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Abstract
Background: The aim of this study was to explore the biomarkers and potential mechanism underly-
ing ischemic cardiomyopathy (ICM).
Methods: Using the GSE42955 Affymetrix microarray data accessible from the Gene Expression 
Omnibus database, the differentially expressed genes between 12 ICM tissue samples and 5 normal 
controls were identified. To investigate the function changes in the course of disease progression, Gene 
Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis 
were performed on the differentially expressed genes, followed by analysis of the protein–protein interac-
tion (PPI) network and modules. 
Results: A total of 50 up-regulated and 179 down-regulated genes were identified. The biological 
processes of immune response, response to virus, and cell adhesion molecules (CAMs) were signifi-
cantly altered by the differentially expressed genes. The PPI network revealed certain hub nodes such as 
CXCL10, IRF1, STAT1, IFIT2, and IFIT3. 
Conclusions: Candidate biomarker genes such as CXCL10, IRF1, STAT1, IFIT2, and IFIT3 may be 
suitable therapeutic targets for ICM. Further study of the CAMs pathway and immune response biologi-
cal processes will be helpful in understanding the pathogenesis of ICM. (Cardiol J 2017; 24, 3: 305–313)
Key words: ischemic cardiomyopathy, differentially expressed genes, pathways,  
protein–protein interactions

Introduction

Ischemic cardiomyopathy (ICM) develops at 
the final stage of coronary artery disease, and is 
characterized by the narrowing of coronary arter-
ies, myocyte death, reactive cellular hypertrophy, 
and ventricular scarring [1]. This form of cardio-
myopathy represents a significant health concern 
owing to the high rate of sudden cardiac death in 
ICM patients worldwide [2]. Traditional treatment 
methods for ICM mainly include drug therapy, 

interventional angioplasty, and surgical vascular 
bypass [3]. However, the vascular lesions of some 
patients show small vessel diseases, which are not 
suitable for surgical operation or vascular obstruc-
tive intervention [4]. Thus, new therapies for ICM 
that satisfy current clinical needs are necessary. 

Recent progress has been made in the dis-
covery of novel targets for heart-related diseases. 
Transforming growth factor-beta signaling has been 
reported to be responsible for repressing the syn-
thesis of inflammatory genes and preventing the  
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inflammatory infiltration in myocardial infarction [5].  
The adaptive and proapoptotic pathways trig-
gered by endoplasmic reticulum stress have been 
found to be involved in the development of car-
diovascular disease; thus, endoplasmic reticulum 
stress has been proposed as a therapeutic target 
for cardiovascular disease [6]. The mitochondria 
have also been suggested as a drug target for 
ICM [7]. In addition, gene therapy targeting 
some important biomarkers has shown potential 
for altering the myocardial tissue microenviron-
ment and improving mechanical cardiac function 
[8]. However, studies reporting gene targeted 
therapies of ICM are rare. 

Gene expression profiling has been used to 
accurately predict the cardiomyopathy etiology [9]. 
In addition, some potential disease-related gene 
markers have been discovered based on the topo-
logical structure of biological networks [10, 11]. 
Therefore, adoption of a bioinformatics approach 
could help to reveal some novel biomarkers for 
cardiomyopathy therapy. Accordingly, in this study, 
a microarray data analysis was performed based 
on the publicly available gene expression profile 
(GSE42955), aiming to explore and identify novel 
biomarkers. In addition, it was hoped that further 
insight would be gained into the molecular mecha-
nisms of ICM by screening the new biomarkers, 
which could facilitate selection of an appropriate 
treatment strategy and development of a new 
therapies for ICM.

Methods

Microarray data acquisition
The publicly available microarray dataset 

GSE42955 was downloaded from Gene Expres-
sion Omnibus (GEO, http://www.ncbi.nlm.nih.gov/
geo/), which was contributed by Molina-Navarro et 
al. [12]. The mRNA profiling was performed using 
17 left ventricular transmural samples, including 
12 obtained from ICM patients and 5 from normal 
donors, based on the platform of Affymetrix Human 
Gene 1.0 ST Array. All of the patients included in 
this study were functionally classified according 
to the New York Heart Association criteria and 
were receiving medical treatment following the 
guidelines of the European Society of Cardiology. 
The heart samples from patients were collected 
during cardiac transplantation. Non-diseased donor 
hearts that were not suitable for transplantation 
due to incompatibility of blood type or size were 
used as controls.

Data preprocessing 
The raw CEL format files were preprocessed us-

ing the Affy package [13] in R, which included the pro-
cesses of background correction and normalization. 
The statistical comparison of gene expression profiles 
between the ICM and control group was performed 
using the Limma package [14] in R. Genes with  
p < 0.01 and logFC (fold change) > 0.58 were considered  
significantly different. Hierarchical clustering  
[15, 16] was performed on the expression levels of 
differentially expressed genes based on the Euclidean 
distance using the pheatmap program [17] in R.

Gene Ontology and pathway  
enrichment analysis

Genes showing differential expression were 
functionally classified based on the GO database 
using the Database for Annotation, Visualization 
and Integrated Discovery (DAVID) tool [18]. The 
significantly altered GO functions with a false dis-
covery rate (FDR) < 0.05 (count = 2, EASE = 0.1)  
were identified.

To identify the pathways significantly associ-
ated with the genes of interest, the potentially al-
tered pathways with an FDR < 0.05 were predicted 
using Kyoto Encyclopedia of Genes and Genomes 
(KEGG) Orthology-Based Annotation System 
(KOBAS) [19] based on the cumulative hypergeo-
metric distribution algorithm. 

Protein–protein interaction (PPI) network  
construction and hub protein screening

The Search Tool for the Retrieval of Interacting 
Genes (STRING) [20] database collects information 
of both experimental and predicted protein interac-
tions. Differentially significant protein pairs of the ex-
pressed genes were predicted using String software 
[21]. Protein pairs with a combined score > 0.8 were 
assembled for PPI network construction with the 
application of Cytoscape software [22]. Subsequently 
node degrees (i.e., the number of neighbors) were 
calculated and hub nodes were screened out.

Modules analysis based on the PPI network
Based on the PPI network described above, 

the modules comprised of genes with similar 
biological functions were analyzed using Mcode 
[23] package in Cytoscape. A degree cutoff ≥ 2 
and K-core ≥ 2 were set as the cutoff values for 
module analysis. The functionally associated genes 
in modules were classified using Bingo software 
[24]. The GO functions with an adjusted p-value 
< 0.05 were considered significant. 
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Results

Identification of differentially expressed 
genes in ICM samples compared  
with normal controls 

A total of 229 genes with differentially signifi-
cant expression were screened out between the 
ICM and control groups, of which 50 genes were 
up-regulated and 179 were down-regulated. The 
heat map for the hierarchical clustering of gene 
expression is shown in Figure 1, which illustrated 
distinct gene expression profiles between ICM 
sample and normal controls. 

Gene Ontology function and KEGG  
enrichment analysis

The GO functions closely related with the 
genes of interest are shown in Table 1. A total of 
8 biological functions were significantly enriched, 
such as immune response (GO: 0006955) and 
defense response (GO: 0006952). The majority 
of the annotated genes were related to immune 
response (Fig. 2).

KEGG pathway analysis showed that the cell 
adhesion molecules (CAMs; ID: hsa04514, p =  
= 1.51E-07, FDR = 1.64E-04) and cytokine-cytokine 
receptor interaction (ID: hsa04060, p = 3.24E-07,  

Figure 1. Hierarchical clustering heat map of differentially expressed genes. The gradient color from blue to orange 
represents the gene expression value (ischemic cardiomyopathy group/control group) from down-regulation to up-
regulation, respectively.

Table 1. Biological processes associated with differentially expressed genes.

Term Count P FDR

GO:0006955, immune response 45 2.81E-19 4.69E-16

GO:0006952, defense response 34 2.39E-12 3.99E-09

GO:0009611, response to wounding 33 2.26E-13 3.78E-10

GO:0006954, inflammatory response 28 1.06E-14 1.76E-11

GO:0002684, positive regulation of immune system process 22 3.81E-12 6.36E-09

GO:0048584, positive regulation of response to stimulus 20 2.10E-10 3.51E-07

GO:0050778, positive regulation of immune response 18 5.08E-12 8.49E-09

GO:0002252, immune effector process 14 1.85E-08 3.08E-05

FDR — false discovery rate
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FDR = 3.51E-04) were significantly enriched by 
the significantly differentially expressed genes  
in ICM.

PPI network and hub proteins
A total of 170 protein pairs were in accordance 

with a combined score > 0.8. The PPI network 
was constructed, which comprised 170 edges and 
88 nodes (14 up-regulated genes and 74 down-
regulated genes) (Fig. 3). The hub nodes were 
assessed based on the fitting function y = 37.56 
x^(–1.365), as shown in Figure 4; the X-axis 
indicates the number of nodes that were directly 
connected to one node, while the Y-axis indi-
cates the number of genes in each degree. The 
top 10 hub nodes were selected and are shown 
in Table 2, including C-X-C motif chemokine 
ligand 10 (CXCL10; degree = 15), signal trans-

ducer and activator of transcription 1 (STAT1; 
degree = 14), interferon induced protein with 
tetratricopeptide repeats 2 (IFIT2; degree = 13),  
interferon induced protein with tetratricopeptide 
repeats 3 (IFIT3; degree = 13), and interferon 
regulatory factor 1 (IRF1; degree = 12).

Significant modules in the PPI network 
The significant modules were further explored 

using the Mcode package in Cytoscape software.  
A total of 2 modules (degree cutoff ≥ 2 and K-core  
≥ 2) were explored, as shown in Figure 5. The 
results revealed that 5 nodes in the modules had 
high degrees of connectivity: CXCL10, IRF1, 
STAT1, IFIT2, and IFIT3. The functional annota-
tion for the modular genes indicated that module 1 
associated with CXCL10 and IRF1 was related to 
the immune system process, while modules associ-

Figure 2. Pie chart showing the proportions of differentially expressed genes involved in each biological process.

Figure 3. Protein–protein interaction networks. Inverted triangles and regular triangles represent the down- and up-
regulated differentially expressed genes, respectively.
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ated with STAT1, IFIT2, and IFIT3 were related to  
a response to virus (Table 3).

Discussion

Ischemic cardiomyopathy is the leading cause of 
sudden cardiac death and poses a significant public 
health threat worldwide. Unfortunately, the detailed 
pathophysiology of ICM remains to be clearly elu-
cidated, and novel effective therapies are urgently 
needed. Gene therapies that alter the myocardial 
tissue microenvironment have shown positive ef-
fects for improving mechanical cardiac function by 
targeting certain important biomarkers [8]. Thus, 
the investigation of novel biomarkers for the de-
velopment of new therapeutic strategies is needed.

In the present study, we mined some new 
biomarkers for ICM based on gene expression 
profile data. The results indicated that ICM induced 
the differential expression of a total of 299 genes 

(50 up-regulated genes and 179 down-regulated 
genes), which were screened out and compared with 
healthy controls. Use of a functional classification 
tool allowed the classification of functionally associ-

Figure 5. Significant modules in the protein–protein in-
teraction network. The polygon represents differentially 
expressed genes with a high node degree. The lines 
represent the connections between polygons.

Table 2. The top 10 selected hub proteins.

Protein Node Protein Node

CXCL10 15 DDX58 11

STAT1 14 GBP2 10

IFIT2 13 CCR1 9

IFIT3 13 C3 8

IRF1 12 IFITM1 7

Figure 4. Investigation of hub proteins. The X-axis indicates the number of nodes that are directly connected to one 
node, and the Y-axis indicates the number of genes in each node.

www.cardiologyjournal.org 309

Yushuang Yang et al., Bioinformatics of ICM



ated differentially expressed genes in 8 biological 
processes-related GO terms and 2 pathways. The 
differentially expressed genes were then mapped 
to a PPI network, and significant nodes such as 
CXCL10, IRF1, STAT1, IFIT2, and IFIT3 were 
screened out, followed by 2 significant modules.

The CAM pathway was the most significantly 
enriched pathway by the genes showing differential 
expression. Basic and clinical research indicates 
that CAMs play an important role in mediation of 
the immune and inflammatory processes of cardio-
vascular diseases [25]. Genome-wide association 
studies also suggest that human diseases such as 
atherosclerosis and Alzheimer’s disease are related 
to the processes of CAMs [26, 27]. Intercellular 
adhesion molecule-1 (ICAM-1), as a member of 
the immunoglobulin superfamily, plays an impor-
tant role in mediating leukocyte adhesion and the 
development of atherogenesis [28]. Moreover,  
a high level of ICAM-1 was found to increase the 
risk of coronary heart disease [29]. Consequently, 
although there is no direct evidence for the criti-
cal role of CAMs in ICM, the results of this study 
suggests that they may play a key role in the 
pathological mechanism of ICM. However, further 
investigation is needed to confirm this finding.

Function analysis showed that immune re-
sponse was the most significant GO term enriched 
by the differentially expressed genes in ICM. 
The current understanding of ICM pathogen-

esis involves concurrent changes in the cellular 
and humoral chains of immunity throughout the 
multi-staged course of the disease [30, 31]. Upon 
an immune inflammatory reaction of the myocar-
dium, cellular and humoral immune responses 
are involved in the pathological remodeling of the 
heart, which further induce extracellular matrix 
degradation, collagen deposition, and myocardial 
cell apoptosis [32]. Collectively, these findings sug-
gest that the immune response is a critical process 
in the pathogenesis of ICM. 

Our data also showed that the genes in mod-
ule 1 were significantly associated with immune 
response-related biological processes, such as 
CXCL10 and IRF1. CXCL10 is suggested to be 
the master regulator of myocardial inflammatory 
cell migration, and may contribute to the clinical 
progression to life-threatening cardiomyopathy 
[33]. Previous studies have demonstrated that 
some factors such as CXL10 are associated with 
immunity in the process of disease [34, 35]. The 
marked up-regulation of CXC chemokines (such as 
CXCL10) is the early event in ICM development 
[36]. CXCL10 with antifibrotic properties can 
prevent fibrosis development from inflammation 
in ICM [37]. 

IRF1 is a critical member of interferon signal-
ing pathway and is proposed to be a genetic risk 
factor for several chronic inflammatory and auto-
immune diseases [38, 39], especially blood-related 

Table 3. Gene Ontology (GO) enrichment analysis for modules.

GO ID Description P Adjusted p n Genes in test set

Module 1 2376 Immune system 
process

9.11E-11 3.22E-08 10 C3AR1, C3, CCR1, CXCL9, IRF1, 
CXCL11, GBP2, IFI35, IFI6, CXCL10

50896 Response to 
stimulus

4.32E-05 1.24E-03 10 C3AR1, IFITM1, C3, CCR1, CXCL9, 
CXCL11, GBP2, IFI35, IFI6, CXCL10

50794 Regulation of  
cellular process

5.86E-03 2.65E-02 10 C3AR1, IFITM1, C3, RGS4, CCR1, 
CXCL9, IRF1, CXCL11, IFI6, CXCL10

50789 Regulation  
of biological  

process

9.17E-03 3.61E-02 10 C3AR1, IFITM1, C3, RGS4, CCR1, 
CXCL9, IRF1, CXCL11, IFI6, CXCL10

65007 Biological  
regulation

1.50E-02 4.94E-02 10 C3AR1, IFITM1, C3, RGS4, CCR1, 
CXCL9, IRF1, CXCL11, IFI6, CXCL10

6955 Immune  
response

4.99E-09 8.80E-07 8 C3, CCR1, CXCL9, CXCL11, GBP2, 
IFI35, IFI6, CXCL10

Module 2 9615 Response  
to virus

9.44E-06 1.62E-03 3 DDX58, RSAD2, STAT1

51707 Response to  
other organism

1.48E-04 1.28E-02 3 DDX58, RSAD2, STAT1

9607 Response to  
biotic stimulus

2.89E-04 1.66E-02 3 DDX58, RSAD2, STAT1

Note: The adjusted p-value represents the p-value corrected for multiple testing; n represents the number of genes.
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diseases [40]. Recently, Chapin et al. [41] indicated 
that the expression level of IRF1 was changed 
in the peripheral blood, which can be used as  
a marker to reflect the glucocorticoid response. IRF1  
plays a key role in response to pressure or volume 
overload, which is involved in the pathogenesis of 
ischemic heart diseases [42]. In the present study, 
based on the PPI network, CXCL10 and IRF1 were 
identified as hub nodes with high degrees of con-
nectivity, suggesting that these genes might play 
important roles in the immune response of ICM. 

Moreover, functional module 2 was closely 
related with the biological process of response to 
virus. The functionally associated genes such as 
STAT1, IFIT2 and IFIT3 were classified in module 2.  
The protein encoded by the STAT1 gene is ac-
tivated in the process of cell growth inhibition, 
and has multiple interactions with cytokines and 
growth factors [43]. Disruption of the STAT1 gene 
in mice has been found to affect innate immunity to 
a virus [44]. Additionally, STAT1 is activated after 
ischemia-reperfusion, which induces the expres-
sion of proapoptotic cytokines leading to cardiac 
cell death [45]. IFIT2 is believed to function as  
a suppressor in tumorigenesis [46]. In addition,  
a previous study indicated that IFIT2 does not 
function as a monomer, but rather forms complexes 
(such as ISG54/IFIT2) with itself or related ISG60/ 
/IFIT3 proteins to elicit complex cellular responses 
[47]. The apoptotic response to IFIT2 may con-
tribute to other functions, including translational 
regulation, inhibition of tumor colonization, and 
protection against a lethal viral infection [47]. 
IFIT2 and IFIT3 are the interferon-related genes 
and are found to be differentially expressed in heart 
failure mice [48]. In this study, STAT1, IFIT2, and 
IFIT3 were identified as hub nodes and showed 
multiple interactions with other genes/proteins. 
The changes in the expression of these genes 
may disturb the biological processes related to  
a response to a virus and contribute to the occur-
rence of ICM. The functions of these significant 
nodes warrant further investigation.

Limitations of the study
In spite of these findings, some important 

limitations remain in this work. The microarray 
data from the GEO database were analyzed in this 
study and the data was not generated by this study. 
The diagnostic and inclusion criteria for the ICM 
patients and controls included in the database were 
not available. Another limitation was the lack of ex-
perimental validation in other samples or datasets, 
which might preclude any conclusive suggestions. 

The present study was also limited by a relatively 
low sample size. 

Future directions for investigation
Further experimental validations of the pre-

sented findings in a large number of samples are 
needed in the near future. The expression levels 
of the biomarkers identified in this work should be 
assessed in patients at high risk of ICM and those 
that are already diagnosed with ICM to discover 
novel gene therapies for the prevention and treat-
ment of ICM.

Conclusions

In conclusion, the potential ICM-related 
genes, including CXCL10, IRF1, STAT1, IFIT2, 
and IFIT3, were found to have multiple interactions 
with other genes. The differential expression of 
these target genes may increase the possibilities 
for detecting or predicting the occurrence of ICM. 
Furthermore, the CAMs-related pathway, immune 
response, and response to virus are proposed to be 
involved in the process of ICM. These candidate 
biomarker genes and pathways could be useful in 
further studies aiming to understand the genetic 
mechanisms of ICM and are expected to signifi-
cantly assist in the development of therapeutic 
strategies. 
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