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Malignant peripheral nerve sheath 
tumour (MPNST)

ABSTRACT
MPNST is a malignant neoplasm of peripheral nerves, usually arising in connection with nerve trunks of the limbs 

and torso. It can develop de novo or on the basis of an already existing neurofibroma. Such tumours constitute 

about 5% of soft tissue sarcomas. In 90%, they occur in patients in the 2–5 decade of life. The main risk factor for 

this cancer is type 1 neurofibromatosis (von Recklinghausen disease). The radical surgical treatment — tumour 

excision, within the limits of healthy tissues (wide local excision), combined with adjuvant radiotherapy, is of primary 

importance in the treatment of MPNST. In cases of metastatic disease, palliative chemotherapy is used, using 

doxorubicin or doxorubicin with ifosfamide. Clinical improvement after chemotherapy is observed in approximately 

25–30% of patients. Considering the development of molecular biology research of MPNST, one can hope for 

development of inhibitors that show greater effectiveness than typical chemotherapy in these patients in the near 

future. Currently, clinical trials with pembrolizumab, nivolumab in combination with ipilimumab, pexidartinib (KIT 

inhibitor, CSF1R and FLT3) in combination with sirolimus, sapanisertib (TORC 1/2 inhibitor) or LOXO-195 (inhibitor 

of neurotrophic tyrosine kinase inhibitors NTRK type 1, 2 and 3) are performed in MNSNT patients.
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Epidemiology of MPNST

Malignant peripheral nerve sheath tumour (MP-
NST), previously referred to as malignant schwannoma 
or neurofibrosarcoma, is a rare cancer that accounts 
for approximately 4–5% of all sarcomas. The incidence 
of MPNST is approximately 0.001% in the general 
population, which in practice means that the incidence 
of MPNST is approximately 1:100,000/person-years [1, 
2]. MPNST occur mainly in adults, and only 10–20% 
occur in patients under the age of 20 years. About half 
of the cases are diagnosed in patients with type 1 neu-
rofibromatosis (Recklinghausen syndrome, NF1), where 
MPNST is based on plexiform neurofibroma. In this 
population, the incidence is 0.1% and the total risk of 
developing MPNST is 13–16%, compared with the inci-
dence of 0.001% in the general population. In practice, 
this means that the risk of developing MPSNT in carriers 
of the NF1 gene mutation is 4600 times higher than in 

the general population. In men who carry NF1 muta-
tions, the incidence of MNST increases to around 80% 
[2–5]. Men and women suffer with a similar frequency, 
although in men the disease develops earlier (on average 
by four years) than in women in all studied populations 
(Caucasian, African American, Asian). The median age 
of patients with sporadic MPNST ranges from 30 to 
60 years, and on MPNST related to NF1 from 20 to 
40 years. Metastatic disease is diagnosed in the course 
of treatment in 40 to 68% of patients, and likewise local 
recurrence in 40 to 65% of patients [2, 6, 7].

MPNSTs are most often located on the limbs (in 30% 
of patients) and trunk (about 50% of cases, including 
retroperitoneal space); however, they may also occur in 
other locations, including the head and neck area (about 
20%). The intracranial MPNSTs not connected with 
cranial nerves are rather anecdotal. In turn, metastases 
in the course of MPNST are most often detected in the 
lungs, pleura, and bones [2]. About 11% of this type of 
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cancer develop in the previously irradiated body area. 
The main risk factors for developing MPNST are existing 
benign plexiform neurofibromas , previous radiotherapy, 
but also hereditary mutations (point mutation, splicing 
mutation, deletions, insertions, or duplications), as well 
as large deletions and microdeletions (< 1.5 Mb) encom-
passing the entire NF1 gene together with neighbouring 
genes (increasing the risk by up to 25%) [1, 4].

Biology and genetics of MPNST

The genetic feature of Recklinghausen syndrome 
(neurofibromatosis type 1, von Recklinghausen disease) 
and MPNST tumours based on neurofibromas is a point 
mutation or other aberration resulting in the loss of the 
NF1 gene function (neurofibromin 1) located on the 
long arm of chromosome 17 and encoding the protein 
with tumour suppressor function. NF1 is a large gene, 
over 350 kbp in length, that includes 60 exons, which are 
subject to alternative splicing, leading to tissue-diverse 
expression of isoforms. In about half of the cases, the 
disease is a result of a new mutation and is not of a family 
nature, but is related to the father’s age, because they 
arise as replication errors in mitosis of stem cells of sper-
matocytes I (spermatogonia) [8]. Loss of neurofibromin 
function leads to activation of Ras kinase (Rat sarcoma) 
followed by its effector pathways associated with malig-
nant transformation. The degree of activation of Ras and 
dependent signalling pathways, as well as the sensitivity 
of cells to their inhibitors, is inversely proportional to 
the level of neurofibromin expression [9]. Activation of 
Ras kinase leads to the activation of two types of effector 
pathways: MAPK pathways (Ras/Raf/MEK/Erk) and 
Akt/mTOR pathways that regulate cell function, among 
others in response to external stimuli such as growth 
factors or chemokines. Both of these pathways have 
been described as activated in many types of sarcomas, 
including MPNST. It has been shown that positive IHC 
staining (high expression) of Akt, mTOR, and pS6RP 
proteins correlates with a shorter overall survival (OS) 
of patients diagnosed with MPNST [10]. Molecular data 
are preliminary circumstances for use of inhibitors of 
these pathways, such as mTOR inhibitors, in the treat-
ment of patients diagnosed with MPNST. During in vitro 
research with cell line models these drugs significantly 
inhibited proliferation, migration, and invasiveness 
of MPNST cells [10]. It should be taken into account 
that the activation of the above-mentioned pathways is 
not only dependent on the lack of functional neurofi-
bromin but may also increase as a result of activating 
somatic mutations of individual pathway elements or 
their regulators [11, 12]. Considering the complexity of 
dependence and the possibility of activating mutations 
at the same time in many genes, the use of selective 

inhibitors of Ras-dependent pathways may turn out to 
be ineffective in clinical practice, such as in the case of 
sorafenib as a RAS/Raf inhibitor [13]. Although single 
cases of effective MPNST therapy with sorafenib have 
been published, including metastatic disease [14], phase 
2 trials of sorafenib in monotherapy (NCT00217620) and 
in combination with dacarbazine (S 400 mg BID and D 
1000 mg/m2 q3w) did not show a high response rate in 
patients with MPNST [15]. It is indicated that molecular 
studies, including microarrays, may be helpful in the fu-
ture assessment of drug-resistance mechanisms and the 
selection of optimal therapy for patients with MPNST 
[16]. The first data showed that combinations of inhibi-
tors of different kinases — canertinib (an EGFR, Her2, 
and ErbB4 inhibitor) and sorafenib — inhibit prolifera-
tion and reduce the viability of MPNST cells, but not 
monotherapy with sunitinib, crizotinib, or sorafenib [17]. 
Although the development of the canertinib molecule 
did not result in clinical success due to toxicity, further 
attempts of targeted therapy are being made according 
to changes in gene expression characteristic of MPNST. 

Studies have shown constant phosphorylation of 
MEK (mitogen-activated protein kinase) and ERK (ex-
tracellular signal-adjusted kinases in MPNST tumours), 
which confirms the activation of the Ras/Raf/Mek/Erk 
pathway. Activation of MEK kinase increases invasive-
ness, migration, and angiogenesis, and its experimental 
deactivation inhibits the development of MPNST in an 
in vitro model [12, 18]. The use of the MEK inhibitor 
(PD0325901) resulted in the inhibition of the growth 
of both plexiform neurofibromas and MPNST in mice 
[19], and the activity of this inhibitor is potentiated by 
retinoids, including ATRA (all-trans retinoic acid) [20]. 
The efficacy of MEK inhibitors has been confirmed 
during in vitro studies also in combination with the 
mTOR1/2 INK128 double inhibitor [9]. This puts MEK 
inhibitors in the group of potential drugs in advanced 
forms of MPNST requiring systemic treatment. Cur-
rently, Phase 2 SARC031 (NCT03433183) is planned 
to assess the efficacy of the MEK inhibitor selumetinib 
(AZD6244) in combination with the mTOR inhibitor 
sirolimus for patients with MPNST.

Activation of receptor tyrosine kinases may also 
induce activation of the above-mentioned path-
ways. Among the tyrosine kinases, an important role is 
played by the epidermal growth factor receptor (EGFR), 
overexpression of which in the animal model was suffi-
cient to transform neurofibromas in MPNST [21]. While 
the NF1 mutation and the loss of neurofibromin function 
characterise most of the MPNST, even the loss of both 
NF1 alleles is not sufficient for neoplastic transforma-
tion from benign neurofibromas [22]; additional genetic 
disorders or signals from the tumour microenvironment 
are needed. Numerous genetic disorders have been 
described so far in MPNST — there were an average 
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of 18 chromosomal aberrations in them, and the most 
frequent ones are duplications of 7p, 8q, and 17q and 
loss of 9p, 11q, 13q, or 17p [23]. The most common 
genes that undergo mutations in the MPNST are NF1, 
SUZ12 (polycomb repressive complex 2 subunit), EED 
(embryonic ectoderm development), and TP53 and 
CDKN2A (cyclin dependent kinase inhibitor 2A) genes, 
which occur in 87.5 %, 56.1%, 32.5%, 40.3%, and 75% of 
cases, respectively [11]. Numerous chromosomal aber-
rations in MPNST have also been identified, resulting 
in duplication of genes such as BIRC5, CCNE2, DAB2, 
DDX15, EGFR, DAB2, MSH2, CDK6, HGF, ITGB4, 
KCNK12, LAMA3, LOXL2, MET, and PDGFRA; 
and gene deletions: CDH1, GLTSCR2, EGR1, CTSB, 
GATA3, SULT2A1, GLTSCR2, HMMR/RHAMM, LI-
CAM2, MMP13, p16/INK4a, RASSF2, NM-23H1, and 
TP53 [24]. Abnormalities of TP53 or SUZ12 genes oc-
cur in about 50% of MPNST cases and are not found in 
benign lesions, which indicates their occurrence at a later 
stage of tumour development. This is not the case for 
CDKN2A, which is mutated in 94% of atypical neurofi-
bromas and 70% of MPNST and is probably involved 
in the transformation of neurofibromas from mild to 
atypical [25]. The SPP1 gene (OPN, osteopontin) has 
been shown to have the greatest difference in expression 
between benign neurofibromas and MPNST (85-fold 
higher expression in MPNST), and its silencing reduces 
proliferation and migration of MPNST cell lines. In ad-
dition, SPP1 expression is regulated by the Wnt pathway, 
the role of which in progression to MPNST has also been 
proven [26]. Surprisingly, in contrast to other types of 
STS (soft tissue sarcomas), the expression of many genes 
coding for proteins (mRNA) and microRNA is observed 
in MPNST. This deregulation seems to be dependent on 
the inactivation of the p53 protein [27]. It is also prob-
ably caused by hypermethylation of gene promoters and 
activation of inhibitory microRNAs such as miR-29c 
[28, 29]. The gene hypermethylation pattern was also 
proposed as a diagnostic marker for MPNST, and the 
specific methylation pattern (H3K27me3) distinguishes 
MPNST from Schwannoma neurofibroma, nerve sheath 
myxoma, or ganglioneuroma. In addition, sporadic 
MPNST without epigenetic inactivation (hypermethyla-
tion) of the NF1 gene in repeated pathomorphological 
analysis turned out to be another type of STS or cellular 
schwannoma [30]. Taking into account the increasing 
role of SUZ12 and EED gene mutations, research on 
drugs targeting epigenetic regulators are quite promis-
ing. The HDAC (histone deacetylase 1) I/II inhibitor ro-
midepsin (trade name: Istodax®) shows strong synergy in 
combination with the dual mTORC1/2 (INK128) inhibi-
tor on the MPNST cell lines [9]. Patients with MPNST 
were included in the phase II trial with panobinostat 
(trade name: Farydak®) — a non-selective HDAC 
inhibitor — but this drug did not show high activity in 

patients with STS, as only 12.5% after six months of 
treatment had no disease progression [31]. At the same 
time, it was indicated that classical chemotherapy based 
on ifosfamide and doxorubicin (AI scheme with a total 
dose of 5 g/m2 ifosfamide and 60 mg/m2 doxorubicin per 
cycle) may be effective in patients with MPNST with loss 
of H3K27me3, as described above [32].

Of the genes amplifiable in MPNST, it is also worth 
noting topoisomerase 2a (TOP2A), which participates in 
DNA replication and is the main target of doxorubicin, 
widely used in the treatment of STS. TOP2A amplifi-
cation was confirmed in a large group of patients and 
correlates with shorter survival and metastasis [33]. The 
level of TOP2A expression in MPNST may be up to 
24 times higher than in benign neurofibromas and corre-
lates with sensitivity to doxorubicin [34]. Determination 
of TOP2A expression is potentially useful for determin-
ing the sensitivity for, and selection of, chemotherapy.

Tumour microenvironment heterozygous for NF1 is 
also involved both in the formation of neurofibromas 
and their malignant transformation through released 
growth factors, chemokines, and proinflammatory 
factors. This happens through a complex network of 
interactions between tumour cells and steep cells. Tu-
mour cells produce a c-KIT ligand and transforming 
growth factor beta (TGF-B), which attract mast cells 
and fibroblasts, respectively. On the other hand, they 
release platelet-derived growth factor (PDGF) and en-
dothelial growth factor (VEGF), which, by recruitment 
of fibroblasts and endothelial cells, enhance tumour 
growth and angiogenesis. In addition, autocrine secre-
tion of CXCR4 and CXCL12 chemokines intensifies the 
progression of these changes [1]. Positive expression of 
the hypoxia response factor (HIF-1A) is found in about 
75% of MPNST and is associated with an unfavourable 
prognosis [35]. In addition, MPNST is characterised by 
low expression of PD-L1, lack of PD-1 expression, and 
significant infiltration of CD8 + lymphocytes, which 
limits the possibility of immunotherapy [36]. Activation 
of the tumour microenvironment and genetic disorders 
occur simultaneously, and when they coexist, transfor-
mation of benign tumours in MPNST occurs. 

Histopathology

MPNST are formed from neuroectodermal cells, 
i.e. they arise from nerve roots, plexuses, cranial nerves, 
and peripheral nerves. Intracranial MPNSTs arise from 
multipotent precursor cells of the brain parenchyma [2, 
3]. The unambiguous presence of nerve elements or the 
presence of a tumour in patients with NF1 mutation 
raises the suspicion of MPNST. However, in many cases, 
making the final diagnosis can be much more difficult. 
Analyses indicate that in no more than 39–56% of pa-
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tients with MPNST the nerve from which the tumour is 
formed could be identified. In the case of MPNST the 
percentage of incorrect initial histological diagnoses is 
the highest among all STSs, accounting for up to 78% 
when the diagnosis was made outside reference centres 
treating sarcomas. To be qualified as MPNST, it is 
necessary for STS to meet one of three specific criteria:  
1) the tumour has developed in the peripheral nerve, 
2) the tumour has developed from the nerve sheaths of 
a pre-existing benign tumour (neurofibroma or others), 
or 3) the set of histological features of differentiated 
Schwann cells can be identified in the tumour [2, 37, 38]. 
MPNST can be in the classical spindle cell form or in 
the form of pleomorphic and epithelioid (epithelial) [2].

MPNSTs are characterised by a diverse morphology. 
On the cross-sections of MPNST tumours, there are 
white-and-fleshed coloured changes. In the classic form, 
MPNST is similar to fibrosarcoma, because it consists of 
spindle cell bundles. Among the most common histologi-
cal features of MPNST, we can also find intertwined bands 
of high and low cellularity, haemangiopericytoma-like, 
palisadic or rosette-like cell arrangement, subendothe-
lial accumulation of tumour cells, areas of geographical 
necrosis, and perineural/intraneural dissemination when 
associated with the nerve. However, these features are 
non-specific. The preparations also show the normal 
features of Schwann cells (nerve sheath). MPNST cells 
have comma-shaped or wavy cell nuclei, and virtually 
invisible cytoplasm, and in tumours they are often con-
voluted. Different types of sarcomas (synovial sarcoma, 
rhabdomyosarcoma, leiomyosarcoma, and diversified 
liposarcoma), benign mesenchymal tumours (neurofi-
broma), and non-ischemic tumours, especially melanoma, 
should be considered in differential diagnosis [2, 39].

In the case of MPNST developed on the basis of 
neurofibromas, it is important to distinguish between 
typical, atypical neurofibromas, and MPNSTs of low 
and high grade of malignancy. The grade is determined 
on the basis of the FNCLCC (Fédération Nationale des 
Centres de Lutte Contre Le Cancer) system, taking into 
account the mitotic index, degree of differentiation, and 
severity of necrosis. Tumours defined as atypical neu-
rofibromas or low-grade MPNST (FNCLCC 1, WHO 
grade II) are sometimes categorised as ANNOUBP 
(atypical neurofibromatous neoplasm of uncertain 
biological potential) and treated as precursor changes 
of MPNST. They are characterised by cellular atypia, 
increased cellularity with little mitotic activity — < 5 mi-
tosis per 10 high-power fields (HPF) [40]. High-grade 
MPNST (FNCLCC 2–3, III–IV according to WHO) 
are characterised by high cellular atypia, increased cel-
lularity, presence of necrosis outbreaks, and high mitotic 
activity — > 10/10 HPF. In turn, tumours with mitotic 
activity 5–10/10 HPF may represent an intermediate 
category [40].

Unlike other types of sarcoma, MPNST does not 
have pathognomonic mutations or molecular mark-
ers (rearrangements, mutations) that would allow for 
a clear histopathological diagnosis, as in the case of 
Ewing sarcomas or malignant synovitis. A wide panel 
of immunohistochemical tests and stains — including 
IHC on S-100, Leu-7, EMA, vimentin, HMB-45, and 
cytokeratin — is necessary to distinguish MPNST 
from STS originating from other tissues. It may also 
be helpful to determine the NF1 mutation from the 
tumour material. It is believed that in patients with 
confirmed NF1 mutation, each spindle cell sarcoma 
should be a priori treated as MPNST and additional 
staining used for possible verification of such diag-
nosis [39].

A typical staining panel for differential MPNST 
diagnosis includes an IHC assessment of S100 protein 
expression (Schwann cell marker), Ki-67 (cell prolifera-
tion marker), TP53 (suppressor protein), CD34 (en-
dothelial cell marker), and p14INK4a (inactive protein 
in MPNST inhibiting cell cycle) [41]. Evaluation of 
marker expression allows for diagnosis, but the staining 
pattern does not allow stratification of patients to select 
the appropriate treatment regimen. In some cases, it 
may be necessary to analyse the tumour’s ultrastructure 
to show that the tumour originates from the nerve 
sheaths [1]. It should be remembered, however, that the 
expression of typical markers may vary depending on 
the degree of differentiation, e.g. S100, a characteristic 
Schwann cell marker, may undergo reduced expression 
or complete loss in undifferentiated MPNST [1]. Part of 
the MPNST, especially high-grade, may show positive 
staining of p53 proteins, which are more often posi-
tive in tumours associated with NF1 than in sporadic 
MPNST [1, 42]. It is also helpful to perform additional 
staining with the use of muscle markers in order to 
confirm/rule out the rhabdomyoblastic component 
(MTT, malignant triton tumours), which is a nega-
tive prognostic factor (shorter time to metastases and 
overall survival) [43].

New markers are still being intensively sought that 
could help in better identification and stratification of 
patients diagnosed with MPNST. Although numerous 
potential markers have been described, occurring in 
most cases of MPNST, their implementation for rou-
tine diagnostics requires verification on larger cohorts 
of patients, in inter-centre studies, before they can be 
implemented in standard histopathological diagnos-
tics. Promising results relate to markers associated with 
disorders in the pathway associated with remodelling 
of the chromatic structure of the polycomb type (PcG), 
i.e. polycomb repressive complex 2 (PRC2)/polycomb 
repressive complex 2 subunit (SUZ12), mutations found 
in 70% of MPNST, but not in benign plexus and atypical 
neurofibromas. A histological surrogate for PRC2 inac-
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tivating may be the loss of methylation of lysine 27 his-
tone H3 described above (H3K27me3). The total loss 
of H3K27me3 is observed in approximately 50% of 
MPNST and is almost absent in other tumours of simi-
lar morphology, which allows high-sensitivity (98.7%) 
to confirm the diagnosis of MPNST [44]. However, the 
specificity of the method is low and amounts to 54.2%, 
which does not allow the exclusion of MPNST in the 
case of lack or partial loss of H3K27me3 [44]. 

Some histopathological markers help to predict the 
response to some forms of treatment, but due to their 
presence in many types of cancer, they are not used 
in the diagnosis of MPNST. For this reason, they are 
described in the section on specific types of treatment. 

Diagnostics

The tumour presence dominates in the clinical pic-
ture of MPNST, and resulting discomfort depends on 
its location. As the cancer develops in close connection 
with nerve trunks, it often causes pressure. This may 
result in pain and neurological symptoms peripherally 
to the tumour. The symptoms like sensory disturbances, 
paresis, and pains may uncommonly precede the appear-
ance of a palpable tumour for many months, especially 
in locations that make clinical evaluation difficult, e.g. 
in the retroperitoneal space. Patients with MPNST usu-
ally report a rapidly growing, palpable change that can 
be painful or manifest in neurological disorders such as 
paraesthesia or weakness in muscle strength. In the case 
of lesions located locally or in the thorax, the diagnosis 
is often delayed due to non-specific symptoms and the 
inability to detect a tumour in a physical examination. 
Magnetic resonance is the best imaging method that 
allows assessment of the size and infiltration of the le-
sion regardless of location, and to plan the appropriate 
surgical procedure. There is no evidence of higher ef-
ficacy of open biopsy or core needle biopsy. The choice 
of method depends mainly on the location of the tumour 
and the preferences of the surgeon and patient. Fine 
needle aspiration has a very limited application in the 
diagnosis of primary change, but it is valuable in the 
diagnosis of local recurrence or metastasis [45]. In most 
cases tumour size is > 5 cm at MPNST diagnosis, and 
in up to 50% of patients metastases in the lymph nodes 
or distant metastases, usually in the lungs or liver, are 
present [6]. For this reason, apart from visualisation of 
the primary change, it is necessary to exclude the prese-
nce of metastatic lesions by means of classical imaging 
methods such as ultrasound, X-ray, or CT. 

The majority of diagnostic difficulties concern pa-
tients with Recklinghausen syndrome; in this group of 
patients, assessment of the location of neurofibromas is 
the basis of diagnostics, especially those not available in 

the physical examination, as well as monitoring their pos-
sible transformation into the MPNST. The symptoms of 
von Recklinghausen’s disease include skin colour (café 
au lait spots), numerous neurofibromas, Lisch nodules 
on the iris, and bone dysplasia [5, 46]. A greater risk of 
malignant transformation concerns tumours with a more 
central location (trunk, proximal limbs) and those associ-
ated with large nerve trunks. The initial assessment of 
the location and size of all benign lesions is particularly 
important due to the significant correlation between the 
number and total volume of neurofibromas and the risk 
of transformation in MPNST [47]. The best method is 
magnetic resonance imaging of the whole body, which, 
however, does not allow for a clear distinction between 
MPNST and benign lesions [48] and is therefore not 
an optimal tool for monitoring the changes. A study 
conducted by Ferner et al. showed that PET with 
fluorodeoxyglucose allows good differentiation of be-
nign neurofibromas and MPNST. The sensitivity and 
specificity of PET-CT with FDG were 89% and 95%, 
respectively [49]. SUVmax does not correlate with the 
degree of malignancy of the MPNST tumour. The au-
thors recommend removing tumours with SUVmax > 3.5, 
and for SUVmax between 2.5–3.5, treatment decisions 
should be made after critical analysis, including clinical 
data [49]. A meta-analysis of 13 studies showed that the 
sensitivity of PET-CT varies from 91% to 100%, and the 
specificity from 72 to 95%. The SUVmax cut-off point for 
the highest sensitivity and specificity ranges from 3.1 to 
6.1. The available data do not allow determination of 
the unambiguous cut-off point differentiating between 
benign and malignant changes. Some studies indicate the 
possibility of reducing the rate of false positive results 
using delayed imaging (after 4 h) [49, 50] or normalisa-
tion of SUVmax to the glucose uptake by the liver or dry 
body mass [51, 52]. The use of PET-CT for this purpose 
is also recommended by Polish guidelines regarding the 
use of PET-CT in oncological diagnostics [52]. There 
are studies on other possible parameters to be evaluated 
in PET, i.e. MTV (metabolic tumour volume) and TLG 
(total lesion glycolysis), which show promising results, 
but there is no evidence to justify their use in routine 
practice [53]. 

Symptoms that should lead to further diagnosis in 
patients with Recklinghausen syndrome include: pain 
lasting over a month or disturbed sleep, appearance of 
new neurological disorders or problems with sphincter 
control, changes in the neurofibroma character from 
“soft” to “hard”, and its rapid growth [54]. More inten-
sive monitoring should also be given to patients with 
previous radiotherapy, an earlier MPNST diagnosis, and 
plexiform neurofibromas located within the shoulder 
plexus, lumbosacral plexus, spinal nerve roots, and in the 
abdominal and pelvic area, because they are associated 
with a more frequent transformation [49, 54].
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Treatment of local disease

Neoadjuvant treatment

Similarly to other STSs, the standard of care in lo-
cally advanced MPNST is to obtain local disease control, 
mainly using surgical techniques [55]. In the clinical 
evaluation of patients, it should be taken into account 
that the main goal is to achieve negative surgical margins 
(tumour cell free), i.e. resection R0. Curing can only be 
achieved after radical surgical excision of the primary 
tumour, and in the presence of metastases also after 
surgical excision of metastatic lesions [3]. If there is 
a risk of unresectability of the tumour based on clinical 
data and imaging tests, neoadjuvant treatment should 
be considered. For this reason, preoperative treatment 
in the form of neoadjuvant chemo- or radiotherapy may 
be a reasonable management in patients with tumour 
size > 5 cm. Neoadjuvant treatment is also recom-
mended in patients in whom it is important to quickly 
reduce tumour mass, for example a tumour pressing 
against the surrounding nerves and causing severe 
pain. Data on neoadjuvant chemotherapy in MPNST 
are limited to retrospective analyses of individual cases 
and case series. Selected studies show that in patients 
with primary inoperable tumours R0 resection could be 
achieved after chemotherapy, as in the case of analysis of 
paediatric patients from centres in Germany and Italy, 
where in 11/20 cases of MPNST complete resection 
after pre-operative chemotherapy was finally possible 
[56]. Currently there are no data from randomised trials 
evaluating adjuvant chemotherapy in MPNST. In mixed 
populations of patients with STS, meta-analysis data sug-
gest marginal survival benefits (OS) after neoadjuvant 
chemotherapy [6].

Multicentre Phase II SARC006 clinical study 
(NCT00304083) comparing the efficacy of neoadjuvant 
chemotherapy using doxorubicin, etoposide and ifos-
famide in patients with unresectable MPNST (Grade 
III–IV), in which patients received two cycles of AI 
chemotherapy (ifosfamide and doxorubicin) followed 
by two cycles of EI (etoposide and ifosfamide) chemo-
therapy. After four cycles patients could undergo radical 
treatment (radiotherapy or surgery) if they were quali-
fied by an anaesthesiologist, and then receive two AI 
courses and two EI courses. After four treatment cycles, 
objective response rates (ORR) were achieved in nine of 
37 patients, but this percentage was significantly lower 
in the NF1-mutated group than in the sporadic MPNST 
group (17.9% vs. 44.4%). Twenty-four patients achieved 
disease stabilisation (SD). After four cycles of chemo-
therapy 22 patients underwent surgery, radiotherapy, or 
a combination of both methods, with a radical intention. 
Due to the small number of patients, the study did not 
indicate sufficient statistical power to show differences 
in the obtained responses between sporadic MPNST and 

MPNST associated with NF1, but there was a tendency 
for worse response to chemotherapy in patients with 
NF1. In addition, this study also confirmed the role of 
neoadjuvant chemotherapy in patients with primary 
unresectable MPNST tumours [57]. 

The EUDRACT 2010 study — 023484-17  
(NCT01710176) reports that 3 courses of anthracy-
cline-based chemotherapy and a full dose of ifosfamide 
(epirubicin 120 mg/m2 + ifosfamide 9 g/m2), adminis-
tered in neoadjuvant treatment, gives a 20% gain in 
RFS and OS [58]. The use of such a treatment regimen 
allows for a radiological (RECIST) and metabolic 
(PET) response, and the use of epirubicin in place 
of doxorubicin may be associated with a lower risk of 
cardiotoxicity [59]. The recently published SG-STS 
1001 study showed greater efficacy of the anthracycline 
regimen (epirubicin 60 mg/m2 d1, 2 plus ifosfamide 
3 g/m2 d1, 2, 3; q3w) compared to EI chemotherapy 
(etoposide 150 mg/m2 d1, 2, 3 plus ifosfamide 3 g/m2 d1, 
2, 3; q3w) [60].

In the paediatric population with inoperable MPNST 
treated in Polish oncological centres, a good response 
(defined as a reduction in tumour size by over 33%) 
to neoadjuvant chemotherapy (vincristine, ifosfamide, 
dactinomycin, doxorubicin or epirubicin, etoposide, 
and carboplatin) was found in 47.6%. The presence of 
NF1, high expression of osteopontin, survivin, p53, and 
cyclin D were negative predictors of response to chemo-
therapy. Patients with three or more markers responded 
significantly worse to the treatment. These markers have 
not been studied so far in the adult population. Differ-
ences in chemotherapy regimens in children and adults 
should be taken into account, as well as a slightly differ-
ent MPNST biology in these age groups. For this reason, 
data on the effectiveness of treatment in the paediatric 
population cannot be directly translated into adult 
populations [61]. A study is currently being conducted 
(NCT02180867) on the combination of pazopanib with 
AI chemotherapy and radiotherapy in pre-operative 
treatment of patients with MPNST.

Surgery

The radical surgical treatment — tumour excision 
— within the margins of healthy tissues (wide local exci-
sion), combined with complementary radiotherapy, is 
of primary importance in the treatment of neurosarco-
mas. Resectability of MPNST depends on tumour loca-
tion. In the case of limb localisation, radical resection is 
possible in most patients, and sometimes it is necessary 
to remove the main nerve trunk (e.g. sciatic nerve). Cen-
trally located tumours (often paraspinal, with spreading 
along the nerve roots towards the meningeal sac) are 
resectable in about 20% of patients [62]. In the case of 
resection R1 and R2, reoperation and/or postoperative 
radio- and/or chemotherapy should be considered.
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Adjuvant treatment — chemotherapy

The use of adjuvant chemotherapy in patients with 
STS has been associated with many controversies for 
years. A meta-analysis of 18 randomised clinical trials in 
patients with locally advanced STS, not histopathologi-
cally specified, showed improvement in the control of lo-
cal recurrence (OR 0.73, 95% CI 0.56–0.94, p = 0.02) and 
distant metastases (0.67, 95% CI 0.56–0.82, p = 0.0001) 
indicating a beneficial effect of adjuvant chemotherapy. 
In terms of overall survival, adjuvant chemotherapy with 
doxorubicin monotherapy did not affect OS (OR 0.84, 
95% CI 0.68–1.03, p = 0.009), but in combination with 
ifosfamide, OS improvement was statistically significant 
(OR 0.56, 95% CI 0.36–0.85, p = 0.01). However, the 
higher toxicity of the combination of doxorubicin and 
ifosfamide should be considered. Furthermore, the 
meta-analysis included most histological types of STS 
but data was presented not only for MPNST [63]. 

It was estimated that in the case of completely re-
sected tumours (R0) with a wide margin there is no need 
for postoperative treatment; however, some authors 
believe that adjuvant chemotherapy should be used in all 
cases of MPNST with a diameter of more than 5 cm [56]. 

Radiotherapy

It should be emphasised that radiotherapy does not 
improve overall survival in this group of patients, but it re-
duces the risk of local recurrence [64]. The lack of adjuvant 
radiotherapy is associated with a 4.5-fold higher risk of lo-
cal recurrence (HR 4.5) [39]. A retrospective single-centre 
analysis of a group of 134 patients treated for MPNST 
showed a significant effect of factors associated with ra-
diotherapy on the local efficacy of combination therapy. 
Better results in this respect were obtained in patients 
who received a dose higher than 60 Gy and in a subgroup 
of patients treated with brachytherapy or intraoperative 
radiotherapy as a component of perioperative treatment 
[65]. In the case of MPNST located in the peri-vertebral 
region or the base of the skull after non-radical resection 
or without the possibility of performing an operation, 
radiotherapy with the use of protons or heavy ions plays 
an increasingly important role; they allow a high local 
efficacy with relatively few side effects [66, 67]. However, 
the available literature data in this respect are too sparse 
to draw unambiguous conclusions. Treatment planning, 
including disc volume determination and fractionation, 
does not deviate from the recommendations used in 
perioperative treatment of soft tissue sarcomas.

Treatment of metastatic/recurrent disease

MPNST is a cancer with a high degree of malignancy 
with high risk of metastases. In cases of generalised dis-

ease, palliative chemotherapy is used, with doxorubicin 
or doxorubicin and ifosfamide. Clinical improvement af-
ter chemotherapy is observed in approximately 25–30% 
of patients. Considering the effectiveness of molecu-
larly-targeted treatment of patients with gastrointes-
tinal stromal tumours (GISTs) and fairly well-known 
molecular biology of MPNST, especially in patients 
with neurofibromatosis, one may hope to develop in 
the near future inhibitors that show greater than typical 
chemotherapy efficiency those patients. In the group 
of patients with MPNST, treatment gives a five-year 
survival ranging between 50 and 55%. Patients with 
sarcoma developed in the course of neurofibromatosis 
have a poorer prognosis. The five-year survival in this 
group is around 20–30%. The average disease-free 
survival time is also shorter in cases of MPNST develo-
ped in NF1. These patients are also characterised by 
a higher, understandable risk of new tumour outbreaks 
[68]. However, there are indications that prognosis in 
patients with MPNST developed in the course of NF1 is 
gradually improving, and the results are close to those 
achieved in patients with sporadic sarcoma [69].

Treatment of relapse and metastatic 
disease

Surgery

Surgical treatment is also used in the treatment of 
recurrent disease — both for recurrences and single 
distant metastases. The relapse re-incidence is lower 
than in primary tumours, and in some patients radical 
oncology can be obtained by performing limb amputa-
tion. Due to the fact that MPNST is often formed in 
connection with large nerve trunks, even the operation 
with limb saving is often associated with the formation 
of large functional defects. 

In the treatment of patients with MPNST, it is impor-
tant to obtain negative surgical margins (R0), because 
many analyses have shown significantly shorter survival 
in patients with positive operating margins (R1/2) [39, 
70–72]. In a French study, patients with R0 resection had 
almost twice the median disease-free survival as patients 
after resection of R1 or R2 (47.8 vs. 24.4 vs. 24.4 months, 
respectively) and presented significantly greater percent-
ages of overall survivals after eight years (57.1% vs. 48.4% 
vs. 25.5%, respectively) [70]. Positive operational margins 
are also associated with an almost six-fold greater risk of 
local recurrence [73] and distant metastases [74].

Palliative chemotherapy

An analysis of 12 clinical trials conducted by EORTC 
in patients with advanced soft tissue sarcoma (STS) 
showed no difference in response rate (21 vs. 22%, 
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p = 0.84), median progression-free survival (PFS) 
(17 vs. 16.1 month, p = 0.83), and overall survival 
(48 vs. 51 months, p = 0.483) between the group of 
patients with MPNST (n = 175) and other types of 
STS (n = 2,500) when assessed for patients with unre-
sectable sarcomas or metastatic patients treated with 
chemotherapy. The chemotherapy regimen was an in-
dependent prognostic factor for response to treatment 
and progression-free survival, but it did not affect overall 
survival, which was mainly dependent on performance 
status [75]. Chemotherapy regimens are grouped into 
four main categories: anthracycline monotherapy (doxo-
rubicin 75 mg/m2, pegylated liposomal doxorubicin, 
epirubicin 75 mg/m2, 3 × 50 mg/m2, 150 mg/m2), ifos-
famide monotherapy (5 mg/m2, 3 × 3 mg/m2, 9 mg/m2, 
12 mg/m2), doxorubicin combined with ifosfamide 
(50 mg/m2 + 5 mg/m2, 75 mg/m2 + 5 mg/m2), and cyclo-
phosphamide, vincristine, Adriamycin, and dacarbazine 
(CYVADIC) (Table 1).

Patients who received the doxorubicin and ifos-
famide regimen achieved a longer PFS compared to 
patients treated with anthracycline monotherapy (HR 
0.807, 95% CI 0.48–1.358), and those treated with ifos-
famide monotherapy had the shortest PFS (HR 2.018, 
95% CI 1.155–3.327). Furthermore, the AI scheme 
was associated with the highest percentage of objective 
response rates (HR 6.283, 95% CI 2.342–16.852), and 
IFO with the worst ones (HR 0.33, 95% CI 0.038–2.912) 
[75]. In addition, based on a retrospective analysis, it 
was found that the combinations of doxorubicin and 
ifosfamide have the lowest risk of recurrence and the 
best response rate in patients with MPNST, despite 
the fact that EORTC62851 did not show differences 
in PFS, OS, and RR between patients treated with 
doxorubicin 75 mg/m2 and AI combination at doses 
of 50 mg/m2 + 5 mg/m2 in the general population of 
patients with STS [76]. A randomised phase III study 
EORT62012 comparing doxorubicin 75 mg/m2 as 
monotherapy and doxorubicin in combination with 
a higher dose of ifosfamide (10 mg/m2) also showed 
no effect on OS (12.8 vs. 14.3 months, HR 0.83, 95% 
CI 0.67–1.03, p = 0.076), but patients treated with the 
addition of ifosfamide had significantly longer PFS 
(7.4 vs. 4.7 months, HR 0.74, 95% CI 0.6–0.9, p = 0.003) 
and a higher percentage of complete responses (26% 

vs. 14%, p = 0.0006). This study was conducted among 
455 patients with STS, but the results of subgroup analy-
sis in different types of sarcomas, including MPNST, are 
unavailable [77].

Anthracycline monotherapy is characterised by 
a similar PFS as for schemes combined with ifosfa-
mide (AI), which indicates the possibility of using 
monotherapy, especially in patients whose main goal 
of treatment is metastatic disease control. If the goal 
of treatment is to alleviate the severe symptoms associ-
ated, for example, with infiltration and pressure on the 
nerves, or to obtain a potential resection of the tumour 
and/or metastasis, then it seems reasonable to add ifos-
famide to doxorubicin. When selecting a chemotherapy 
in clinical practice, the toxicity of the selected regimen 
should also be taken into account. The combination 
of doxorubicin and ifosfamide is more myelotoxic as 
compared to doxorubicin monotherapy [76, 77]. Leu-
kopenia, neutropenia, febrile neutropenia, anaemia, 
or thrombocytopaenia in stages 3 and 4 according to 
CTCAE were significantly more common among pa-
tients treated with doxorubicin and ifosfamide in the 
STS population [77].

In Italian and German paediatric populations the 
response rate in patients treated with ifosfamide-con-
taining regimens was 65%, cyclophosphamide — 17%, 
and others (including those containing etoposide or 
cisplatin) — 20%. The schedules used did not contain or 
contained a low dose of anthracyclines, and an analysis 
of subgroups treated with this compound was not car-
ried out [56]. 

In most retrospective analyses, doxorubicin was 
used alone or in combination with ifosfamide. In the 
French Sarcoma group, 102 patients with metastatic or 
unresectable disease (72%, 102/142) received a schedule 
containing doxorubicin, of which 38 (37%) were mono-
therapy and 64 (63%) in combination with isoniazid [70]. 
In another single-centre French study (retrospective), 
six courses of doxorubicin at a dose of 60 mg/m2 were 
used, and patients with performance status 0–1 were 
treated with ifosfamide 2500 mg/m2 for 1–3 days. Due to 
the small sample size (n = 21), in different clinical stage 
and different surgical status (and degree of resection), 
the effectiveness of chemotherapy between the schemas 
was not compared [78]. 

Table 1. Median PFS and 1-year overall survival in patients with advanced MPNST depending on the regimen of first-line 
chemotherapy — analysis of 12 EORTC clinical trials [75]

Chemotherapy regimen PFS 1-year overall survival

Anthracycline monotherapy 17 (13.7–20.43) 14.8%

Ifosfamide monotherapy 9.4 (7.1–17.0) 3.85%

Doxorubicin + ifosfamide (AI) 26.9 (22.4–35.1) 25.2%

CYVADIC 10.4 (8.4–41.9) 23.3%
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Targeted treatment and clinical trials

Although preclinical studies have shown the expres-
sion of proteins that are targets of known targeted drugs 
such as PDGFRA, PDGFRB, MET, IGFR, and AXL 
[79], there is currently no standard targeted therapy for 
patients with MPNST. Pre-clinical studies also pointed 
to the important role of EGFR in the development of 
MPNST, but further studies showed that only in 3.1% 
of MPNST EGFR undergoes phosphorylation and 
activation [80]. Molecular data are also confirmed by 
the results of the phase II study, which showed a lack of 
efficacy of the EGFR inhibitor — erlotinib — in patients 
with unresectable or metastatic MPNST (18/20 PD) [81]. 
The lack of MPNST treatment efficacy was also noted 
in phase II studies with sorafenib (PFS 1.7 months), 
imatinib (without PR or SD), dasatinib (SRC kinases 
inhibitor — Sprycel; no PR or SD after four courses), 
and alisertib (Aurora A kinase inhibitor — MLN8237; 
60% PSF after 12 weeks), a combination of bevacizumab 
with everolimus (without PR, SD in three patients 
— SARC016 study), or a combination of ganetespib 
with sirolimus (inhibitor HSP 90 and mTORi; no PR, 
one SD after four cycles — SARC023 study) [41, 82–85]. 

Based on the results of a clinical trial PALETTE 
pazopanib (800 mg daily) — a multi-kinase inhibitor 
of tyrosine kinases — is recommended as the gold 
standard for the treatment of metastatic non-adipocytic 
STS patients after failure of standard chemotherapy. 
In a small series of patients treated in a Korean centre, 
one of five MPNST patients had a partial response and 
four had disease stabilisation. The median PFS was 
6.5 months (0.7–12.3) and OS 8.9 months (3.5–14.3). 
PFS was significantly longer than in patients diagnosed 
with liposarcoma or RMS, and was comparable to 
PFS in patients with leiomyosarcoma, MFH/UPS and 
synovial sarcoma [86]. In a retrospective analysis of 
156 STS patients treated in Japan, none of the seven 
patients with MPNST achieved PR, three achieved 
SD, 0 — SD > 6 months. Response and PFS rates in 
MPNST patients were significantly worse than in the 
general population and other histological types (PFS 
MPNST vs. non-MPNST: HR, 2.24, 95% CI 1.035–4.849, 
p = 0.03) [87]. The median PFS was 7.4 weeks, and the 
median OS was 2.5 months [87].

There are phase 1/2 or 2 clinical trials currently 
underway (recruiting) using the following drugs in the 
treatment of MPNST in unresectable patients/M1:

 — pembrolizumab — NCT02691026;
 — nivolumab in combination with ipilimumab 
— NCT02834013;

 — pexidartinib (KIT, CSF1R, and FLT3 inhibitor) in 
combination with sirolimus — NCT02584647 [88];

 — sapanisertib (TORC1/2 INK128 inhibitor) compared 
to pazopanib — NCT02601209;

 — LOXO-195 (inhibitor of neurotrophic tyrosine ki-
nase [NTRK] receptors type 1 [NTRK1], 2 [NTRK2], 
and 3 [NTRK3]) — NCT03215511;

 — CPI-0610 (BET protein inhibitor) — NCT02986919;
 — doxorubicin (+ dexrazoxane) in combination with 
olaratumab (anti-PDGFR alpha) — NCT02584309;

 — doxorubic in in  combinat ion with r iboci-
c l ib  (D1/CDK4 and D3/CDK6 inhibitor) 
— NCT03009201;

 — pazopanib in combination with gemcitabine 
— NCT01532687;

 — autologous tumour lysate-loaded dendritic cell vac-
cine — NCT01883518.

Survival and prognostic factors

Most of the data on prognostic and predictive factors 
in MPNST come from retrospective single-centre analy-
ses covering from several dozen to 200 patients. Due 
to the relatively low incidence of this type of cancer, 
discrepancies in factors affecting survival are quite large 
between different authors. Greater five-year survival was 
noted in patients after complete removal of the lesion, 
with a tumour diagnosed below 5 cm, and a low clinical 
stage. This means that the classic clinical and pathologi-
cal prognostic factors in the case of MPNST include: 

 — location (prognosis is more beneficial with tumours 
located within limbs);

 — tumour size (up to 5 cm);
 — type I neurofibromatosis (aggravates the prognosis);
 — mitotic index;
 — pathological grade G;
 — degree of necrosis;
 — previous irradiation in the course of another disease 
(possibility of inducing MPNST).
Tumour size is one of the most frequently reported 

factors associated with negative prognosis [68, 69, 74, 89]. 
Discrepancies relate to the cut-off point, but it is gener-
ally accepted that tumours with a diameter above 5 cm 
are associated with a shorter survival; however, in some 
analyses an even worse prognosis for tumours > 15 cm 
was noted [72]. The large size of the tumour is also as-
sociated with a shorter time to chemotherapy failure 
[78]. Another important factor is the grade of tumour 
histological malignancy (grade, feature G). High-grade 
MPNSTs are characterised by a significantly shorter 
disease-free survival and overall survival [39, 69–71], 
which is related among others to significantly higher 
risk of distant metastases development [39, 74]. Grade 
III malignancy tumours are associated with 1.5 times 
shorter disease-free survival and even 3.5 times worse 
overall survival than grade I and II tumours [70].

In addition to the size, the location of tumours is also 
an important factor. Deep location of the tumour, e.g. in 
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the retroperitoneal space, is a negative prognostic factor 
for DFS and OS [70]. Patients with axial localisation of 
tumours have shorter DFS and OS than patients with 
tumours localised on limbs [72]. The presence of distant 
metastases is a negative prognostic factor [69]. Also, 
local disease advancement (e.g. infiltration of adjacent 
structures) is associated with worse DFS and OS [70].

Numerous controversies are related to the influ-
ence of the NF1 mutation on the survival of patients 
with MPNST. Some analyses show significantly worse 
treatment responses and shorter survival in NF1-related 
MPNST patients, compared to sporadic ones, where 
five-year overall survival is shorter by up to 50% [39, 
56, 90]. Taking into account only the studies published 
after 2000, Kolberg et al. proved that the NF1 mutation 
does not significantly affect differences in survival [69]. 
These discrepancies may be due to the development of 
better strategies for monitoring patients with NF1 and 
the earlier implementation of treatment in those with 
abnormalities in imaging tests or alarm symptoms. It is 
also worth noting that the presence of MPNST in the 
family is a risk factor for the disease in patients with NF1, 
as well as its early development [91]. Female gender is 
less often a negative prognostic factor [39]. 

Summary and conclusions

MPNST is a malignant neoplasm of peripheral 
nerves, usually arising in connection with nerve trunks 
of the limbs and torso. It can develop de novo or on the 
basis of an already existing neurofibroma. The main risk 
factor for this cancer is type 1 neurofibromatosis (von 
Recklinghausen disease). The diagnosis is determined by 
histopathological examination of the sample obtained by 
open biopsy. As in the case of other soft tissue sarcomas, 
excision of a tumour with a diameter of less than 5 cm 
is not an error (excisional biopsy). These principles are 
also used in patients with type 1 neurofibromatosis, in 
whom large, centrally located neurofibromas require 
close monitoring, and excision or biopsy in suspected 
cases. An important clinical issue remains the diffe-
rentiation between benign lesions (neurofibromas) and 
sarcoma lesions in patients diagnosed with NF1, with 
a large number of nodules. PET-CT can be helpful in dif-
ferentiating these states. The radical surgical treatment 
— tumour excision, within the margins of healthy tissues 
(wide local excision), combined with complementary 
radiotherapy in case of R1/2 resection — is of primary 
importance in the treatment of neurosarcomas. Selected 
patients have neoadjuvant chemotherapy followed 
by surgical treatment. In cases of locally advanced or 
generalised disease, palliative chemotherapy is used, 
with a combination of doxorubicin or doxorubicin with 
ifosfamide. Clinical improvement after chemotherapy 

is observed in approximately 25–30% of patients [6, 55, 
92]. To develop predictive biomarkers and effective 
strategies for the prevention and treatment of MPNST, 
further work is needed to identify genetic changes that 
contribute to cell transformation to MPNST, and pro-
gression and metastasis of MPNST. It is necessary to 
plan longitudinal studies with observation of patients, 
biobanking, and analysis of clinical and radiological 
data [41]. In conclusion, although the results on the 
treatment of MPNST have not changed significantly so 
far, in recent years remarkable progress has been made 
in understanding the biology and pathogenesis of these 
tumours. These advances are translated into preclinical 
and clinical studies with targeted therapies and give hope 
for the identification of active therapies for MPNST and 
their biomarkers. New studies that will assess the effec-
tiveness of new treatments, including immunotherapy 
and a combination of chemotherapy or targeted treat-
ment and immunotherapy, seem justified [92].
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