naive observer. We are
developing top-down interaction such that the ACT-R model
can influence the training of the Deep RL agent. We do this to
try and influence the agent to learn a concept that it has had
trouble learning or that appears in the ontology but not the
RL agent. There may be times when we want a more natural
mapping between a human observer and an RL agent so that
explanations are more straightforward. Finally, we are in the
process of developing an ACT-R model that learns the task in
a human-constrained manner.

Acknowledgments

This work was funded by a subcontract from PARC under
DARPA contract FA8650-17-C-7710.

References

Anderson, J. R. (2007). How Can The Human Mind Occur In
The Physical Universe? New York, NY: Oxford University
Press.

Anderson, J. R., Bothell, D. J., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y. (2004, oct). An integrated theory
of the mind. Psychological review, 111(4), 1036-60. doi:
10.1037/0033-295X.111.4.1036

Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance-
based learning in dynamic decision making. Cogni-
tive Science, 27(4), 591-635. doi: 10.1016/S0364-
0213(03)00031-4

Lebiere, C. (1999). The dynamics of cognition: An ACT-
R model of cognitive arithmetic. Kognitionswissenschaft,
8(1), 5-19. doi: 10.1007/s001970050071

Maaten, L. v. d., & Hinton, G. (2008). Visualizing data us-
ing t-sne. Journal of machine learning research, 9(Nov),
2579-2605.

Mnih, V., Badia, A. P, Mirza, M., Graves, A., Lillicrap, T.,
Harley, T., ... Kavukcuoglu, K. (2016). Asynchronous
methods for deep reinforcement learning. In International
conference on machine learning (pp. 1928-1937).

O’Reilly, R. C., & Munakata, Y. (2000). Computational
Explorations in Cognitive Neuroscience (Vol. 46). MIT
Press.

Sanner, S., Andrew, S., Edu, C. M. U., Anderson, J. R.,
Lebiere, C., Andrew, C. L., ... Lovett, M. (2000).
Achieving Efficient and Cognitively Plausible Learning in
Backgammon. In Seventeenth international conference on
machine learning (pp. 823-830). Stanford, California.

Vinokurov, Y., Lebiere, C., Herd, S., & O’Reilly, R. (2011).
A Metacognitive Classifier Using a Hybrid ACT-R/Leabra
Architecture. In Proceedings of the 15th aaai conference
on lifelong learning (pp. 50-55).

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhn-
evets, A. S., Yeo, M., ... others (2017). Starcraft ii: a
new challenge for reinforcement learning. arXiv preprint
arXiv:1708.04782.

	United States Military Academy
	USMA Digital Commons
	2-15-2018

	Explaining Decisions of a Deep Reinforcement Learner with a Cognitive Architecture
	Sterling Somers
	Constantinos Mitsupoulos
	Christian Lebiere
	Robert Thomson
	Recommended Citation

	tmp.1547656381.pdf.gsrbQ

