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Abstract
Background: In this study, we sought to analyze the stochastic behavior of Catherization Labora-
tories (Cath Labs) procedures in our institution. Statistical models may help to improve estimated 
case durations to support management in the cost-effective use of expensive surgical resources.
Methods: We retrospectively analyzed all the procedures performed in the Cath Labs in 2012. 
The duration of procedures is strictly positive (larger than zero) and has mostly a large mini-
mum duration. Because of the strictly positive character of the Cath Lab procedures, a fit of 
a lognormal model may be desirable. Having a minimum duration requires an estimate of 
the threshold (shift) parameter of the lognormal model. Therefore, the 3-parameter lognormal 
model is interesting. To avoid heterogeneous groups of observations, we tested every group-car-
diologist-procedure combination for the normal, 2- and 3-parameter lognormal distribution.
Results: The total number of elective and emergency procedures performed was 6,393 (8,186 h).  
The final analysis included 6,135 procedures (7,779 h). Electrophysiology (intervention) pro-
cedures fit the 3-parameter lognormal model 86.1% (80.1%). Using Friedman test statistics, 
we conclude that the 3-parameter lognormal model is superior to the 2-parameter lognormal 
model. Furthermore, the 2-parameter lognormal is superior to the normal model.
Conclusions: Cath Lab procedures are well-modelled by lognormal models. This information 
helps to improve and to refine Cath Lab schedules and hence their efficient use. (Cardiol J 2014; 
21, 4: 343–349)
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Introduction

Catheterization Laboratories (Cath Labs) are 
relative capital and labor-intensive departments 
within the hospital. Therefore, these departments 

are financially important for the hospital. Due to the 
increasing prevalence of cardiovascular diseases 
(CVD) as well as rapidly expanding absolute num-
bers and types of catheter procedures, the demand 
for catheterization procedures is increasing [1]. 
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Cath Lab room and departing it after the treatment 
[16]. In our hospital, there are 5 Cath Lab rooms. 
The daily Cath Lab capacity is assigned to a certain 
cardiologist. Patients are scheduled on a first-
come-first-served basis unless there are reasons 
to do it differently; e.g., acute cases, availability 
of cardiologists or patient. The scheduled time for  
a procedure-cardiologist combination is based on the  
average duration of the last ten similar procedures 
performed by the same cardiologist.

Within the Cath Labs, there were two differ-
ent groups of treatment: electrophysiology and 
percutaneous intervention (PCI). The procedure 
duration of Cath Lab procedures is strictly positive 
(larger than zero) and has mostly a large minimum 
duration. Because of the strictly positive character 
of these procedures, a fit of a lognormal model may 
be desirable. Having a minimum duration requires 
an estimate of the threshold (shift) parameter of 
the lognormal model. Therefore, the 3-parameter 
lognormal model is of interest.

The general formula for the lognormal model 
can be described as follows:

where q = shift parameter for duration data q > 0. 
The case where q equals zero is called the 2-param-
eter lognormal model. For the 3-parameter lognormal 
model, we estimated the shift parameter by using  
a modified version of the approach of Spangler [13]. 
The shift parameter describing the location or origin 
of the random variable is important for the decision-
making because it provides a lower bound on values 
of the random variable [13]. Firstly, we calculated 
the natural logarithm of procedure time for every 
cardiologist-procedure combination. Then we used 
the bisection method to estimate the shift parameter. 
In this way, we estimated three parameters for each 
combination of cardiologist and procedure.

The bisection method
—— Set Lower = 0.
—— Set Upper is the smallest observed value.
—— Initial Guess = (LOWER+UPPER)/2.
—— Subtract GUESS from all observed values, 

take the logarithm, and estimate the mean and 
standard deviations.

—— Recalculate the Shapiro Wilk p-value (= pnew).
—— Repeat this iteratively using bisection to find 

the shift parameter that results in the largest 
value of the p-value.

By 2030, 40.5% of the US population is expected 
to have some form of CVD [1]. With regard to this 
information, it may be expected that the demand 
for relatively scarce costly Cath Labs in the future 
will also increase. For this reason, Cath labs should 
be used optimally. This means that the utilization 
should be maximized, whereas idle times (i.e., 
under-utilized time or high turnover times) and 
work outside regular hours (i.e., over-utilized 
time) should be minimized. It has been shown that 
frequent work beyond scheduled hours does not 
only lead to overtime costs, but also to intangible 
costs resulting from dissatisfaction and reduced 
motivation of staff [2]. Overtime work is one of 
the primary reasons for nurses to terminate their 
employment [2] and scheduling conflicts are a ma-
jor cause of nursing staff turnover [3]. Therefore, 
management of Cath Labs should aim at maximal 
use of available Cath Labs time given the afore-
mentioned constrains.

The production in our Cath Lab has increased 
in the last years without a corresponding increase 
in its capacity. To help more patients within the 
same capacity, several process redesigns aiming 
to improve efficiency have been applied. In the 
literature, various studies have reported differ-
ent methods used to improve the efficiency in the 
Cath Labs [4–9]. To the best of our knowledge, 
the stochastic behavior of Cath Labs procedures 
has not been described yet. Understanding this 
stochastic behavior is a fundamental starting point 
for optimizing Cath Labs schedules. Procedures 
performed in the Cath Labs are stochastic, as com-
pared to procedures in the operating room (OR), 
which have been statistically modelled by many 
studies [10–15]. Similar to the OR, efficient use 
of Cath Labs crucially depends on estimated case 
durations. Statistical models may help to improve 
these estimates to support management in the 
cost-effective use of expensive surgical resources 
[15]. In this study, we sought to analyze the sto-
chastic behavior of Cath Labs procedures in our 
institution. The concept of this study is based on an 
earlier study modelling the procedure and surgical 
times in the operating room [14–15].

Methods

We retrospectively analyzed all the procedures 
performed in 2012 in the Cath Labs of Catharina 
Hospital in Eindhoven, the Netherlands. The pro-
cedure time was an important factor in our analy-
sis. We defined procedure time as the time lapse 
between the moment of entry of the patient to the 

(x > q)

fx (x; m, d, q) = 1
(x – q) d 2p

e
(ln(c–q)–m)2

2 d 2–
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Table 1. Procedure-cardiologist combinations, electrophysiology.

Electrophysiology p < 0.05 p ≥ 0.05 Combinations

Normal model
Small 10 £ n < 30 35 23.2% 40 26.5% 75 49.7%
Medium 30 £ n < 200 38 25.2% 36 23.8% 74 49.0%
Large n ≥ 200 1 0.7% 1 0.7% 2 1.3%
Total 74 49.0% 77 51.0% 151 100.0%
2-parameter longnormal model
Small 10 £ n < 30 14 9.3% 61 40.4% 75 49.7%
Medium 30 £ n < 200 18 11.9% 56 37.1% 74 49.0%
Large n ≥ 200 0 0.0% 2 1.3% 2 1.3%
Total 32 21.2% 119 78.8% 151 100.0%
3-parameter longnormal model
Small 10 £ n < 30 10 6.6% 65 43.0% 75 49.7%
Medium 30 £ n < 200 11 7.3% 63 41.7% 74 49.0%
Large n ≥ 200 0 0.0% 2 1.3% 2 1.3%
Total 21 13.9% 130 86.1% 151 100.0%

—— Stop the iteration if (pnew – pold) / pnew × 100%  
< 1% or if pnew < pold. If the final p-value is 
larger than 0.05, we do not reject the hypo
thesis of the normal model.
To avoid heterogeneous groups of observa-

tions, we tested every group-cardiologist procedu
re combination for the normal, 2- and 3-para- 
meter lognormal distribution. Very small sample sizes  
(n < 10) were excluded because they may indiscri
minately fit almost every model. Normality tests were 
performed by using the method of Shapiro-Wilk. We 
defined the null hypothesis of the Shapiro-Wilk test 
statistic (W) as a sample from a normally distributed 
population. Thus, p > 0.05 for W accepts this assump-
tion of normality. Most studies agree that this is the 
most reliable method to test the normality of small  
to medium-sized samples [17–20]. To detect the influ-
ence of sample size on the Shapiro--Wilk test, we arbi-
trarily divided the sample size into small (10 £ n < 30),  
medium (30 £ n < 200), and large (n ≥ 200). To 
perform the analyses, we used StatsDirect statistical 
software and IBM SPSS 20. Normal probability plots 
were examined visually for procedures that were not 
well-fitted by either the normal or lognormal models. 
We analyzed QQ-PP and Box plots to confirm the 
results of the Shapiro--Wilk test. Examination of the 
calculated skewness and kurtosis, and of the histo-
gram, box plot, and normal probability plot for the 
data may provide clues as to why the data failed the 
Shapiro-Wilk. Time points were exact to the minute.

Using Friedman test, we compared the (log) 
normal models to determine if there is a superior 
model. The null-hypothesis is that the models 
are equal. Here, the relevant question is whether 

the 2-parameter lognormal model is superior to 
the normal model and whether the 3-parameter 
lognormal model is superior to the 2-parameter 
lognormal model. A p value < 0.05 was considered 
significant.

Results

The total number of elective and emergency 
procedures was 6,393 (8,186 h). Eight procedures 
were excluded from the analysis because the end 
time was not registered. This resulted in 6,385 cases 
(8,175 h). Procedures with frequency smaller than  
10 were also excluded (250 cases; 396 h). The 
final analysis included 6,135 procedures (7,779 h).  
To have a homogenous group of observations per 
procedure, we created cardiologist-procedure com-
binations, which were differentiated into elective 
and acute cases.

The number of acute cases was 1,410 (1,058 h) 
and the number of elective cases was 4,725 (6,721 h).  
Seventeen cardiologists were involved in all the 
procedures. The number of cardiologist-procedure 
combinations was 303 (152 electrophysiology, and 
151 invasive). The performed procedures are clas-
sified as follows (Tables 1–3):

Elective
—— Electrophysiology (n = 3,192 and time 

= 2,908 h): 36 types of procedures, performed 
by 7 ope-rators.

—— Intervention (n = 1,533 and time= 3,814 h):  
17 type of procedures, performed by 10 opera
tors.



Figure 1. Ablation slow pathway, cardiologist A; W =  
= 0.932117, p = 0.4327.

346 www.cardiologyjournal.org

Cardiology Journal 2014, Vol. 21, No. 4

Acute intervention
Eighteen cardiologist-procedure combina-

tions, 10 operators, 1,410 procedures, 1,058 h.
Figures 1–5 show examples of significant proce-

dure-cardiologist combinations. Figure 6 shows a QQ 
plot of the lognormal procedure time of an acute PCI.

Electrophysiology (intervention) procedures 
fit the normal model 51.0% (54.3%), 2-parameter 
lognormal model 78.8% (72.2%) and the 3-parameter 
lognormal model 86.1% (80.1%). For acute cases, we 
have only a medium-size group of observations. When 
analyzing the acute cases, we found that the 3-para
meter lognormal distribution fits in 77% of the cases.

Using Friedman test statistics, we compared 
the following hypotheses:

—— 3-parameter lognormal model equals the nor-
mal model (p = 0.0001);

—— 3-parameter lognormal model equals the 
2-parameter lognormal model (p = 0.0054);

—— 2-parameter lognormal model equals the nor-
mal model (p = 0.0042).
This means that that the 3-parameter lognor-

mal model is superior to the 2-parameter lognormal 
model. The 2-parameter lognormal is superior to 
the normal model.

Discussion

The main finding of this study was that proce-
dure times in de Cath Labs are mostly lognormal-
distributed where the 3-parameter lognormal dis-
tribution is superior to the 2-parameter lognormal 
and the normal distribution. Understanding the 

Table 2. Procedure-cardiologist combinations, interventions.

Intervention p < 0.05 p ≥ 0.05 Combinations

Normal model
Small 10 £ n < 30 24 15.9% 42 27.8% 66 43.7%
Medium 30 £ n < 200 45 29.8% 40 26.5% 85 56.3%
Large n ≥ 200 0 0.0% 0 0.0% 0 0.0%
Total 69 45.7% 82 54.3% 151 100.0%
2-parameter longnormal model
Small 10 £ n < 30 10 6.6% 56 37.1% 66 43.7%
Medium 30 £ n < 200 32 21.2% 53 35.1% 85 56.3%
Large n ≥ 200 0 0.0% 0 0.0% 0 0.0%
Total 42 27.8% 109 72.2% 151 100.0%
3-parameter longnormal model
Small 10 £ n < 30 7 4.6% 59 39.1% 66 43.7%
Medium 30 £ n < 200 23 15.2% 62 41.1% 85 56.3%
Large n ≥ 200 0 0.0% 0 0.0% 0 0.0%
Total 30 19.9% 121 80.1% 151 100.0%

Table 3. Acute cases.

Intervention (only medium size) p < 0.05 p ≥ 0.05 Combina-
tions

Normal model 30 £ n < 200 16 88.9% 2 11.1% 18
2-parameter longnormal model 30 £ n < 200 7 38.9% 11 61.1% 18
3-parameter longnormal model 30 £ n < 200 4 2.6% 14 77.8% 18



Figure 6. Lognormal Q-Q plot of acute percutaneous 
coronary intervention (PCI) of cardiologist D.
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stochastic behavior of Cath Labs procedures is 
of utmost importance because of many reasons. 
We hereby discuss the conceptual and operational 

reasons. From the conceptual point of view, we 
refer to the findings of The Institute of Medi-
cine (IoM) report “Crossing the Quality Chasm:  
A New Health System for the 21st Century”. In this 
report, many problems in the quality of the United 
States’ health care delivery system are described 
[21]. This report suggested that health care should 
be safe, effective, patient-centered, timely, efficient 
and equitable. In the present study, we focused on 
the timely, efficient en patient-centered dimensions 
addressed by the IoM. According to the IoM, timely 
access to care is reducing waits and possible harm-

Figure 2. Ablation pulmonary vein isolation met pulmo-
nary vein ablation catheter, cardiologist B.

Figure 3. Coronary angiography, cardiologist C.

Figure 4. Coronary angiography, cardiologist E.

Figure 5. Acute percutaneous coronary intervention, 
cardiologist D.
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ful delays for both those who receive and those who 
deliver the care. One of the most serious problems 
has to do with timely access to hospital services. 
Problems involving access to care manifest in  
a variety of forms, including rejection of patients. 
Because not all the patients are equal, variation 
in treatment duration exists and managing this 
variation by using statistical models increases 
efficient care.

From an operational point of view, a good stati
stical model for procedure times makes procedure 
times more predictable by making a more accurate 
estimation of the produce duration. Next, it helps 
manage the variation of Cath Labs procedures. 
The aforementioned reasons contribute to reliable 
Cath Lab schedules. Reliable schedules allow the 
efficient use of scarce Cath Lab capacity because 
it reduces the chance of overused Cath Lab time 
and the chance that cases are cancelled. Reducing 
overtime is important because overtime is relative 
costly. Second, if cases are not well-scheduled, 
there will be a chance that scheduled patients will 
be cancelled and will stay longer in the hospital. 
Prolonged hospital stay does not only lead to ele-
vated costs and hence less revenue, but also to less 
satisfaction of patients. As Cath Labs are scarce and 
hence have limited capacities, the information of 
this study may be used to achieve schedules that 
are more efficient. Examples of these methods are 
scheduling the same cases consecutively in fast-
track pathways [22–24], scheduling cases in spe-
cific rooms [25], Stochastic Integer Programming 
[26]. In the Cath Lab under study, there is no hold-
ing were patients are prepared for the treatment. 
This means that procedure times may be longer 
than in the situation with a preparation room. As 
a result, the threshold for the 3-lognormal model 
in our study may be larger. For future research, it 
could be interesting to analyze if procedure dura-
tion depends on several cardiologist-related factors 
such as work rate experience. In other words, it 
is important to know whether there is a relation 
between the number of procedures a cardiologist 
performed and the procedure duration or typical 
patient-related factors. This knowledge will help 
to improve further the estimation of Cath Lab 
procedure durations and hence manage variation 
in healthcare processes.

Limitations of the study
This is a retrospective single-center study. 

In our hospital, the usual case mix of procedures 
within a Cath Lab is performed as compared to 

other Cath Labs. Whether a similar analysis in 
other institutions would confirm our findings is to 
be investigated.

Practical use in a clinical setting
The findings in the paper help management 

and cardiologists to make better Cath Lab sched-
ules. When patients are scheduled then manage-
ment want to use the assigned capacity maximally 
without a large chance that overtime is needed 
or elective patients are cancelled. As shown in 
this paper, Cath Lab procedures have a skewed 
distribution: mean values are relatively low, vari-
ances are relatively large and values are strictly 
positive. Because of the log-normal characteristic 
of procedure times, once more time is needed for 
a coronary angiography, then it can be hard to ‘win’ 
time on the next scheduled coronary angiography  
to be ready on time after a days’ work.

Nowadays, we make elective schedules and 
take into account the underlying distribution of  
a cardiologist-procedure combination. In sequenc-
ing cases, we avoid, for example, 2 procedures, 
which are highly skewed. Applying the knowledge 
from this paper in our department resulted in 
less overtime and a reduction in the number of 
cancelled patients. Teams experienced less stress 
to finish the schedule on time as well. Further re-
search in simulating optimal Cath Lab schedules 
will help to improve further the Cath Lab efficiency.

Conclusions

Cath Lab procedures are well-modelled by 
lognormal models. This information helps to im-
prove and to refine Cath Lab schedules and hence 
their efficient use.
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