

LETTER TO THE EDITOR

Cardiology Journal 2017, Vol. 24, No. 1, 107–110 DOI: 10.5603/CJ.2017.0008 Copyright © 2017 Via Medica ISSN 1897–5593

A meta-analysis of interleukin-6 -572G>C polymorphism and coronary heart disease susceptibility

Tingting Zhang[#], Zhiqian Wang[#], Wenliang Xiao

Department of Cardiovascular Medicine, Division 1, Third Hospital of Hebei Medical University, Hebei, China

Coronary heart disease (CHD) is one of the leading causes of disability and death worldwide, which includes angina pectoris, myocardial infarction, as well as arterial sclerosis of the coronary arteries [1]. It is widely accepted that CHD is a multifactorial disease. Several factors (hereditary, social-environmental factors, and their interactions) contribute to the onset of CHD.

The *interleukin-6 (IL-6)* gene locates on 7p21. Previous epidemiological studies revealed that plasma levels of IL-6 in people with cardiovascular disease (CVD) are quite different from those without CVD [2, 3]. Till now, many studies have investigated the association between *IL-6* gene -*572G*>*C* polymorphism and CHD risk. However, the results are inconsistent. In order to avoid the limitations of single case-control study and to provide renewed evidence, we performed this meta-analysis and tried to give a more comprehensive estimation of association between *IL-6* gene -*572G*>*C* polymorphism and CHD susceptibility.

We searched in PubMed, EMBASE, EBSCO, and Chinese National Knowledge Infrastructure (CNKI) to retrieve relevant studies until May 1, 2016. Studies were considered eligible if they met the following criteria: (1) it was a case-control study in design; (2) it evaluated the *IL-6* gene -572G>C polymorphism and CHD susceptibility; (3) the diagnosis of CHD was definite; (4) sample sizes and individual genotype frequencies were available. Two reviewers independently searched and selected literature, and extracted relevant data according to a data extraction form. Disagreements were solved by discussion until consensus was made.

For each included study, the quality assessment was conducted according to STREGA (STrengthening the REporting of Genetic Association studies). Data analysis was conducted using STATA 11.0 software (Stata Statistical software, USA, www. stata.com). Odds ratio (OR) and its corresponding 95% confidence intervals (95% CI) were used to evaluate the strength of association. Heterogeneity among included studies was tested using χ^2 -based Q test and I² test. The Mantel-Haenszel method was used for fix-effect model if no heterogeneity was found. Otherwise, the DerSimonian-Laird random-effect model was used. Five comparisons of genetic models were conduced, including the dominant model (GG+GC vs. CC), the recessive model (GG vs. GC+CC), the allele contrast genetic model (G vs. C), the heterozygote comparison (GC vs. CC), and the homozygote comparison (GG vs. CC). Sensitivity analyses were conducted by omitting individual studies sequentially. Publication bias was quantitatively assessed by Begg's rank correlation test. Subgroup analyses stratified by ethnicity, source of control and deviation from Hardy-Weinberg equilibrium (HWE) were conducted. Meta-regression test was used for the assessment of heterogeneity, characteristics tested included ethnicity, source of control, deviation from HWE, and sample size. P < 0.05 showed statistical significance.

Finally, 19 case-control studies including 4,545 cases and 7,720 controls were included in this meta-analysis. Table 1 presents the main characteristics, genotype frequencies of included studies, deviation from HWE in control groups, and quality of each study. The combined results based on all

Address for correspondence: Dr. Wenliang Xiao, Department of Cardiovascular Medicine, Division 1, Third Hospital of Hebei Medical University. No.139 Ziqiang Road, Shijiazhuang, 050000, Hebei, China, tel: +8618732133829, e-mail: 450685816@qq.com

[#]These authors contributed equally to this work.

Received: 10.08.2016 Accepted: 26.08.2016

ency and a	
ency	
≝	
frequ	
otypic	
genc	
2G>(
1e -57	
- <i>6</i> gei	
n of //	
butio	
e distri	
nd the	
ysis a	
a-anal	
s met	
l in thi	
luded	
ies inc	
f stud	ntrols
stics o	and co
acteris	ases a
ר char	g the c
e maii	Juome
1 . Th	ncy ¿
Table '	^r reque

Quality grade		++++	+ +	+++	++++	+	+	+	+	++++	+	+ +	+	+++	+	++	+	+	+	+
Deviation from HWE		No	No	No	No	No	No	Yes	No	No	No	No	Yes	No	No	No	No	No	Yes	No
Controls	ပ	79	243	120	75	310	282	422	162	246	176	35	283	175	692	87	222	239	202	64
	U	1251	4673	2034	1019	68	58	98	28	86	40	45	137	319	142	383	38	61	480	366
SS	ပ	60	19	58	73	302	264	357	137	256	181	31	288	192	679	52	122	178	184	50
Cas	თ	1162	289	906	937	96	66	133	43	80	71	61	174	376	189	282	46	74	468	154
Controls	ပ္ပ	m	б	2	ო	125	116	166	68	92	72	9	88	36	283	21	95	92	41	9
	ပ္ပ	73	225	116	69	60	50	06	26	62	32	23	107	103	126	45	32	55	120	52
	gg	589	2224	959	475	4	4	4	-	12	4	11	15	108	∞	169	ო	ო	180	157
Cases	ខ	-	0	-	-	119	105	128	49	97	65	8	79	23	259	11	42	63	37	12
	ပ္ပ	58	19	56	71	64	54	101	39	62	51	15	130	146	161	30	38	52	110	26
	99	552	135	425	433	16	9	16	2	6	10	23	22	115	14	126	4	11	179	64
Source of controls -		BB	PB	PB	PB	PB	PB	PB	ΡB	PB	PB	ΡB	ΡB	PB	ΗB	HВ	PB	HB	ΗB	HB
Ethnicity		Caucasian	Caucasian	Caucasian	Caucasian	Asian	Asian	Asian	Asian	Asian	Asian	Asian	Asian	Caucasian	Asian	Caucasian	Asian	Asian	Asian	Asian
Year		2001	2001	2002	2004	2005	2006	2006	2007	2007	2008	2008	2010	2010	2010	2011	2011	2011	2013	2013
First author		Georges JL	Humphries SE	Basso F	Kelberman D	Li Y	Wei YS	Fu HX	Liu YS	Park S	Gao CX	Maitra A	Jia XW	Fragoso JM	Liang ZY	Coker A	Fan WH	Liu YC	Tong Z	Zhang YJ

Stratified by	Comparison	Number of	Dominant genetic	model	Allele contrast			
		datasets	OR (95% CI)	Р	OR (95% CI)	Р		
Ethnicity	Asian	13	1.168 (1.040–1.312)	0.009	1.223 (1.078–1.387)	0.002		
	Caucasian	6	1.004 (0.994–1.015)	0.426	1.001 (0.990–1.012)	0.864		
Source of control	PB	14	1.052 (1.007–1.098)	0.023	1.046 (1.003–1.091)	0.034		
	HB	5	1.044 (0.944–1.155)	0.405	1.059 (0.947–1.185)	0.313		
Deviation from HWE	Yes	3	1.127 (0.936–1.358)	0.207	1.167 (0.950–1.434)	1.47		
	No	16	1.031 (0.994–1.069)	0.099	1.029 (0.992–1.067)	1.52		

CI — confidence interval; HB — hospital-based study; HWE — Hardy-Weinberg equilibrium; OR — odds ratio; PB — population-based study

Figure 1. The association between *IL-6* gene -572G>C polymorphism and coronary heart disease susceptibility in the allele contrast genetic model stratified by ethnicity; CI — confidence interval; OR — odds ratio.

studies showed that a significant increase of CHD susceptibility was found in the dominant model (GG+GC vs. CC: OR = 1.044, 95% CI 1.006-1.084, p = 0.023), the heterozygote comparison (GC vs. CC: OR = 1.086, 95% CI 1.012-1.166, p = 0.021), and the allele contrast genetic model (G vs. C: OR = 1.046, 95% CI 1.007-1.086, p = 0.021), but not in the recessive model (GG vs. GC+CC: OR = 1.007, 95% CI 0.959-1.058, p = 0.770), or the

homozygote comparison (GG vs. CC: OR = 1.009, 95% CI 0.980–1.039, p = 0.544). In the subgroup analysis stratified by ethnicity, significant increase of CHD susceptibility was found in Asians in the dominant model (GG+GC vs. CC: OR = 1.168, 95% CI 1.040–1.312, p = 0.009) and the allele contrast genetic model (C vs. G: OR = 1.223, 95% CI 1.078–1.387, p = 0.002). The detailed outcomes of subgroup analyses are shown in Table 2. Figure 1

shows the association between IL-6 gene -572G>C polymorphism and CHD susceptibility in the allele contrast genetic model stratified by ethnicity.

Through Begg's rank correlation test, we identified heterogeneity in the dominant model, the allele contrast genetic model, and the homozygote comparison, but not for the other two genetic models. In the sensitivity analyses, the result did not change under any genetic model, which suggested that the results of main analysis were statistically robust. In meta-regression, the univariate regression test showed that ethnicity (I²-residual = 40.1%, adj-R² = 41.8%, p = 0.04) were the significant source of heterogeneity among studies.

Cytokine genes have been supposed to be of crucial role in diseases susceptibility and host genetic polymorphisms. *IL-6* has a broad range of cellular and humoral properties in relation to the etiology and inflammatory response of CHD [4, 5]. Previous studies have demonstrated that plasma levels of IL-6 may be associated with CHD risk and that the -572G allele was associated with lower serum level of IL-6 concentrations compared with the -572C allele [6, 7]. Therefore, it is quite reasonable to deduce that *IL-6* gene -572G>C polymorphism is associated with CHD susceptibility.

Comparing with two previous meta-analyses focusing on association between IL-6 gene -572G > C polymorphism [8, 9], our study has some important improvements. Firstly, some new studies were published and they were included in our meta-analysis. Moreover, in the present study, we conducted subgroup analyses and metaregression test to identify the potential source of heterogeneity. Through subgroup analyses, we found that G allele of -572G > C polymorphism was significantly associated with increased CHD susceptibility in Asians, but the effect size was weak. Meta-regression test showed that ethnicity $(I^2$ -residual = 40.1%, adj- R^2 = 41.8%, p = 0.04) was a significant source of heterogeneity among the studies. Therefore, the different ethnicity contributed to the overall heterogeneity. We also have to note the limitations of this study. Firstly, we only included published studies meeting our

inclusion criteria from four databases, similar studies in other databases and unpublished researches may have been missed. Moreover, the possible pathogenesis of CHD is comprehensive, but due to insufficiency of included studies, we did not detect the interactions between genetic factors and other environmental or lifestyle factors.

In conclusion, from the combined results of currently included studies, our meta-analysis suggests that the *G* allele of *IL-6* gene -572G > C polymorphism is significantly associated with increased CHD susceptibility in Asians, but the effect size is weak. More studies with multiple ethnicities and different genders are needed to generalize the results.

Conflict of interest: None declared

References

- Yoon SS, Dillon CF, Illoh K, Carroll M. Trends in the Prevalence of Coronary Heart Disease in the U.S.: National Health and Nutrition Examination Survey, 2001–2012. American Journal of Preventive Medicine, 2016.
- Jenny NS, Tracy RP, Ogg MS et al. In the elderly, interleukin-6 plasma levels and the -174G>C polymorphism are associated with the development of cardiovascular disease. Arteriosclerosis Thrombosis Vascular Biol, 2002; 22: 2066–2071.
- Cesari M, Penninx BW, Newman AB et al. Inflammatory markers and onset of cardiovascular events: results from the Health ABC study. Circulation, 2003; 108: 2317–2322.
- Plutzky J. Inflammatory pathways in atherosclerosis and acute coronary syndromes. Am J Cardiol, 2001; 88: 10K–5K.
- Woods A, Brull DJ, Humphries SE, Montgomery HE. Genetics of inflammation and risk of coronary artery disease: the central role of interleukin-6. Eur Heart J, 2000; 21: 1574–1583.
- Danesh J, Kaptoge S, Mann AG et al. Long-term interleukin-6 levels and subsequent risk of coronary heart disease: Two new prospective studies and a systematic review. PLoS Med, 2008; 5: e78.
- Malarstig A, Wallentin L, Siegbahn A. Genetic variation in the interleukin-6 gene in relation to risk and outcomes in acute coronary syndrome. Thrombosis Res, 2007; 119: 467–473.
- Zheng GH, Chen HY, Xiong SQ. Polymorphisms of -174G>C and -572G>C in the interleukin 6 (IL-6) gene and coronary heart disease risk: a meta-analysis of 27 research studies. PloS One, 2012; 7: e34839.
- Song C, Liu B, Yang D et al. Association between Interleukin-6 gene -572G>C polymorphism and coronary heart disease. Cell Bioch Biophysics, 2015; 71: 359–365.