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Elliptical stretch as a cause of side branch ostial compromise after main vessel stenting in 

coronary bifurcations: New insights from numerical analysis  

Short title: Elliptical stretch of side branch ostium  

 

Dobrin Iotkov Vassilev
1
, Ghassan S. Kassab

2
, Carlos Collet

3
, Juan Luis Gutiérrez-Chico

4
, 

Gianluca Rigatelli
5
, Robert J. Gil

6, 7
, Patrick W. Serruys

8, 9 

 

1
Cardiology Clinic, “Alexandrovska” University Hospital, Medical University of Sofia, Bulgaria 

2
California Medical Innovations Institute, San Diego, California  

3
Department of Cardiology, University of Amsterdam, Netherlands  

4
La Charité, Campus Benjamin Franklin, Berlin, Germany 

5
Cardiovascular Diagnosis and Endoluminal Interventions, Director Section of Adult Congenital 

Heart Interventions Rovigo General Hospital, Rovigo, Italy 

6
Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland 

7
Department of Invasive Cardiology, Central Clinical Hospital of the Ministry of the Interior, 

Warsaw, Poland 

8
Erasmus MC, Imperial College London, United Kingdom 

9
Thorax Center, Cardiovascular Science Division NHLI, Amsterdam, Netherlands 

 

Address for correspondence: Dobrin Vassilev, MD, PhD, “Alexandrovska” University 

Hospital, Medical University, “St. George Sofiiski” Str. 1, 1431 Sofia, Bulgaria, tel: +35 

929230467, e-mail: dobrinv@gmail.com 

 

 

Abstract 

Background: The side branch (SB) compromise after main vessel (MV) stenting remains a 

significant problem in coronary bifurcation treatment. Currently the two major hypotheses for 

the mechanism of SB compromise are carina shift from MV into the SB and plaque shift into the 

ostium of side vessel. It is proposed herein, SB ostial deformation leading to reshaping of the 

ostium from circle to ellipse is a third possible mechanism. In the current study, the theoretical 

effects and correlation of ostial deformation with fractional flow reserve is explored (FFR).  

https://www.researchgate.net/institution/University_of_Amsterdam/department/Department_of_Cardiology
https://www.researchgate.net/institution/University_of_Amsterdam


Methods: Based on angiographic measurements and theoretical analysis formulas, three 

different SB ostial areas using circular ostial shape assumption and elliptical ostial shape 

assumption were calculated. Three different types of ostial areas with FFR values after MV 

stenting in 49 patients from the FIESTA registry were compared and analyzed. 

Results: It was found that there is significant overestimation of stenosis severity when estimated 

by the circle formula, than with the ellipse formula — ASc vs. ASds with 25% ± 13%, p < 0.001, 

ASc vs. ASmld with 9% ± 10%, p < 0.001. The elliptical shape assumptions provide more 

accurate ostial area stenosis, which correlates better with FFR. This finding is more significant in 

less severe stenosis (< 70% area stenosis) than in a more severe one.  

Conclusions: A third possible mechanism of SB compromise after MV stenting of coronary 

bifurcation stenosis is elliptical ostial deformation at the ostium of SBs. The ostial area, 

calculated based on elliptical assumption correlates better with FFR, than area stenosis calculated 

with the traditional circular formula.   

Key words: coronary bifurcation, side branch ostium compromise, elliptical ostial 

stretching  

 

 

Introduction 

There have been major improvements in treatment of coronary bifurcations in recent 

years [1]. Nowadays, there is much more known about stent characteristics which are important 

in achieving good procedural results. With the advent of drug-eluting stents (DES) the problem 

of restenosis was largely reduced. However, the main reason which makes coronary bifurcation 

so difficult to treat still persists — namely, side branch compromise which is the appearance of 

high grade ostial stenosis at the ostium of the side branch, limiting vessel inflow after 

implantation of a stent in the main vessel. In the most severe form of side branch compromise, 

the vessel can occlude leading to a different size periprocedural myocardial infarction with 

different prognostic implications, depending on amount of subtended myocardium by the side 

branch (SB). There is still uncertainty about the mechanisms of SB compromise after main 

vessel (MV) stenting in coronary bifurcation lesions. There are currently two major hypotheses: 

1) Plaque shift from MV into the SB and 2) Carina shift due to pushing of carina tip into the 

ostium of side vessel (1). Based on theory, phantom elastic models and then on angiographic 



analysis from the patient cohort, demonstrated herein, that carina displacement is probably the 

most important mechanism for SB stenosis [2–4]. Besides possible plaque shift (from proximal 

MV to SB ostium and plaque redistribution of SB plaque in a circumferential direction), there is 

however, another potential mechanism; i.e., ostial deformation resulting in reshaping of side 

vessel ostium from ostial circle initially to ostial ellipse after stenting [3]. These potential 

changes were recently reported in human coronary bifurcation after stenting of MV [5, 6]. Thus, 

the present study proposed this as a third possible mechanism for SB compromise, which can 

operate in conjunction with carina displacement and plaque shifting. Here, the theoretical effects 

are explored and a correlation of these possible deformational effects with fractional flow reserve 

(FFR), serve as a current standard for assessment of stenosis severity [7].  

 

Methods 

A theoretical analysis was performed on the potential changes at the SB ostium after MV 

stenting. Formulas were derived for minimal lumen diameter at SB opening after stenting based 

on an assumed elliptical stretch, with constant vessel circumference irrespective of vessel 

deformations. An angiographic analysis was performed to measure minimal lumen diameter and 

reference diameters of the bifurcation region from a patient cohort, with FFR during coronary 

bifurcation intervention  being simultaneously measured. 

Based on angiographic measurements and using formulas from theoretical analysis, three 

different SB ostial areas were calculated which were then compared with FFR values after MV 

stenting. First, a circular ostial shape at SB ostium was assumed after stenting using the formula: 

Ac= π.ds
2
/4, where ds is reference side branch vessel diameter as measured from 

quantitative coronary assessment (QCA). This is a standard calculation used in two-

dimensional QCA software packages. Second, we assumed elliptical ostial shape of SB ostium 

after MV stenting. The calculation of the ostial area uses the ellipse area formula A = π.a.b, 

where a is the ostial minimal lumen diameter as a minor semi axis. This minor semi axis “a” 

equivalent of SB ostial minimal lumen diameter, as measured from standard QCA.The major 

semi axis (b) was calculated using formulas 3’-12’ (see below), replacing k (stretching 

coefficient) with its equivalent (ds/2)/a (where ds is SB reference diameter and a is ostial elliptic 

minor axis after stent placement in the main vessel). The SB diameter, ds, was taken as a 

reference in those calculations. The respective area stenosis was calculated as ASds = (1-



Ae1/Asb)*100, where ASds is ostial elliptic area stenosis of the SB, Ae1 — SB calculated ostial 

area, Asb — reference SB vessel area (calculated based on vessel diameter 1 mm distal from the 

end of visually diseased end of plaque segment). For the third calculation of SB ostial area after 

stenting, the same assumptions and formulas were used as in the second, but as a reference 

diameter instead of SB reference diameter the SB ostial minimal lumen diameter before stenting 

was used (i.e. this is the minimal lumen diameter before stenting, as measured from QCA). The 

corresponding area stenosis was labeled ASmld = (1-Ae2/Asb).100, where ASmld is ostial area 

stenosis (in percentages), Ae2 — ostial SB area calculated according to the above assumptions, 

Asb — as above. 

All three calculated areas were correlated with FFR measured in SB after stenting to 

determine functional significance of ostial stenosis. In theory, the flow through SB ostium should 

be proportional to its cross-sectional area and the subtended myocardium. Hence, a better 

estimate of real cross-sectional area of side vessel opening should correlate better with FFR. 

 

Theoretical analysis 

 A model of bifurcation with normal opening of proximal MV was assumed, with a 

diameter dp at the point of distal MV and SB divergence. The SB has a circular opening in a 

plane perpendicular to the plane of bifurcation. The diameters of distal MV and SB are denoted 

as dm and ds, accordingly. At the point of connection of the three tubes there is a beveling region 

with a length equal to SB tube diameter. The vessels are assumed to be deformable straight tubes 

at the region of interest. No other assumptions were made regarding the model (Fig. 1A). After 

stent placement in MV across the SB, the stent stretches a bevel region of bifurcation causing 

“squeezing” SB ostium and ellipse formation at the opening [4]. Those changes were described 

in experimental elastic model by our group and currently reported to occur in human patients 

with optical coherence tomography observations [5, 6].  

The SB minimal lumen diameter was calculated, SB ostial area and respective derived 

parameters. It was assumed that after stenting MV, the SB stretched to ellipse geometry at the 

ostium. The short axis of a newly formed ellipse was parallel with SB long axis and the short 

axiswas in a perpendicular direction (Fig. 2). This new elliptic short axis is a minimal lumen 

diameter for SB ostium and the area of ellipse relative area of reference cross-section of the SB 

is a lumen area stenosis of the ostium. If the vessel wall is inelastic and the vessel perimeter 



remains constant during simple deformations without circumferential stretching forces, the 

minimal (short) ellipse diameter, a, is determined from the extent of stretching (lateral increase) 

of SB vessel major axis b. The major axis can be expressed as a multiple of SB reference 

diameter: a’ = k.ds/2, where ds is the SB diameter (measured from QCA side branch reference 

vessel diameter) and k is the stretch coefficient. The stretch coefficient can vary to two maxima – 

k1 = dm/ds or k2 = dp/ds (dm — MV distal diameter, dp — proximal MV diameter), depending 

on the choice of stent diameter. According to the above assumption of constant vessel perimeter 

and knowing the extent of ostial stretch (expressed as the value of k), the minimal diameter at the 

ostium was calculated. Using elementary integration methods, the perimeter S(a,b) of the ellipse 

defined by (x/a)+(y/b) = 1, is given by: 

 

       (1) 

 

where E, the ellipse eccentricity, is given by: 

 

         (2) 

 

E is an elliptic integral of the second kind, which can be computed with numeric integration or 

by approximations. The problem with equation (1) is that E(x) is a transcendental function and 

its evaluation through an infinite series or fractions is computationally inefficient. Therefore, it 

was decided that some approximation formulas would be used, giving in the ellipse perimeter 

computation less than 1% error in comparison with exact computation [8–15]. For each formula 

below (denoted by numerical equation), we give a derivative formula (denoted by prime) for 

short axis semi diameter, based on values of SB diameter and stretch coefficient as independent 

variables.  

 

P = 2π{[p.(a+b)/2] +[(1-p). √ (a.b)]}, with p=3/2  Optimized Peano (3) 

b = ds/9. {6-7k/2+(2. √(3k-2k
2
)}       (3’) 

P = 2π{(a
3/2

+b
3/2

)/2}
2/3

     Muir   (4) 

b = ds/2. {2-k
3/2

}
2/3         

(4’) 



P= π {3. (a+b)- √[(a+3b) (3a+b)]}    Ramanujan  (5) 

b = ds/6. {3-2k+√(3+6k-5k
2
)}       (5’) 

P = 2. √ [ π
2
a.b + 4. (a-b)

2
]     Seki   (6) 

b = ds/16. {k. (8- π
2
) + π√[k

2
(π

2
-16) + 16]      (6’) 

P = 4. (a
s
+b

s
)
1/s

, s = ln2/ln(π/2) = 1.53492853566  Marthens  (7) 

b = ds/2. [(π/2)
s
-k

s
]

1/s
         (7’) 

P = 4a+ {2. (π-2). a.(b/a)
1.456

}    Rivera   (8) 

b = ds/2. k.{[(π-2k)/(k.(π-2))]
0.6868

}       (8’) 

P = 4{[π.a.b +(a-b)
2
]/[a+b]}     Rivera-Sykora  (9) 

b = ds/8{π+4k- 2πk + √ [(4k π.(k-1) (π-4)) + π
2
]}     (9’) 

P = 2.π√{[w.(a
2
+b

2
)/2] +[(1-w) (ab)]}   QO1   (10) 

b = ds/2{[(w-1). k] + √[k
2
(1-2w) +2w]}      (10’) 

 

The parameter w can be optimized, giving the best result at w = 1.007.  

P= π√ {[2(a
2
+b

2
)]-[(a-b)

2
/D]}    QO2   (11) 

b= ds/2{[-k+2√(D(k
2
(1-D) +2D-1))]/(2D-1)}     (11’) 

 

The parameter D gives optimal results with values between 2 and 3 (D=2.5 for present analysis). 

P = π.{(a+b)/2 + √[(a
2
+b

2
)/2]}    QO3   (12) 

b = ds/2[-4+k+4√(2-k)]        (12’) 

 

All the above formulas at k = 1 (circular shape) reduce to a simple formula for circle 

perimeter with a radius equal to ds/2. There are certain limits of k values — in most of the cases it 

cannot be > 1.6. Therefore, being tested were the results for k varying between 1.1 and 1.5. The 

ostial elliptic area, Ax = π.ds. b and SB reference circular area (Ac = π.ds
2
/4), were compared to 

determine possible ostial percent area stenosis, AS = (1-Ax/Ac)100. The ostial percent diameter 

stenosis was calculated as DS. = (1-b/ds)100. The derived eccentricity of the ostium of SB was 

expressed as e = a/b, where a and b are major and minor semi axes, respectively.  

For practical calculations (see Results section) formula 5 (Ramanujan) was used for calculation of 

the area stenosis. For calculation of area stenosis after stenting numerical values were used from QCA 

as follows: for ASds minimal lumen diameter after stenting divided to SB reference diameter to derive 



parameter k = SBMLD/SBRVD were used; then this value was used to calculate parameter b in 

formula 5, and then the ostial area was calculated as Ads = π. SBMLD.b For calculation of ASmld 

(see Results section) for calculation of parameter k the SB MLD before stenting was used: k = 

SBMLDafterstent/SBMLDbeforestent, then the parameter b was calculated as described and the ostial area 

was calculated in the same way: Amld = π.SBMLD.b According area stenosis is derived by dividing 

ostial area by SB reference area Ac = π.ds
2
/4. 

 

Angiographic analysis 

Quantitative angiographic analyses were performed using commercially available 

software (Medis QCA version 5.0, Leiden, the Netherlands; Dicom Works version 3.1.5b, Paris). 

Catheter calibration was used in all cases. Bifurcation lesions were classified according to the 

visual Medina classification using an index of 1 for stenoses greater than 50% and an index of 0 

for no stenosis. The changes of SB percentage diameter stenosis (SB%DS) before procedure, 

after stenting and at the end of percutaneous coronary intervention (PCI) were assessed. SB 

reference diameter, as well as minimal lumen diameters were measured before and after stenting, 

after giving 100 µg nitroglycerin intracoronary.  

 

Procedures 

Patients from the FIESTA registry were analyzed, which was a continuation of the 

FIESTA study (Ffr vs. IcEcgSTA) [15]. Briefly, patients with stable or unstable angina were 

included. The inclusion criterion were angiographic bifurcation lesions in a native coronary 

artery with a diameter ≥ 2.5 mm and ≤ 4.5 mm and SB diameter ≥ 2.0 mm. Patients with ST-

segment elevation myocardial infarction and those with non-cardiac co-morbidity conditions 

with a life expectancy of less than one year were excluded. PCI was performed according to 

current guidelines. Provisional stenting was the default strategy in all patients. Two guidewires 

were inserted into both distal MB and SB. Initial FFR and post-stenting FFR was performed 

using PrimeWire or PrimeWire Prestige (Volcano Corp., USA). For all FFR measurements, 

intracoronary adenosine was given in increasing doses of 60 µg, 120 µg, and 240 µg. The 

minimum value of FFR measurements was taken for analysis. Pre-dilatation of MV was 

mandatory. The SB balloon predilatation was left to operator discretion, regardless of the initial 



FFR values. All patients received double antiplatelet therapy with ADP-antagonist and 

acetylsalicylic acid for at least 12 months. 

 

Statistics 

Continuous data are presented as mean ± standard deviation. Differences between groups 

were examined with paired or unpaired t-tests as appropriate, with normal distributions. If the 

distribution was not normal, the Wilcoxon sign-ranked test and Mann-Whitney U-tests was 

performed. Analysis of variance (ANOVA) was used for multiple comparisons of data, when 

parameters were distributed normally. Otherwise, the Kruskall-Wallis test was performed. 

Correlation analysis as well as univariate regression analysis were performed to identify 

associates of “significant” cut-off value of FFR. For purposes of current analysis, test 0.80 were 

made cut-off values for FFR [7]. All univariate predictors with p < 0.1 were included in a 

multivariate model. Chi-square tests were applied for qualitative data. For determining of cut-off 

values for continuous parameters a receiver-operation curve analysis was performed, 

determining sensitivity and specificity of a given value. A p < 0.05 was accepted as statistical 

significance.  

 

Results 

Theoretical analysis: For the theoretical analysis that diameters of main branch vessel 

varying between the 2.5–4.0 mm range were assumed and side branch diameter varied between 

1.5–3.0 mm. Figures 3 and 4 present the calculated percentage diameter stenosis and area 

stenosis based on elliptical ostial shape assumption and circular ostial shape assumption. With an 

increase in stretching coefficient, there is a reduction of overestimation (based on QCA data) of 

stenosis severity if circular shapes are assumed. The overestimation is larger for percentage 

diameter stenosis than for area stenosis (between 80% and 35% in absolute value), however, this 

means a significant difference in cross-sectional area of SB ostium. In high grade stenoses (> 

90% diameter stenosis the differences between elliptical and circular calculated area stenoses 

were small. The quadratic optimization (Eqn. 1) gives larger deviations than the other formulas 

giving closer to circular approximation values for %DS and %AS at high stretch values. The 

eccentricity varies between 1.22 and 6, with a mean value of 2.64  1.77 (Fig. 5).   



Since all formulas for calculated long axis ostial elliptical diameter give very close results 

(excluding QO2 formula), it was decided to use only the Ramanujan formula in the present 

calculations as it gives closest values to a mean value of all formulas for the derived parameters. 

Clinical, angiographic and procedural characteristics: A total of 49 patients were included 

— all with stable angina or with recent onset of unstable angina, but with negative troponin. All 

patients had a significant (< 0.80) FFR in MV with or without significant FFR in side branches. 

The dominantly treated vessel was left anterior descending artery (n = 42, 86%) with diagonal 

branches, and the rest of the cases were circumflex artery with marginal branches (n = 5, 10%) 

and right posterior descending artery with its posterolateral branches. The SB was predilated in 

37% of the cases, mainly because of angiographically appearing high-grade ostial stenosis. In all 

patients, the FFR in MV was ≤ 0.80, and the initial FFR value was ≤ 0.80 in 26 side branches 

(53%). Eighteen side branches remained with FFR ≤ 0.80 after stenting, 8 of which were 

significantly obstructed (based on FFR) after stenting were not, 9 (18%) new branches became 

significantly stenosed and the rest, 14 (29%) remained insignificantly stenosed before and after 

stenting in MV. Only one patient had SB predilated despite non-significant FFR initial value. 

Interestingly, 10 (20%) patients, despite SB balloon dilatation, the stenosis remained significant 

after stenting.  

Relations with FFR measurements and ostial area stenosis: as mentioned in the Methods 

section, ostial area stenosis at SB ostium after stenting was calculated by using three groups. 

Group 1: Circular ostial shape at SB ostium after MV stenting was assumed. This is a 

standard estimation of SB ostial stenosis severity (circular area stenosis — ASc).  

Group 2: Elliptical ostial shape at SB ostium assumed after MV stenting — calculated 

with SB reference diameter, taken into account for long axis ellipse calculation according to 

formula 5 (Ramanujan) — ASds.  

Group 3: Elliptical ostial shape at SB ostium assumed after MV stenting, calculated with 

minimal lumen diameter at SB ostium before stenting, considered for long axis ellipse 

calculation (instead of ds, SB RVD, an ostial minimal lumen diameter at the ostium of SB is 

used) according to formula 5 (Ramanujan) – ASmld. 

Each comparison was made for the entire group, and in groups with and without SB 

predilatation. In the group with SB predilatation, there were better correlations with FFR values 

with ASds (as the ostial area after balloon predilatation is assumed circular and closer to the 



reference vessel diameter and  consequent transition circular-to-elliptic will operate according to 

a circular shape of the reference vessel). In group without SB predilataion, FFR will be better 

correlated with ASmld. In the last group, it was assumed that the circular ostial shape of initial 

SB minimal ostial diameter, which deforms to ellipse after stenting. In general, there was a 

significant change in all calculated parameters for area stenosis after stenting in comparison with 

area stenosis before stenting: ASc initial vs. ASc poststenting — 93% ± 7% vs. 81% ± 29%, p = 

0.002; ASc initial vs. ASmld poststenting — 93% ± 7% vs. 77% ± 24%, p < 0.001; ASc initial 

vs. ASds poststenting — 93% ± 7% vs. 56% ± 28%, p < 0.001. These imply a significant 

decrease in area stenosis after stenting, which is in contrast with an increase in diameter stenosis 

after stenting from 52% ± 24% before stenting implantation vs. 67% ± 27% after stenting.  

The correlation coefficients for the entire group with FFR values after stent implantation 

were: r = –0.326, p = 0.025 for ASc; r = –0.416, p = 0.004 for ASds; r = –0.511, p < 0.001 for 

ASmld. Interestingly, when analyzed separately, there was no significant correlation in the group 

with SB predilatation between FFR and calculated area stenosis by any method. In contrast, there 

was a significant correlation between FFR after stenting and SB ostial area stenosis in the group 

without SB predilatation — with the highest correlation between ASmld (r = –0.495, p = 0.006) 

and non-significant with ASc (r = –0.302, p = 0.099). In general, the area stenosis was 

significantly larger when estimated by the circle formula, than with the ellipse formula — ASc 

vs. ASds with 25% ± 13%, p < 0.001, ASc vs. ASmld with 9% ± 10%, p < 0.001. The 

differences were also significant in groups with and without SB predilatation.  

When compared in groups with (n = 24, 49%) and without SB FFR ≤ 0.80, there was no 

significant difference in calculated circular shape ostial areas stenosis, ASc (FFR ≤ 0.80 vs. FFR 

> 0.80 — 94% ± 8% vs. 82% ± 25%, p = 0.098), but both calculated elliptical area stenoses were 

significantly different — ASmld (FFR ≤ 0.80 vs. FFR > 0.80: 88% ± 9% vs. 76% ± 13%, p = 

0.008) and ASds (FFR ≤ 0.80 vs. FFR > 0.80: 68% ± 20% vs. 52% ± 23%, p = 0.033). On 

receiver-operating curve (ROC) analysis a cut-off value for identification of FFR ≤ 0.80 was 

found — for ASmld > 83%, ASds > 62%, ASc > 93%, with corresponding sensitivity analysis 

presented in Table 3.  

The ostial eccentricity (for ASmld 5.06 ± 4.66 vs. 2.89 ± 1.43, for FFR ≤ 0.80 vs. FFR > 

0.80 accordingly, p = 0.093) despite being numerically higher in the group with lower FFR, and 

was not statistically different. The last observation suggests, that lower FFR values are 



associated with greatest ostial elliptic deformations, probably in cooperation with carina 

displacement. Comparing further, the four groups depended on  FFR changes which were (< or > 

0.80), as described above — negative FFR before and after stenting (group 0), newly appearing 

significant SB FFR < 0.80 (group 1), those with significant SB FFR before and after stenting 

(group 2) and finally patients with initially significant SB FFR, but non-significant after stenting 

(group 3). The analysis of variance revealed statistically significant differences between groups 

(ANOVA, p = 0.001 for ASmld, p = 0.043 for ASds, p = 0.375 for ASc). The Bonferroni 

correction post-hoc multiple comparison test demonstrated highly significant differences 

between groups 2 and 0 for ASmld (92% ± 7% vs. 68% ± 23%, p = 0.001) and borderline 

differences between groups 1 and 0 for ASmld (87% ± 12% vs. 68% ± 23%, p = 0.050). This 

suggests a pattern of change in FFR values (i.e., change in ostial area stenosis) regardless of its 

absolute values may influence FFR values after stenting.  

On univariate regression analysis, significant associations of SB FFR ≤ 0.80 after stenting 

MV were: history of ST-segment elevation myocardial infarction in the past, presence of carotid 

artery disease, SYNTAX score, basic systolic blood pressure at the beginning of the procedure, 

stent diameter, SB predilatation, SB percentage diameter stenosis before and after stenting, 

minimal lumen diameter at SB ostium at baseline and after stenting, ASmld, ASds, ASc. A ROC 

analysis was performed to identify cut-off values for identification of FFR less than 0.80 about 

area stenosis calculated values (Table 3). The ASmld > 83%, ASds > 62% and ASc > 93% were 

also significantly associated with cut-off FFR on univariate regression analysis. On multivariate 

logistic regression analysis ASmld > 83%, but neither circular area stenosis values nor 

continuous parameter was independently associated with FFR ≤ 0.80 (OR  7.143, CI 1.006–

50.000; Negelkerke R square 0.477, p = 0.002, Hosmer & Lemeshov p = 0.427).  

 

Discussion 

Over a decade ago, the deformation of the circular opening before stenting to elliptical 

opening after stenting as a mechanism for SB compromise based on theoretical assumptions and 

observations from phantom elastic models of coronary bifurcations was proposed [2, 3]. In 

recent years, these theoretical and experimental observations were confirmed in optical 

coherence tomography imaging of coronary bifurcations after stenting MV [5, 6]. The current 

study provides a quantitative basis for area stenosis calculation, based on angiography data. The 



formulas used were adopted from the literature [8–15] and constrained based on constant vessel 

circumference assumption. A formula from Ramanujan was used [8, 9, 13] which provides 

values closest to a mean from all other formulas. 

The area stenosis calculated based on elliptical assumptions provides much more 

physiological ostial area stenosis in better agreement with experimental observation on flow 

limitations caused from stenosis [16, 17]. This is more important in less severe stenoses (< 70% 

area stenosis), where differences in areas are larger, while in more severe stenosis (> 70% area 

stenosis) the shape of the ostium does not seem to be so important and the values of area stenosis 

are more circular, no matter which formula is used. It should be noted that the present 

calculations are based on the assumption of the ability of ostium of SB to deform freely, 

quantitatively expressed by a stretching coefficient k. In reality, the presence of plaque with 

fibrous content and calcium can preclude these deformations [21].  

To provide a better association between area stenosis and functional stenosis,  calculated 

data was compared with experimental data for functional stenosis (i.e., FFR). The area stenosis 

in patients from the FIESTA study was calculated using formulas based on elliptical shape 

correlates better with parameter for functional stenosis, such as FFR, than the area stenosis 

calculated based on circle form of the ostium (r = –0.326 for ASc; r = –0.416 for ASds; r = –

0.511 for ASmld). Moreover, the area stenosis based on elliptical shape (ASmld) has 

significantly better accuracy for identification of significant FFR after stenting, than area 

stenosis, calculated based on circular ostial shape. For the first time, a practical form for 

calculation of ellipse type of opening was provided herein, based only on angiographic data. 

These formulas can be implemented in future with software programs for automatic analysis. It 

can be speculated that elliptical ostial shaping is a final common pathway that occurs at the 

ostium after main vessel stenting. Elliptical stretch and deformation could occur and can explain 

side branch ostial stenosis (even high-grade) at 90
o
 occurring branches from the main vessel, 

where carina shifting is theoretically impossible. 

In accordance with the assumptions for initial circular side branch minimal lumen 

diameter, which transforms to ellipse, are data from the literature, demonstrating that almost 90% 

of bifurcations have circular ostia [5, 6]. Why the ASmld formula performs best in prediction of 

significant FFR after main vessel stenting? The most plausible reason is that it relays on three 

different parameters (side branch MLD before and after stenting and SB reference diameter), 



while ASds and ASc relay only on two parameters — SB MLD after stenting and SB RVD. 

Thus, ASmld incorporates the basic information of lesion flow limiting capacity, not only 

information obtained after stenting.  

The areas at the ostium calculated in the present study are considerably smaller than those 

reported in the literature [5, 6, 19, 20]. This may be explained by differences in imaging methods 

(angiography, optical coherence tomography, or intravascular ultrasound). Optical coherence 

tomography visualizes the shape and size of SB, while the minimum ostial area (calculated based 

on angiographic data) can appear at a distance from the SB opening, because of invagination of 

the side vessel wall — see Figure 1 from reference no. 6. One possible explanation is a 

difference in patient populations — the present group has larger SB reference diameters than 

those previously reported (2.51 mm vs. 2.0–2.2 mm in other studies). All our patients have 

significant MV FFR values before interventions and practically half of the current patients had 

functionally true bifurcations. This percentage is larger than typically reported (around 30% or 

less).  

 

Limitations of the study 

The present study has several limitations. First, it did not consider the other two 

mechanisms of SB compromise — carina displacement and plaque shift. The theoretical data and 

cross-calculated parameters assuming elliptical ostial deformation of SB ostium after stenting 

however, correlate very well with the parameter of physiological severity, namely FFR. It must 

be pointed out, that carina displacement is one of the suggested mechanisms causing ellipse 

formation at SB ostium. This may explain the good correlations observed in the present study. 

Further research is needed to implement carina and plaque shifts in the model to better predict 

the observed changes. Second, only angiographic analysis and measurements of vessel sizes was 

performed. This is subject to a significant inaccuracy and variation. Three-dimensional optical 

coherence tomography imaging might have offered better visualization of the elliptic 

deformation of the SB ostium. However, such elliptic deformation has already been 

demonstrated by others [5, 6]. Third, the group of patients is relatively small. Given that half of 

angiographically significant coronary bifurcation stenosis are functionally insignificant by means 

of FFR values, however, it becomes rather impractical to find many appropriate patients for such 

a study (18).   



 

Conclusions 

The elliptical ostial transformation of side branches after MV stenting of coronary 

bifurcation is a possible mechanism for SB compromise. The ostial area stenosis, calculated 

based on this assumption correlates better with the physiological parameter of lesion severity, i.e. 

FFR, compared to area stenosis calculated based on the traditional circular formula.   
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Table 1. Clinical and demographic patient characteristics. Renal failure defined as calculated 

glomerular filtration rate according to the Cockcroft-Gault formula < 60 mL/min. 

Patient characteristics 

Entire 

group 

No-SB 

predilatation (n 

= 31) 

SB 

predilatation 

(n = 18) 

P 

Age [years] 66 ± 11 64 ± 12 65 ± 11 0.611 

Sex — males 32 (66%) 21 (77%) 11 (61%) 0.232 

Hypertension 49 (100%) 31 (100%) 18 (100%) 1 

Hyperlipidemia 44 (90%) 28 (84%) 16 (89%) 0.637 

Diabetes 23 (47%) 14 (45%) 9 (50%) 0.750 

Renal failure 21 (43%) 13 (39%) 8 (44%) 0.562 
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PCI — percutaneous coronary intervention; SB — side branch 

 

Carotid artery disease 7 (14%) 4 (12%) 3 (17%) 0.336 

Smoking 30 (61%) 19 (63%) 11 (61%) 0.891 

Chronic lung disease 6 (12%) 2 (6%) 4 (22%) 0.109 

Previous myocardial infarction 12 (24%) 7 (23%) 5 (28%) 0.749 

Previous PCI 27 (55%) 16 (52%) 11 (61%) 0.529 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Angiographic and procedural characteristics of patients.  

 Entire group No-SB 

predilatation 

SB 

predilatation 

P 

MV RVD [mm] 3.36 ± 0.29 3.38 ± 0.27 3.28 ± 0.26 0.189 

MV %DS [%] 51 ± 22 60 ± 21 58 ± 20 0.766 

MV %DS [%], final 3 ± 9 2 ± 5 3 ± 9 0.614 

MB RVD [mm] 2.97 ± 0.21 2.99 ± 0.25 2.96 ± 0.18 0.585 

MB %DS [%] 61 ± 18 67 ± 13 71 ± 11 0.220 

MB %DS [%], final 6 ± 16 2 ± 6 3 ± 1 0.308 



SB RVD [mm] 2.51 ± 0.27 2.45 ± 0.29 2.53 ± 0.26 0.330 

SB %DS [%] 52 ± 24 46 ± 24 71 ± 14 0.001 

SB %DS [%], post stenting 67 ± 27 65 ± 27 82 ± 15 0.008 

SB %DS [%], final 39 ± 33 42 ± 33 31 ± 36 0.299 

SYNTAX score 12 ± 4 12 ± 4 14 ± 4 0.231 

Multi-vessel disease 21 (43%) 14 (45%) 7 (39%) 0.677 

Stent diameter [mm] 2.97 ± 0.36 2.97 ± 0.35 2.96 ± 0.38 0.930 

Total Stent length [mm] 46 ± 22 45 ± 24 48 ± 17 0.629 

Stent implantation pressure [atm] 13 ± 1 13 ± 2 13 ± 3 0.318 

FFR-MB, before stenting 76 ± 9 70 ± 10 71 ± 6 0.733 

FFR-SB, before stenting 82 ± 9 81 ± 9 76 ± 11 0.100 

FFR-SB, after stenting 78 ± 13 81 ± 13 72 ± 13 0.024 

FFR-MB, final 88 ± 5 90 ± 4 90 ± 4 0.895 

FFR-SB, final 90 ± 4 89 ± 5 87 ± 6 0.313 

MB — main branch; MV — main vessel; SB — side branch; RVD — reference vessel diameter; 

mm — proximal MV reference vessel diameter in mm; MV %DS [%] — proximal MV 

percentage diameter stenosis; RVD [mm] — distal main branch reference vessel diameter in 

mm; MB %DS [%] — distal main branch percentage diameter stenosis; SB RVD [mm] — SB 

reference vessel diameter in mm; SB %DS [%] — SB percentage diameter stenosis before 

stenting; SB %DS [%], post stenting — SB percentage diameter stenosis immediately after stent 

implantation in MV; SB %DS [%], final — final SB percentage diameter stenosis, after PCI 

completion; SYNTAX score — SYNergy between PCI with TAXus and cardiac surgery; FFR — 

fractional flow reserve 

 

 



 

Table 3. Sensitivity analysis of different calculated area stenoses for prediction of poststenting 

fractional flow reserve (FFR) ≤ 0.80. 

Area stenosis Area 

under 

the 

curve 

P Cut-off 

value for 

area 

stenosis 

predictin

g FFR ≤ 

0.80 [%] 

Sensitivit

y [%] 

Specific

ity [%] 

PPV 

[%] 

NPV 

[%] 

Accurac

y [%] 

 

AS MLD base 

— Ramanujan 

0.830 < 

0.001 

> 83% 86% 73% 75% 84% 80% 

AS SB RVD 

— Ramanujan 

0.756 0.011 > 62% 73% 65% 67% 71% 69% 

AS circular 

shape MLD 

after stenting 

0.737 0.017 > 93% 73% 65% 67% 71% 69% 

RVD — reference vessel diameter; SB — side branch 

 

 

Figure 1. A. Model of bifurcation before stent placement; dp — proximal main vessel diameter; 

dm — distal main vessel diameter; ds — side branch vessel diameter; B. Lateral and axial views 

of bifurcation region after stent placement. The stent (gray rectangle) pushes the carina to the 

side branch ostium and causes widening and stretching of beveling region, which in fact 

stretches side branch ostium in a perpendicular direction of the main vessel axis. This leads to an 

elliptical shape of branch ostium. 

 

Figure 2. Idealized view of side branch ostium before and after stent placement; i.e., before and 

after stretching. a and b are major and minor axes of newly formed ellipse; ds. — side branch 

reference diameter; k — stretching coefficient, being the diameter of ellipse after transformation 

from a circle.  



 

Figure 3. Percentage diameter stenosis change depending on coefficient of stretch. The upper 

curves represent %AS if ostial circular shape is assumed. There is considerable overestimation of 

stenosis severity with circular shape assumption.  

 

Figure 4. Percentage area stenosis change depending on coefficient of stretch. The upper curves 

represent %AS if an ostial circular shape is assumed. 

 

Figure 5. Ostium eccentricity. There is a striking increase when stretch is greater than 1.4.  

 

 

 












