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Abstract 
Background: Recent studies have identified amphoterin-induced gene and open reading frame  
(AMIGO2). The role of AMIGO2 in tumour research is well-studied, but its role in ischemic heart 
diseases is seldom reported. In the present study,  the role of AMIGO2 in myocardial infarction (MI) is 
under investigation for the first time. 
Methods: For in vitro studies, cardiomyocytes (CMs) and endothelial cells (ECs) were isolated from 
both AMIGO2 knockout (KO) and WT mice. The apoptosis of CMs was tested after 48 h of ischemic 
stimulation. A proliferation test was implemented after 7 days of normoxic incubation and tube forma-
tion on ECs. For in vivo studies, the MI model was built in mice hearts. Echocardiographic evaluation 
was performed at 3 days and 28 days post-MI, while the hemodynamics test was performed at 28 days 
post-MI. The histological results of the apoptosis, proliferation, angiogenesis and infarct zone assess-
ments were determined using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling 
(TUNEL) assay, Ki67 staining, a-SMA/CD31 immunostain and the Masson-Trichrome method, 
respectively. The expression changes of the Akt pathway and related proteins were confirmed using both 
quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. 
Results: The present results demonstrated that AMIGO2 deficiency caused more CMs suffering apop-
tosis, lower proliferation and less angiogenesis in vitro and in vivo. Weaker cardiac function and larger 
scar formation were detected in AMIGO2 KO mice, and increased expression of active-caspase-3 and 
decreased expression of PDK1, p-Akt, Bcl-2/Bax and VEGF occurred. 
Conclusions: Herein the findings indicate that AMIGO2 deficiency plays an attenuated cardio-pro-
tective role in ischemic heart disease via inactivation of the PDK1/Pten/Akt pathway. (Cardiol J 2019; 
26, 4: 394–404)
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Introduction

Myocardial infarction (MI) is the world’s lead-
ing cause of morbidity and mortality, and ischemic 
injury induces apoptotic loss of the myocardium 
[1, 2], which leads to ventricular remodeling [3, 4].  
Avoiding the myocardium loss and inhibiting car-
diac fibrosis have been a hot issue in MI therapy.

Many studies have explored the amphoterin-
induced gene and open reading frame (AMIGO2), 

also known as Alivin-1; it is a novel member of the 
genes encoding for type I transmembrane proteins. 
AMIGO2 possesses a protein structure comprising 
an extracellular domain containing six leucine-rich 
repeats (LRRs) followed by an immunoglobulin 
domain, a transmembrane and intracellular do-
main with phosphorylation sites. The homo- and 
heterodimers lead to signal transduction [5, 6]. 
Interestingly, AMIGO2 has been studied in cancer 
research, and its anti-apoptosis and migration abili-
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ties of have been reported in many articles. The 
AMIGO2 deficiency in gastric adenocarcinoma cells 
changed the morphology, chromosomal stability 
and cell migration in nude mice [7]. Moreover, 
AMIGO2 has also been detected in proliferating 
synovial tissue invading cartilage and is found in 
rheumatoid arthritis patients [8]. 

It is well known that the phosphoinositide 
3-kinase dependent kinase 1 (PDK1)-Akt path-
way plays a vital role in multiple aspects of bio-
logical processes including cell growth, survival 
metabolism and angiogenesis. Dysregulation of 
this pathway is correlated with the pathogenesis 
of many diseases including cancer and metabolic, 
cardiovascular and neurological disorders [9, 10]. 
As regulators of this pathway, PDK1 and Pten are 
commonly detected, and the Pten/Akt pathway 
is involved in inflammatory responses, apoptosis 
and angiogenesis, which play essential roles in the 
biological processes of cardiovascular cells [11, 12]. 
Pten has a molecular weight of 40–50 kDa and com-
prises an N-terminal PIP2-binding polybasic tail, an 
N-terminal phosphatase domain, a C2 domain, and 
a C-terminal tail region with multiple phosphoryla-
tion sites [13, 14]. Akt is at the central hub of the 
signaling pathway modulating multiple aspects 
of cellular functions including cellular apoptosis, 
proliferation, metabolism and hypertrophy [15, 
16]. The activity of Akt is primarily controlled by 
Pten via the regulation of Ptdlns [3, 4, 5] P3 levels 
[13, 17]. Furthermore, Hyojin Park et al. [18] have 
found that AMIGO2 directly interacts with PDK1, 
a primary activator of Akt at the plasma membrane 
in endothelial cells (ECs). 

AMIGO2, as a key regulator, reduced apoptosis 
and stimulated proliferation via the Akt signalling 
pathway in cancer cells. In the field of cardiovas-
cular research, there are hardly any reports on 
AMIGO2. The present aim is to observe the func-
tional roles of AMIGO2 in ischemic heart disease 
and further investigate the underlying mechanism 
of the relationship among AMIGO2 and the Pten 
and Akt signaling pathways. 

Methods

Experimental animals
All animal experiments were approved by the 

Animal Care and Use Committee of Xixi Hospital 
and followed the guidelines for the Care and Use 
of Laboratory Animals published by the National 
Institutes of Health. Wild-type (WT) C57BL/6 
and AMIGO2 knockout (KO) mice (C57BL/6 
background) were purchased from Beijing Vital 

River Laboratory Animal Technology Company 
for research use only. Mice were fed in the cages 
at a temperature of 21 ± 4°C. The weight of mice 
suitable for MI surgery is 22–25 g, and their age 
was 6–8 weeks.

Isolation of neonatal  
ventricular cardiomyocytes

Neonatal ventricular cardiomyocytes (CMs) 
were isolated as described previously. Briefly, 
hearts from 24-h-old AMIGO2 KO and WT mice 
were excised and digested with 0.1% trypsin 
(Gibco, NY, USA). The dispersed cells were cul-
tured with 10% FBS-supplemented high glucose 
DMEM (glucose concentration, 4 g/L) for 90 min at 
37°C with 5% CO2. Then, non-adherent cells were 
transferred into the bottom of 24- or 6-well plates 
(Corning, MA, USA) and cultured for 24 h. Then, 
the CMs beat rhythmically and were well prepared 
for the follow-up experiments.

Isolation of endothelial cells
The murine ECs were isolated by the following 

procedures. Mice were sacrificed by an overdose 
of isoflurane, and the lungs were separated and 
minced into small pieces, washed in Hank’s buffer 
and digested with dispase for 1 h. The homogenate 
underwent filtration and centrifugation at 300 g 
for 5 min. The cells were suspended and purified 
with anti-mouse VE-cadherin antibody-coated 
(Pharmingen, Germany) magnetic beads. The col-
lected cells were cultured in DMEM (Invitrogen, 
Germany) supplemented with 20% fetal calf serum, 
endothelial cell growth factor (Sigma Aldrich, 
USA), penicillin (50 U/mL) and streptomycin  
(50 μg/mL). The ECs from the first two passages 
were over 95% Dil-Ac-LDL positive for purifica-
tion. Then, cells were prepared in passage 3–6 for 
the in vitro study.

In vitro proliferation test
The proliferation was tested by Ki67 immu-

nostaining. Neonatal CMs were seeded at 1 × 104 
cells per well in 24-well plates and cultured under 
normoxic conditions for 7 days. The proliferating 
cells were determined by double staining of Ki67 
and DAPI. In brief, the cells were fixed in 4% para-
formaldehyde, blocked with 5% bull serum albumin 
(BSA) after 10 min of permeabilization, and incu-
bated with primary antibodies (Ki67, Abcam, USA) 
overnight followed by the respective fluorescent 
secondary antibodies. After three washes with 
PBST, the cell nuclei were stained with Hoechst 
33258 pentahydrate 1 μg/mL (Invitrogen, USA). 
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The fluorescence images were obtained at 5 ran-
dom visual fields per well by a Leica fluorescence 
microscope. The proliferation rate is the number 
of Ki67/DAPI double positive cells divided by the 
total number of cells, and the data are presented 
as the mean ± standard deviation (SD).

In vitro apoptosis measurement
The apoptotic CMs were detected by the 

terminal deoxynucleotidyl transferase-mediated 
dUPT nick end-labelling (TUNEL) assay (In Situ 
Cell Death Kit, TMR red, Roche Applied Science, 
USA). Neonatal CMs were seeded at 1 × 104 cells 
per well in 24-well plates and induced to apoptosis 
under hypoxic conditions (0.1% O2, 5% CO2) in 
an FBS-free medium for 48 h. In brief, the cells 
were fixed in 4% paraformaldehyde, permeabilized 
in 0.2% Triton X-100 and blocked with 5% BSA. 
After 3 washes with 0.1% Tween-20 PBS, CMs 
were stained following manufacturer instruc-
tions. The cell nuclei were stained with Hoechst 
33258 pentahydrate 1 μg/mL (Invitrogen, USA). 
Fluorescence photographs were taken at 5 random 
visual fields per well using a Leica fluorescence 
microscope. The apoptosis rate is the number of 
TUNEL/DAPI double-positive cells divided by the 
total number of cells, and the data are presented 
as the mean ± SD.

Tube formation evaluation
To investigate the angiogenesis potential of 

ECs in vitro, cells were cultured at a concentration 
of 2 × 104 cells onto each growth factor-reduced 
Matrigel-coated (BD Pharmingen, CA, USA) well 
of a 96-well plate. After 4–6 h of incubation, the 
capillary network structures of the ECs were 
photographed using phase-contrast microscopy 
(Leica, Wetzlar, Germany), and the total number of 
branches were calculated by Image-Pro software. 
The data are presented as the mean ± SD.

Mouse MI model
Mice were used for the MI model by ligation of 

the left anterior descending coronary artery (LAD) 
[19, 20]. In brief, mice were anesthetized with an 
intraperitoneal injection of 4% chloral hydrate  
(4 mg/kg) and ventilated, and a left thoracotomy 
was created. The LAD was ligated permanently 
with an 8-0 silk suture. Successful coronary oc-
clusion was verified by the observed myocardium 
blanching distal to the ligation. Paleness around 
and below the ligation point indicated a successful 
operation. The chest was closed, and the mice were 
placed back into cages. 

Cardiac function assessment  
by echocardiography and hemodynamics

The mice underwent echocardiography at  
3 days and 28 days post-MI, whereas a hemodynam-
ics evaluation was implemented 28 days post-MI. In 
brief, the mice were anesthetized via the inhalation 
of 2% isoflurane in 100% O2 gas; the 2-dimensional 
and M-model echocardiographic images (17.5 MHz 
transducer, Vevo 2100, Visual Sonics, Canada) were 
obtained at the level of the papillary muscles. The 
left ventricular end-systolic diameter (LVESD) and 
left ventricular end-diastolic diameter (LVEDD) 
were measured during at least 3 separate cardiac 
cycles. The ejection fraction (EF, %) and fractional 
shortening (FS, %) were calculated by the Simpson 
method. 

Cardiac catheterization was performed with 
a catheter conducer (Millar Instrument, Houston, 
TX, USA) for hemodynamic assessment. A 1.4 F 
pressure catheter, SPR 671, was inserted into the 
aorta and left ventricle (LV) through the right ca-
rotid artery. The transducer was tested to measure 
the left ventricular systolic pressure (LVSP), left 
ventricular end diastolic pressure (LVEDP), and 
LV maximum ± dp/dt. 

All measurements were repeated three times 
by a blinded investigator, and the data are presented 
as the mean ± SD.

Histology analysis
The animals were sacrificed, and the isolated 

hearts were immediately placed in a 10% KCl solu-
tion to induce the hearts to remain in the diastolic 
phase. The left and right atria of the heart were 
removed, leaving the LV, and dehydrated in a 30% 
sucrose solution for 12–24 h at 4°C. The samples 
were embedded in Tissue-Tek OCT (Sakura Fine-
tek, CA, USA) compound and snap frozen in liquid 
nitrogen. The frozen sections were cut to a 7-μm 
thickness. 

The 3-days-post-MI samples were incubat-
ed with primary antibodies (TnI, Abcam, USA) 
overnight followed by the fluorescent conjugated 
secondary antibodies. After 3 washes with PBST, 
the apoptotic CMs were stained by a TUNEL kit. 
The cell nuclei were stained with Hoechst 33258 
pentahydrate 1 μg/mL (Invitrogen, USA). Fluo-
rescence photographs were obtained with a Leica 
fluorescence microscope. The ratio of TUNEL-
-positive CMs was measured using the quantitative 
software Image-Pro Plus. The apoptosis rate is 
the number of TUNEL/DAPI double positive cells 
divided by the total number of cells, and the data 
are presented as the mean ± SD.
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The 7-days-post-MI heart samples were in-
cubated with the primary antibodies Ki67 and 
TnI (Abcam, USA) diluted 1:200 at 4°C overnight, 
followed by incubation of secondary fluorescent 
antibodies. The nuclei were stained with Hoechst 
33258 (Thermo Fisher Scientific, CA, USA), and the 
images were observed by a fluorescence microscope 
(Leica, Wetzlar, Germany). The proportion of Ki67-
-positive CMs was analyzed using the quantitative 
software Image-Pro Plus. The proliferation rate 
is the number of Ki67/DAPI double positive cells 
divided by the total number of cells, and the data 
were are presented the mean ± SD.

The heart samples were incubated with pri-
mary antibody reacted (Abcam, USA) with a-SMA, 
CD31 and primary antibody with troponin I (TnI) 
(Abcam, USA) diluted 1:200 at 4°C overnight, fol-
lowed by incubation of the secondary fluorescent 
antibodies. The nuclei were stained with Hoechst 
33258 (Thermo Fisher Scientific, CA, USA), and 
images were taken with a fluorescence microscope 
(Leica, Wetzlar, Germany). The number of a-SMA 
or CD31 positive vessels were analysed using the 
quantitative software Image-Pro Plus. The data are 
presented as the mean ± SD.

The scar size of the 28-day-post-MI samples 
was measured by the Masson-trichrome method. 
Briefly, frozen tissue sections of heart tissues 

from different groups were fixed in 4% para-
formaldehyde and stained with the Masson-tri-
chrome kit. The total LV area was measured using  
Image-Pro Plus. The infarct area was calculated 
as the percentage (%) of the infarcted area divided  
by the entire LV. The data are presented as the 
mean ± SD.

Quantitative real-time PCR
Total RNA was extracted from the CMs using 

Trizol reagent (Invitrogen, CA, USA) according 
to manufacturer instructions. The cDNA was 
synthesized from 2 μg of RNA using Moloney 
Murine Leukemia Virus (M-MLV) reverse tran-
scriptase and an oligo dT 18 primer (TAKARA, 
Japan). Quantitative real-time polymerase chain 
reaction (PCR) was performed using the SYBR 
Green Reaction Mix (TAKARA, Japan) follow-
ing manufacturer instructions. The PCR condi-
tions were 95°C for 10 min and 40 cycles of 95°C 
for 30 s, 60°C for 30 s and 72°C for 1 min. The 
PCR primers were designed using Primer3 Input 
online software, and they are listed in Table 1.  
Beta-actin was used as a control, and the relative 
expression of the target genes was evaluated by  
a comparative cycle threshold method and normal-
ized to the control. The data are presented as the 
mean ± SD.

Table 1. Primer Sequence of mRNA for RT-PCR.

Gene name Primer sequence Gene ID Product size

Mus-AMIGO-2 F GGAGGTTCAAGCTGGCTGAT NM 001164602.1 620

Mus-AMIGO-2 R GTGGGCGTGGGATCTGTTTA

Mus-PDK-1 F TGTCTACGGTGGAAACCAGC XM 01731725.1 337

Mus-PDK-1 R  TTGGCTTCTGGTCGGAGTTC

Mus-Pten F GAAAGGGACGGACTGGTGTA NM 008960.2 213

Mus-Pten R TCTTGTGAAACAGCAGTGCC

Mus-Akt F CTGCCCTTCTACAACCAGGA XM 006501107.1 239

Mus-Akt R CATACACATCCTGCCACACG

Mus-Bcl-2 F TTGTAATTCATCTGCCGCCG NM 009741.5 179

Mus-Bcl-2 R AATGAATCGGGAGTTGGGGT

Mus-Bax F TCATGAAGACAGGGGCCTTT NM 007527.3 197

Mus-Bax R GTCCACGTCAGCAATCATCC

Mus-Casp-3 F CAGCCAACCTCAGAGAGACA NM 009810.3 190

Mus-Casp-3 R ACAGGCCCATTTGTCCCATA

Mus-VEGF-F CAAACCTCACCAAAGCCAGC NM 001110267.1 187

Mus-VEGF-R ACGCGAGTCTGTGTTTTTGC

Mus-Actin F GTGGGAATGGGTCAGAAGGA NM 007393.5 226

Mus-Actin R TCATCTTTTCACGGTTGGCC

RT-PCR — real-time polymerase chain reaction
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Western blot analysis
After 48 h of incubation under hypoxic conditions 

and FBS-free stimulation, the CMs and ECs were 
lysed with a lysis buffer (50 mM HEPE, 5 mM EDTA, 
and 50 mM NaCl, Beyotime Biotechnology, China) 
and protease inhibitor (Roche Applied Science, IN, 
USA) for 30 min and centrifuged at 12,000 rpm for  
30 min at 4°C to obtain extracts. The protein concen-
trations were detected by a BCA Protein Assay Kit 
(Life Technologies, USA), and the samples (30 μg) 
were electrophoresed on SDS-polyacrylamide gel. Af-
ter the protein transfer, the PVDF membranes were 
blocked with PBS-0.05% Tween (PBST) containing 
5% BSA and reacted with primary antibodies includ-
ing anti-AMIGO2 (1:500, Abcam, USA), Pten (1:500, 
CST, USA), Bcl-2 (1:500, CST, USA), Bax (1:500, 
CST, USA), caspase-3 (1:500, CST, USA), NFkB/ 
/p56 (1:500, CST, USA), p-Akt, T-Akt (1:500, CST, 
USA), VEGF (1:500, Abcam, USA) and b-actin (Ab-
cam, USA) overnight at 4°C. After two washes with 
PBST, the membranes were incubated with 1:2000 
secondary antibodies conjugated with HRP antibody 
at room temperature for 1 h. The membranes were 
visualized by a chemiluminescence system (BioRad, 
USA). b-actin was used as the control for evaluating 
the relative expression of other proteins.

Statistical analysis
All of the data are presented as the mean 

± SD. Statistical analyses for the measurement 
of significant differences between the AMGIO2 
KO and WT groups were performed with the 
Student t-test. Probability values of p < 0.05  
were considered statistically significant.

Results

The lack of AMIGO2 results in higher  
apoptosis ratio in vitro

To examine the biological role of AMIGO2 in 
CMs apoptosis, the CMs isolated from AMIGO2 
and WT mice underwent a 24-h hypoxia induc-
tion. TUNEL-positive cells were evaluated and it 
was found that the AMIGO2 deficiency led to the 
increased apoptosis of myocytes when compared 
with the WT group (Fig. 1A, D, #p < 0.05).

Deletion of AMIGO2 results in lower  
CM proliferation in vitro

To determine the functional role of AMIGO2 
in CM proliferation, Ki67 immunostaining was 
performed. The Ki67-positive cells were counted 
and it was found that AMIGO2-deficient hearts had 

fewer proliferative CMs than the WT cells (Fig. 
1B, E, #p < 0.05).

Absence of AMIGO2 induces weaker  
proliferation ability of endothelial  
cells in vitro

To investigate the functional role of AMIGO2 
in endothelial cell proliferation, tube formation was 
performed. The length of the capillary structure in 
the AMIGO2 KO and WT groups was calculated and 
it was found that AMIGO2-deficient endothelial 
cells had a weaker ability of microvessel formation 
than the WT hearts (Fig. 1C, F, #p < 0.05).

The absence of AMIGO2 suppresses  
proliferation and induces apoptosis in vivo

The role of AMIGO2 in apoptosis in vivo was 
validated by TUNEL staining in 3-day samples. 
Findings suggest that the deficiency of AMIGO2 
markedly induced more apoptotic nuclei in the 
border zone compared with WT group. The prolif-
eration ratio of the myocytes in the border area of 
7-day samples was measured by immunostaining 
with Ki67 antibody. Fewer Ki67-positive CMs in 
AMIGO2 KO border zones were observed (Fig. 
2A–D, #p < 0.05).

The suppression of AMIGO2 restrains  
angiogenesis in vivo

The role of AMIGO2 in angiogenesis in vivo 
using a-SMA/CD31 immunofluorescence staining 
was validated. Findings suggest that the deficiency 
of AMIGO2 markedly restrained microvessel for-
mation in the border zone compared with the WT 
group (Fig. 2E–H, #p < 0.05).

Deficiency of AMIGO2 deteriorates cardiac 
function and neovascularization  
and increases infarct size in vivo

To determine whether AMIGO2 plays a key 
role in cardiac function, the myocardial contractile 
parameters at 3 and 28 days after MI were evaluated. 
The echocardiograph results indicated AMIGO2 KO 
induced weaker heart function compared with the 
WT group (Fig. 3A–D), including a worse EF and FS  
(Fig. 3A, B, #p < 0.05). Furthermore, the LVED of 
both the end-diastolic and end-systolic stages were 
shorter in the AMIGO2 KO mouse hearts than in 
the WT group (Fig. 3C, D, #p < 0.05). Moreover, 
the hemodynamic results showed a similar effect. 
Compared with the WT group, AMIGO2 KO mice 
had a significantly lower LVSP, higher LVEDP, and 
lower ± dp/dt (Fig. 3E–H, #p < 0.05).
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Figure 1. Suppression of AMIGO2 results in decreased apoptosis and increased proliferation of cardiomyocytes (CMs)  
and stimulates angiogenesis of endothelial cells (ECs) in vitro; A. Representative pictures of TUNEL-positive CMs. 
Scale bar: 100 μm; B. Representative pictures of Ki67-positive CMs. Scale bar: 100 μm; C. Representative pictures 
of tube formation of ECs. Scale bar: 100 μm; D. Quantification of the apoptotic CMs (n = 5/group); *p < 0.01 vs. 
the Wild-type (WT) group; E. Quantification of the proliferative CMs (n = 5/group); #p < 0.01 vs. the WT group;  
F. Quantitative analysis of tube length (n = 5/group); †p < 0.01 vs. other groups.

To evaluate the effect of AMIGO2 in angiogen-
esis and infarct size, a-SMA/CD31 immunostaining 
and Masson’s trichrome staining were used. The 
quantitative assessment of myocardial fibrosis 

indicated that AMIGO2-deficient mice had more 
obvious neovascularization and a smaller scar 
area compared with the WT group (Fig. 4A, B,  
#p < 0.05).
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AMIGO2 deficiency influences both  
the mRNAs and proteins of the PDK-1  
and Akt signalling pathways in myocytes 

To explore the underlying mechanism of an-
ti-apoptosis during AMIGO2 loss in CMs, the 
relative expression of proteins by RT-PCR and 
immunoblotting were analyzed. Results showed 
that a deficiency of AMIGO2 stimulates a different 
expression of PDK-1 and Akt signalling pathway 

molecules at mRNA and protein levels (Fig. 4C–H, 
#p < 0.05).

Discussion

The mechanism of ischemic heart disease still 
requires intensive study. In the present study,  as-
sessed first was the role of AMIGO2 in inhibiting 
CM loss and stimulating the proliferation of sur-

Figure 2. The lack of AMIGO2 reduced apoptosis, induced proliferation and increased neovasculation in vivo; A. Rep-
resentative pictures of TUNEL-positive nuclei cardiomyocytes (CMs) in border zone. Scale bar: 100 μm; B. Quantifica-
tion of the apoptotic nuclei (n = 5/group). *p < 0.01 vs. the Wild-type (WT) group; C. Representative pictures of Ki67-
-positive CMs in border zone. Scale bar: 100 μm; D. Quantification of the proliferative CMs (n = 5/group); **p < 0.01  
vs. the WT group; E. Representative pictures of a-SMA-positive small arteries in border zone. Scale bar: 100 μm;  
F. Quantification of a-SMA-positive small arteries (n = 5/group); #p < 0.05 vs. other groups; G. Representative pic-
tures of CD31-positive microvessels in border zone. Scale bar: 100 μm; H. Quantification of CD31-positive microves-
sels (n = 5/group); ##p < 0.05 vs. other groups.
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Figure 3. Deletion of AMIGO2 benefits cardiac function recovery; A. Quantitative analysis of echocardiography; A–D. 
Quantitative analysis of echocardiography; #p < 0.01 vs. the Wild-type (WT) group; E–H. Quantitative analysis of 
hemodynamics; *p < 0.01 vs. the WT group; other abbreviations — see text.

vival cardiac cells in the infarcted heart. The main 
findings are listed as follows: (1) lack of AMIGO2 
induces the damages of ischemic heart disease; (2) 
the absence of AMIGO2 leads to more myocardium 
apoptosis and less CM and EC proliferation in both 
in vitro and in vivo experiments; and (3) AMIGO2 
deficiency causes variable expression of the PDK1, 
Pten, Bcl-2/Bax and Akt signalling pathways. The 

data first revealed the role of AMIGO2 in ischemic 
heart disease; AMIGO2 deficiency ameliorates 
damage to infarcted heart and cardiovascular cells 
by activating the PDK-1 and Akt signalling pathway. 
Furthermore, according to the present results, 
AMIGO2 may be a potential target manipulating 
ischemic heart injury. Synthetic up-regulation may 
enhance myocardium salvage and neovasculariza-

C

E

G

D

F

H

BA

Baseline

Baseline

Baseline

Baseline

WT

WT WT

WT

3 days

3 days

3 days

3 days

28 days

28 days

28 days

28 days

AMIGO2 KO

AMIGO2 KO AMIGO2 KO

AMIGO2 KO

0

0

0

0 0

0

0

0

20

1

10

2

30

2

50

5000 5000

15

40

3

100

10000 10000

30

3

5

100

4

150

15000 15000

50

5

10

80 40

10 5

1

50 25

4

EF
 [

%
]

LV
ES

D
 [

m
m

]
LV

S
P

 [
m

m
H

g]
dp

/d
t

–
dp

/d
t

FS
 [

%
]

LV
ED

D
 [

m
m

]
LV

ED
P

 [
m

m
H

g]

#

#

*

*
*

#

#

*

WT

AMIGO2 KO

WT

AMIGO2 KO

WT

AMIGO2 KO

WT

AMIGO2 KO



402 www.cardiologyjournal.org

Cardiology Journal 2019, Vol. 26, No. 4

Figure 4. Deficient AMIGO2 decreased infarct size, activated the PDK-1, Pten, Akt, Bcl-2/Bax and VEGF signalling path-
ways in cardiomyocytes (CMs) and endothelial cells (ECs) at the levels of the mRNAs and protein; A. Representative 
Masson’s trichrome staining of the heart to show the infarct zone 28 days after myocardial infarction; B. Quantification 
of infarct zone in heart tissue; &p < 0.01 vs. the Wild-type (WT) group; C, D. Quantitative analysis of mRNA expression 
of PDK-1, Pten, Akt, Bcl-2/Bax, caspase-3 and VEGF; #p < 0.01 vs. the WT group; E, F. Quantitation of PDK-1, Pten, 
Akt, Bcl-2/Bax, caspase-3 and VEGF expression in CMs and ECs, n = 3; #p < 0.01 vs. the WT group; G. H. Western 
blotting identification for altered expression of NF-kB/p56 Akt, Bcl-2/Bax, caspase-3 and VEGF.
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tion, which accelerate recovery from infarction 
damage. Additionally, PDK-1 may be another key 
point of the downstream pathway of AMIGO2. 
The abolishment of PDK-1 could terminate the 
ischemic injury induced by AMIGO2 deficiency.

Apoptosis is a suicidal mechanism regulated 
by a conserved genetic program [21]. Mitochondria 
are a major organelle participating in the apoptosis 
[22]. Once the apoptotic signal is transferred into 
the mitochondria, the stability of the mitochondrial 
membrane is vulnerable. Proteins in the Bcl-2 and 
caspase family play substantial roles in apoptosis, 
modulating signal transduction and undergoing 
these processes. Bcl-2 inhibits apoptosis by heter-
odimer formation, whereas Bax functions reverse 
to that as a pro-apoptotic protein [23]. Bcl-2 and 
Bax both participate in the apoptosis of CMs, and 
they are essential factors in myocytes under is-
chemic conditions [24, 25]. Caspase proteins and 
Bcl-2/Bax are associated with apoptosis. They play 
critical roles in cardioprotection while PDK1, Pten 
and Akt are their powerful upstream regulators [26, 
27]. The present data indicates that AMIGO2 is 
related to the caspase family and Bcl-2, suggesting 
that AMIGO2 is involved in myocardial apoptosis.

Recently, several studies have reported the 
biological functions of AMIGO2 in different types 
of cells. Among the many biological properties of 
AMIGO2, apoptosis induction and proliferation 
inhibition have gained the most attention of re-
searchers. In the field of oncology, a higher level of 
AMIGO2 protein was proven to be closely relevant 
to the growth and development of cancer. In gastric 
cancer cells, highly expressed AMIGO2 in gastric 
cancer cells mediated more apoptosis and lower 
proliferation via the Wnt and Hedgehog pathway. 
Although the effect of AMIGO2 in cancer research 
has been studied, the functional role of AMIGO2 
in the field of cardiovascular research remains 
unknown. The apoptosis and proliferation of the 
myocardium was first measured, both in vitro and 
in vivo, in an AMIGO2-deficient MI mouse model. 
Moreover, the heart function and hemodynamics 
of the AMIGO2 KO mice was detected and the 
related pathway for these phenotype changes was 
measured. The present results provided strong evi-
dence for the apoptosis-resistant role of AMIGO2 
in CMs both in vitro and in vivo. In this study, we 
found decreased Bcl-2 expression and increased 
Bax expression caused by AMIGO2 deficiency in 
CMs. The data demonstrated that the absence of 
AMIGO2 induced Bcl-2/Bax down-regulation to 
aggravate damage to cardiovascular function from 
ischemic injury. 

Limitations of the study
However, the present study also has some 

limitations. First, the interaction between AMIGO2 
and PDK1 has not been proven. According to the 
achievement of Hyojin Park et al. [18], the direct 
binding of AMIGO2 to the PH domain of PDK1 
enhanced the activation of PDK1 and Akt, and the 
PTD-A2, a specific peptide in the C-terminal region 
of AMIGO2, effectively abrogated the phosphoryla-
tion of PDK1 and Akt activities. The effect of PTD-
A2 in cardiovascular cells should be confirmed. 
Second, the role of PDK1 as an upstream regulator 
of the Akt pathway in cardiovascular cells needs 
to be proven. The suppression or overexpression 
of PKD1 by lenti-viral transfection is required for 
phenotype and pathway validation. Last, without 
ischemic injury, the effect of AMIGO2 in cardiovas-
cular cells has not been confirmed in this article. 
The work herein demonstrated that AMIGO2 defi-
ciency induced greater damage to the heart in the 
MI model; however, the role of AMIGO2 deletion 
in normal hearts should be investigated.

Conclusions

In conclusion, the deletion of AMIGO2 re-
sulted in a significantly higher apoptosis ratio 
and lower proliferation in cardiovascular cells 
after ischemic damage. The impairment caused 
by AMIGO2 deficiency was associated with the 
various expressions of PDK1, Pten, Akt, VEGF, 
Bcl-2/Bax caspase proteins. These data suggest 
that AMIGO2 may be another novel target for MI 
treatment. 
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