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Abstract

In this communication, we present an overview of the impact
and advantages of PET and PET-CT fusion imaging in the prac-
tice of medicine. We also discuss the evolution of this promising
molecular imaging technique since its inception and the future
prospects of the combined structure-function approach. Supe-
rior contrast resolution, accurate quantification and above all
optimal image quality aid in improved diagnosis of many seri-
ous disorders including cancer. We speculate that this powerful
imaging approach will almost completely replace most other
conventional methods in the future. Currently, 18[F]-fluorode-
-oxyglucose (FDG) is the main radiopharmaceutical employed
for PET studies around the globe. With the availability of high
quality PET images on a routine basis in most centres around
the world and the likelihood that several other useful PET trac-
ers will be approved in the near future for routine clinical appli-
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Introduction

One of the most remarkable events in the history of medicine
was the discovery of the X-ray by Roentgen in 1895. This was sub-
sequently enhanced by the introduction of CT in 1973 by Sir God-
frey Hounsfield with significant improvement in the sensitivity and
specificity of structural imaging in medicine [1–3]. The introduction
of MR imaging added another major dimension to the armamen-
tarium available to the radiologist [4–7]. However, these powerful
structural imaging techniques have poor sensitivity for early dis-
ease and suffer from major limitations for the assessment of early
therapeutic response, which is of pivotal importance in the prac-
tice of oncology. In most settings, if there is minimal or no response,
then there is no benefit from the continued administration of toxic
and expensive treatment. The shortcomings of anatomical imag-
ing also apply to the accurate staging of many malignancies and
the early detection of recurrence of cancer following therapeutic
interventions. Therefore, imaging methods that allow accurate as-
sessment of disease activity at any stage of the disease are essen-
tial for optimal management of cancer patients.

Functional imaging with radiotracers is primarily based upon
one or more of the following three approaches:
— imaging physiological processes such as blood flow to an or-

gan or diseased tissue;
—  visualizing ongoing biochemical and metabolic activities in the

normal and abnormal tissues;
— utilizing established pharmacological methodologies for diag-

nostic purposes and for developing new drugs.
However, alterations in the metabolic and biochemical path-
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ways may not always translate into physiological changes, such
as disrupted blood flow to the diseased site, early in the course of
the disease. This is a major disadvantage of conventional nuclear
medicine techniques as well as dynamic contrast-enhanced CT
and functional MR imaging, which rely upon measuring physiolo-
gical parameters for assessing organ function or pathological
states. In addition, despite their superior sensitivity over structural
imaging, conventional functional imaging modalities lack the spe-
cificity and precision that are achievable with techniques based on
biochemical and pharmacological principles.

On the other hand, the functional imaging developed in the
past three decades allows imaging at the molecular and cellular
levels and has proven to be extremely sensitive and quite specif-
ic for assessing disease activity in several important clinical dis-
orders [8]. The target sites for these probes encompass a wide
variety of cell surface receptors, transporters, intracellular en-
zymes, and messenger RNA. The source of the signal detected
by these techniques could originate directly from the molecule or
from its surrogates [9]. Functional MRI allows the assessment of
regional physiological and metabolic activity and the detection of
parameters such as alterations in cerebral blood flow and perfu-
sion to an organ or diseased tissue [10–13]. However, the MR
contrast agents that target specific molecular sites such as cell
receptors or enzymes have proven to be relatively insensitive for
detecting adequate signals from tracer concentrations of these
diagnostic compounds. Recently, NMR spectroscopic studies
have shown that choline phospholipid metabolism is altered in
cancer, especially in prostate and brain tumours, as well as in
breast cancer [14]. This modality has been shown to be useful for
characterizing many central nervous system disorders, such as
multiple sclerosis, Parkinson's disease, and Alzheimer's disease
[15, 16]. The use of optical imaging as a molecular probe has
been of considerable interest, but a major deficiency of this
approach is the inability to visualize structures deeper than a few
centimetres from the surface [17]. Presently, optical imaging is
being investigated for visualizing breast cancer [18, 19], for mon-
itoring stroke [20, 21], the imaging of lymph nodes [22], and in
detecting disease processes near the endothelial surface in the
airways and gastrointestinal tract [23].

Positron emission tomography (PET) with FDG and other trac-
ers has overcome many of the shortcomings associated with the
competing modalities. Several newer positron-emitting radionu-
clides such as technetium-94 (94mTc), 68-Gallium (68Ga), and
copper-64 (64Cu), labelled to the appropriate compounds, are ex-
pected to be useful for diagnostic purposes and may further ex-
pand the domain of PET for functional studies [24]. This paper
reviews the current and future potential applications of this tech-
nology in the practice of medicine.

The fluorodeoxyglucose (FDG) technique was introduced in
1976 by investigators at the University of Pennsylvania, and the
effectiveness of this modality as a molecular probe has been effec-
tively demonstrated in the investigation of a multitude of serious
disorders [25]. This agent was initially proposed as a novel tracer
to determine regional brain function in normal physiological states
and in neuropsychiatric disorders [26]. The critical role of PET im-
aging with FDG and with certain other tracers in the management
of many diseases has now been well established. In addition, ex-
citing areas of research currently include imaging of gene expres-
sion [27, 28] and molecular targeting techniques that are being
adopted for the development of new drugs [29, 30].

FDG-PET has been applied successfully to a number of neuro-
logical disorders. The kinetics of hexokinase are altered in patients
with seizures [31], which affects FDG activity in the seizure foci,
forming the basis for using FDG-PET in localizing the seizure fo-
cus. FDG-PET imaging is effective in localizing seizure foci in the
temporal lobe for surgical interventions [32], and has a sensitivity
of 85% to 90% [32]. The seizure focus appears hypometabolic in
the interictal state when anatomic images appear normal [33–35].
However, in longstanding seizure disorders, a certain degree of
atrophy may eventually be detectable by MR imaging [36–38]. In
Alzheimer’s disease, FDG-PET imaging appears critical for identi-
fying patients in whom the disease process is subtle, and before
structural alterations have occurred; thus, modern treatments may
be more successful [32, 39–52] (Figure 1). Several drugs designed
to augment acetylcholine levels in the brain, a substrate whose
deficiency has been implicated in the cognitive dysfunctions of this
disorder, are more effective in the early stages of Alzheimer’s dis-
ease. Extrapyramidal disorders including Parkinson’s disease can

Figure 1AB.Figure 1AB.Figure 1AB.Figure 1AB.Figure 1AB. Brain PET with FDG. Example of a scan of patient with Alzheimer's disease (AAAAA) and in a normal subject (BBBBB): evidence of reduced metabolism
at bilateral parietal and temporal regions in the former. Reprinted with permission from Leadership Medica for Alavi et al.
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be accurately diagnosed with radiopharmaceuticals such as fluo-
rine-18-6-fluoro-l-dopa (F-DOPA) or radiopharmaceuticals that bind
to the dopamine transporter sites and therefore allow the detec-
tion of the degree of loss of presynaptic dopaminergic neurons
[53–55]. Promising results have been obtained in the assessment
of regional and global dysfunction in head injuries [56, 57], frontal
lobe dementia [49, 58], and Huntington’s disease [59–61] using
FDG-PET.

FDG-PET imaging is extremely useful in the management of
a wide array of malignancies [62–87], where it has become es-
sential in disease staging, monitoring response to treatment, plan-
ning and choosing appropriate therapies, detecting recurrence,
and predicting prognosis (Figures 2–10). FDG-PET/CT is now of
central importance in the staging of several malignancies inclu-
ding lung, head and neck, breast, cervical, oesophageal and co-
lorectal cancers, melanoma, and lymphoma because of its sen-
sitivity in detecting nodal and distant metastatic disease and due
to its high specificity compared to structural imaging alone
[62–87]. PET-CT is now regarded by many as the “one-stop-shop”
for many malignancies where the coregistered structural and met-
abolic images allow for accurate localization and characteriza-
tion of sites of disease.

FDG-PET imaging appears to be essential for the detection of
the sites of infection and inflammation [90, 91]. Orthopaedic infec-
tions, particularly those related to implanted prostheses [92–94]
and osteomyelitis [95–97], can be detected by FDG-PET imaging,
and based on recent studies it may become the study of choice in
such complicated and difficult clinical settings. FDG-PET is also
being used to detect infection in soft tissues [98–101] and to iden-
tify sources of fevers of unknown origin [102–105]. Studies have
reported success in detecting inflammatory processes in disor-
ders such as regional ileitis [106], sarcoidosis [107–110], rheuma-
tologic disease [111], and vasculitis [112].

The use of FDG-PET imaging is considered the standard ap-
proach for determining myocardial viability. 82Rb shows great pro-
mise in detecting changes in myocardial perfusion [113]. FDG is
taken up in atherosclerotic vessels [114]. There is evidence that
the uptake is mainly located in the intima and probably represents
high metabolic activity in macrophages, which are abundant in
atherosclerotic plaques [114] as well as thromboses and clots. In-
tegrated PET/CT has great potential as it provides an opportunity
to delineate the anatomical extent (CT coronary angiography) and
physiological as well as metabolic severity of coronary artery
disease (ischaemic burden) in a single setting.

PET imaging with [18F]fluoride may soon replace conventional
bone imaging with 99mTc-labelled methylene diphosphonate (or sim-
ilar compounds), which utilize non-tomographic scanning tech-
niques. Tomographic images with PET have substantially higher
resolution and therefore provide superior sensitivity and specificity
than conventional planar and even SPECT techniques. The acce-
lerated utilization of thymidine in malignant cells because of en-
hanced DNA synthesis can be detected by either 11C- [117, 118]
or 18F-labelled [119–121] thymidine radiotracers as evidence for
cellular proliferation. So far, the most promising agent appears to
be 30-deoxy-30-[18F]fluorothymidine (FLT) [122–124], which may
be of value in determining early response to therapy, because cy-
totoxic chemotherapeutic agents affect cell division earlier and to
a greater extent than glucose metabolism. FLT may be favourable
for imaging brain metastases because of its low physiological up-
take in grey matter [123].

Numerous reports have described the usefulness of multiple
promising compounds in animal and human studies for detec-
ting hypoxia in certain malignancies. For instance, [18F]fluoro-
misonida-zole (FMISO) [126, 127], [60Cu]diacetyl-bis(N(4)-me-
thylthiosemicarbazone) (60Cu-ATSM) [128], 2-(2-nitroimida-
zol-1[H]-yl)-N-(3-[18F]fluoropropyl)acetamide ([18F]EF1) [129],

Figure 2AB. Figure 2AB. Figure 2AB. Figure 2AB. Figure 2AB. A patient of Hodgkin's lymphoma with bulky mediastinal disease (AAAAA); FDG-PET acquired after 3 cycles of chemotherapy, which demonstrated
a complete response (BBBBB). A major role of FDG-PET is monitoring treatment response early in the course of therapy. Functional response with FDG-PET is
usually observed ahead of anatomical response, and this has important implications for tailoring treatment regimen and further patient management. Reprint-
ed with permission from Leadership Medica for Alavi et al.
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Figure 3. Figure 3. Figure 3. Figure 3. Figure 3. FDG-PET in a case of carcinoma ovary, post surgery and post
chemotherapy, which had a significant recent rise of serum tumour marker
(CA-125). CT abdomen demonstrated solitary hepatic lesion. FDG-PET de-
monstrated extensive omental involvement, multiple metastatic nodes in the
mediastinum and left supraclavicular nodes accounting for the rise of
CA-125. Reprinted with permission from Leadership Medica for Alavi et al.

Figure 5.Figure 5.Figure 5.Figure 5.Figure 5. Whole body FDG-PET in a diagnosed patient of primitive neuro-
ectodermal tumour of the right proximal femur at diagnosis. Note the wide-
spread irregular FDG uptake in the skeleton, suggesting bone marrow in-
volvement in addition to the avid FDG uptake in the primary. Bone scan
shows disease only when there is cortical involvement and is negative when
there is only marrow involvement. Reprinted with permission from Leader-
ship Medica for Alavi et al.

Figure 4.Figure 4.Figure 4.Figure 4.Figure 4. Whole body 18F FDG PET carried out for rising CEA levels in a pa-
tient with colorectal carcinoma. The 3D image shows extensive metastases in
the chest, spine, pelvis and an inguinal node. Post treatment rise of serum
tumour marker level in ovarian and colorectal carcinoma has been one of the
major indications for whole body PET/CT study in these malignancies.
Reprinted with permission from Leadership Medica for Alavi et al.

and [2-(2-nitro-1[H]-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropro-
pyl)-acetamide] ([18F]EF5) [130]. In assessing hypoxia, FMISO,
an analogue of 2-nitroimidazole, seems to be a poor choice be-
cause its uptake is low in hypoxic cells and because it clears slowly
from the normal tissues [127]. 60Cu-ATSM is proposed to over-
come these difficulties and may prove to be effective for this pur-
pose [128]. However, EF-5 may be superior to these tracers and
become the standard choice in the future. Labelling annexin V
with 18F may permit imaging apoptosis by PET and substantially
improve the quality of scans obtained by 99mTc-labelled annexin
V. Quantitative imaging of angiogenesis using peptides contain-
ing RGD sequence with affinity to aVb3 radiolabelled with 18F
[131–135] has the potential to become an important tool in as-
sessing cancer in its various stages. We expect that future agents
for pretreatment targeting will be synthesized using positron-
emitting radionuclides such as 124I (as a surrogate for 131I) and 86Y
(as a surrogate for 90Y) for optimal visualization of the targeting
sites in B-cell non-Hodgkin's lymphomas [136, 137]. Similarly,
peptides such as octreotide labelled with positron-emitting radi-
onuclides, e.g. 64Cu-labeled octreotide [138] and gallium-68
(68Ga)-labelled octreotide analogues [139, 140], will be routinely
employed for imaging neuroendocrine tumours, which yield sub-
stantially superior image quality compared with either planar or
SPECT images with indium-111 (111In)-labelled compounds
[138, 140, 141] (Figure 11). Studies suggest that 11C-labeled ac-
etate or 11C- or 18F-labelled amino acids such as choline are use-
ful and will be valuable in examining patients with prostate cancer
[144–148] (Figure 12). Labelled hormones such as 18F-labelled
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Figure 6.Figure 6.Figure 6.Figure 6.Figure 6. FDG-PET in a case of sacral chordoma, post surgery and radiotherapy. CT and MRI were inconclusive on the nature of the soft tissue
at the primary site. Patient had low backache. FDG-PET demonstrates avid uptake in the mass suggesting active tumour tissue at that site. Reprinted with
permission from Leadership Medica for Alavi et al.

Figure 7. Figure 7. Figure 7. Figure 7. Figure 7. A 39-year-old male, diagnosed with a case of inoperable rectal GIST, was referred for disease evaluation. CT scan of the abdomen had shown
a 6 ¥ 7 ¥ 8 cm homogeneous mass involving the right lateral aspect of the rectum with luminal compromise and infiltration of the ipsilateral seminal vesicle
and the prostate. Biopsy proved this to be a malignant GIST of the rectum with a mitotic count of 10/50 HPF and no evidence of necrosis.

Pre treatment whole body FDG PET shows a fair sized focus of avid FDG uptake in the rectal primary. Note the avidity and pattern of FDG uptake corresponding
to the high mitotic count observed in histopathology without any evidence of necrosis. Reprinted with permission from Elsevier Inc. for Basu et al. [156].

Figure Figure Figure Figure Figure 88888..... Post 1-month Imatinib treatment FDG PET shows a near total resolution of the uptake except a tiny focus of viable disease in the primary region.
Reprinted with permission from Elsevier Inc. for Basu et al. [156].

Rectal massRectal massRectal massRectal massRectal mass Urinary bladderUrinary bladderUrinary bladderUrinary bladderUrinary bladder

Urinary bladderUrinary bladderUrinary bladderUrinary bladderUrinary bladder
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oestrogen analogues have been used for assessing breast can-
cer response to tamoxifen therapy [149, 150]. Similar findings
have been observed regarding the efficacy of imaging with
18F-labelled male hormone for the assessment of hormone thera-
py in prostate cancer [151]. In the area of oncology and neurop-
harmacology, PET studies have great promise in aiding novel drug
development. FLT-PET to monitor the preclinical testing of his-
tone deacetylase inhibitors (HDACI) and FDG-PET as the surro-
gate marker for early response evaluation with Imatinib mesylate
are two examples of this promising application. By targeting SSTR
using octreotide and analogues labelled with a positron-emitting
radionuclide, several PET imaging agents have been developed
for neuroendocrine tumours and are being tested in several cen-
tres across the world for diagnostic and therapeutic purposes.
The development of 68Ga-DOTA labelled somatostatin analogues
has been the key to this success (Figure 13). Parallel to this,

F-DOPA PET has emerged as a new diagnostic tool for the imag-
ing of various neuroendocrine tumours and has demonstrated
its utility in carcinoid tumours and in differentiating between focal
and diffuse disease in hyperinsulinism of the newborn that has
significantly changed the management in these disorders
(Figure 14, 15).

Currently, FDG stands out as the most effective positron ima-
ging radiopharmaceutical, accounting for more than 95% of PET
imaging procedures performed around the world, and is utilized
for the assessment of central nervous system disorders, malig-
nant diseases, and myocardial viability, as well as the detection of
infection and inflammation (Figure 16). In addition, there is poten-
tial for FDG-PET in the assessment of thrombosis and atheroscle-
rosis, muscle spasm, and motility disorders and in examining vo-
luntary and smooth muscle-related disorders. The expanding list
of indications for FDG-PET demonstrates that it is a nonspecific

Figure 9AB. Figure 9AB. Figure 9AB. Figure 9AB. Figure 9AB. Whole body FDG-PET. AAAAA — baseline MIP (upper panel) and limited post-furosemide MIP (lower panel), BBBBB — coronal images showing a curvili-
near area of intense FDG uptake at the skull base posteriorly on the right side (SB). In addition, FDG-PET revealed symptomatically silent abnormal disease
foci (arrows) in the right adrenal gland (AD) (which were clearer in the repeat post furosemide abdominal scan done on the same day), subcutaneous nodule
on the right arm (SQ), mediastinum (M), and the right iliac bone (IB). The subcutaneous nodule was hitherto unknown and was serendipitously discovered by
FDG-PET, and on biopsy turned out to be a metastatic deposit. Reprinted with permission from Elsevier Inc. for Basu et al. [156].
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tracer. Several groups have attempted to improve the specificity
of this tracer by imaging the sites of abnormality at dual time points
following its administration [76, 152, 153]. In addition, combined
PET/CT scanners that operate as a single unit are currently repla-
cing the conventional dedicated PET scanners in most centres and
provide more specificity to the diagnosis.

The unprecedented impact of FDG-PET imaging on the daily
practice of medicine has substantially improved healthcare through-

out the world. FDG-PET methodology has clearly demonstrated
the extraordinary power of PET in medicine. This has led to the
development of many novel radiotracers that have been designed
to explore new diagnostic and therapeutic domains. We therefore
expect that molecular imaging with PET will play an increasingly
central role in research and in the optimal management of patients
with many disorders [154, 155]. This will include diagnosing
pathological processes at the molecular level and individualizing
treatment for these patients.

Figure 10.Figure 10.Figure 10.Figure 10.Figure 10. MRI of the brain (transaxial and coronal views) demonstrating 2 ¥ 2 ¥ 2 cm space occupying lesion with altered marrow signal intensity involving
base of the skull on the right side, lying at the anterolateral aspect of foramen magnum involving right hypoglossal canal and adjacent jugular bulb.
The lesion appeared hypointense on T1-weighted images, mildly hyperintense on T2-weighted images, and showed post contrast enhancement.
Figure adapted and reproduced with permission from Elsevier Inc. for Basu S et al., Lancet Oncol 2006; 7: 610.

Figure 11. Figure 11. Figure 11. Figure 11. Figure 11. Evidence of 18F FDOPA PET in neuroendocrine tumour. Evidence
of abnormal uptake in several liver lesions, abdominal and thoracic lymph
nodes, and in the peritoneal foci. Reprinted with permission from Leader-
ship Medica for Alavi et al.

Figure 12. Figure 12. Figure 12. Figure 12. Figure 12. 11C-choline PET in a patient previously treated with prostatecto-
my and radiation therapy, with recent increase of PSA (Jan 2006: 1.1 ng/ml
and March 2006: 1.6 ng/ml). Bone scintigraphy negative. 11C-choline PET
shows recurrence in pelvic lymph nodes. Reprinted with permission from
Leadership Medica for Alavi et al.
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Figure 13. Figure 13. Figure 13. Figure 13. Figure 13. 36-year-old male presented with multiple lesion on ultrasonography of the abdomen suggesting multiple liver metastases. 68Ga-DOTA-TOC scan
demonstrated primary in duodenum with multiple liver metastases. FDG-PET was normal in this patient. Biopsy was suggestive of neuroendocrine tumour of
GIT. Reprinted with permission from Elsevier Inc for Basu et al. [156].

Focal lesionFocal lesionFocal lesionFocal lesionFocal lesion

Figure 14. Figure 14. Figure 14. Figure 14. Figure 14. A FDOPA image of the abdomen of a child with hyperinsulinism shows intense focal uptake in the head of the pancreas while the rest of the gland
is not visualized.  This is a typical pattern for focal disease in a child in whom it is curable by surgery. Reprinted with permission from Elsevier Inc for Basu et
al. [157].

PancreasPancreasPancreasPancreasPancreas

Figure 15.Figure 15.Figure 15.Figure 15.Figure 15. The image shown above reveals generalized uptake in the entire gland and is consistent with diffuse hyperinsulinism.  This pattern usually requires
near total resection of the gland for palliative purposes. Reprinted with permission from Elsevier Inc for Basu et al. [157].
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*Adapted in part from PET: a revolution in medical imaging.
Radiol Clin North Am 2004; 42: 983–1001 and Unparalleled Con-
tribution of 18F-FDG PET to Medicine Over 3 Decades. J Nucl Med
2008; 49: 17N–37N.
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