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Abstract
Background: Quantification of myocardial ischemia and necrosis might ameliorate prognostic models 
and lead to improved patient management. However, no standardized consensus on how to assess and 
quantify these parameters has been established. The aim of this study was to quantify these variables 
by cardiac magnetic resonance imaging (CMR) and to establish possible incremental implications in 
cardiovascular risk prediction.
Methods: This study is a retrospective analysis of patients with known or suspected coronary artery 
disease (CAD) referred for adenosine perfusion CMR was performed. Myocardial ischemia and necrosis 
were assessed and quantified using an algorithm based on standard first-pass perfusion imaging and 
late gadolinium enhancement (LGE). The combined primary endpoint was defined as cardiac death, 
non-fatal myocardial infarction, and stroke. 
Results: 845 consecutive patients were enrolled into the study. During the median follow-up of 3.64 
[1.03; 10.46] years, 61 primary endpoints occurred. Patients with primary endpoint showed larger  
extent of ischemia (10.7 ± 12.25% vs. 3.73 ± 8.29%, p < 0.0001) and LGE (21.09 ± 15.11% vs.  
17.73 ± 10.72%, p < 0.0001). A risk prediction model containing the extent of ischemia and LGE 
proved to be superior in comparison to all other models (c² increase: from 39.678 to 56.676, integrated 
discrimination index: 0.3851, p = 0.0033, net reclassification index: 0.11516, p = 0.0071). The ben-
eficial effect of revascularization tended to be higher in patients with greater extents of ischemia, though 
statistical significance was not reached.
Conclusions: Quantification of myocardial ischemia and LGE was shown to significantly improve  
existing risk prediction models and might thus lead to an improvement in patient management. (Cardiol J  
2017; 24, 3: 293–304)
Key words: cardiac magnetic resonance imaging, quantification of ischemia and necrosis, 
coronary artery disease, risk stratification, prognosis and outcomes

Introduction

Coronary artery disease (CAD) is still a leading 
cause for morbidity and mortality worldwide [1].  
Most CAD patients present with clinically stable 

ischemic heart disease. For these patients, current 
practice guidelines strongly support the use of 
stress imaging modalities for diagnosis and correct 
risk stratification prior to invasive coronary X-ray 
angiography [2–4]. There exists inconsistency 
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across the different imaging modalities on how  
to assess and report the extent and severity of 
myocardial ischemia and necrosis [5]. This fact may 
explain the variability in management decisions and 
the high frequency of absent obstructive CAD on 
diagnostic coronary angiography [6]. Therefore, the 
need to reach consensus concerning the assess-
ment and reporting of ischemia has been identified 
[7]. Moreover, the presence of moderate to severe 
ischemia is a mandatory appropriateness criterion 
for percutaneous coronary intervention (PCI) in 
stable CAD [8]. Cardiac magnetic resonance imag-
ing (CMR) is an established non-invasive method 
for the diagnosis of CAD [9]. It offers several advan-
tages in comparison to other imaging techniques, 
such as a high spatial and temporal resolution, 
clear image contrast and lack of ionizing radiation 
[10, 11]. It is viable to reliably detect and visualize 
myocardial ischemia as well as necrotic tissue in 
one single exam [11]. It has been shown to provide 
important prognostic information in patients with 
known or suspected CAD [12–19]. There remains 
however, a gap in the current evidence base and 
that gap is a lack of standardization for the quanti-
fication of ischemia [20]. Consequently, a majority 
of available studies treat ischemia and necrosis as 
categorical variables without taking into account, 
extent or severity. It has been suggested that this 
additional information may serve as an important 
factor for correct risk stratification in CAD [5, 21]. 
The objective of the present study was to elaborate 
a CMR algorithm for the quantification of ischemia 
and necrosis based on standard first-pass perfusion 
imaging and to establish it’s implications on risk 
prediction improvement. 

Methods

Patients
The presented analysis was conducted ret-

rospectively on a patient cohort which was  es-
tablished within a former project. Patients with 
known or suspected CAD medium to high risk 
were referred for adenosine perfusion CMR were 
consecutively screened for enrollment. Appropri-
ateness criteria for stress CMR in the referenced 
institutions were the following: evaluation of 
symptoms being consistent with stable CAD and 
medium to high pre-test probability, inconclusive 
previous stress test and suspected progress of 
known CAD. All patients were considered eligible 
for enrollment unless they exhibited predefined 
exclusion criteria such as cardiac or respiratory 
instability, concomitant limiting disease, e.g. can-

cer, high degree heart valve or pulmonary disease, 
pregnancy, inability to give informed consent, age 
< 18 years, or myocardial infarction within the 
last 3 months. The study was approved by the 
institutional ethics committee. All patients gave 
informed written consent.

CMR examination
Cardiac magnetic resonance imaging was per-

formed on a 1.5-T whole-body clinical magnetic res-
onance scanner (Intera, Philips Medical Systems, 
Best, the Netherlands) using a cardiac 5-element 
phased array surface receiver coil. CMR imaging 
was conducted according to well established stand-
ards in conformity with current guidelines [22–24].

CMR analysis
Functional imaging of the left and right ven-

tricle was performed using a steady-state free 
precession sequence (repetition time 5.1 ms, echo 
time 2.2 ms, flip angle 55°, voxel size 1.6 × 1.6 mm,  
slice thickness 8 mm, no interslice gap, acquisition 
in end-expiration breath-hold, 32 cardiac phases). 
For perfusion imaging, 3 slices in short-axis ori-
entation (basal, mid-ventricular, and apical) were 
acquired. A balanced fast-field echo sequence 
(repetition time 2.6 ms, echo time 1.3 ms, saturate 
pre-pulse with 100-ms delay, flip angle 50°, 40 dy-
namics, voxel size 2.8 × 2.9 mm, slice thickness 
10 mm) was used. Adenosine was given intra-
venously at a constant rate of 140 µg/kg/min for  
3 min. First-pass perfusion imaging with 0.1 mmol/ 
/kg of a gadolinium based contrast agent (Dotarem®, 
Guerbet, Villepinte, France) was performed after 
an adequate vasodilator response was achieved 
(defined as an increase in heart rate above 10% or 
a decrease in systolic blood pressure above 10% 
[24]). In cases when sufficient vasodilator response 
could not be observed within 3 min, infusion rate 
was increased by steps of 10% until the predefined 
response was achieved. Ten minutes after first 
first-pass imaging, a second perfusion study using 
the same parameters was performed to allow for 
better discrimination between perfusion defects 
and artifacts. Perfusion defects visible under stress 
as well as under rest conditions were considered 
to be artifacts (such as dark rim phenomena) and 
thus were excluded from the analyses.

Ten minutes after the second perfusion study, 
a 3-dimensional (3D) inversion-recovery gradient-
echo sequence (repetition time 7.1 ms, echo time 
3.2 ms, voxel size 1.6 × 1.6 mm, slice thickness  
8 mm) was acquired in continuous short axis cover-
ing the entire left ventricle for evaluation of late 
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gadolinium enhancement (LGE). Inversion time 
was individually adjusted for complete nulling of 
the myocardium.

Perfusion and LGE imaging was interpreted 
and quantified by two experienced readers in con-
sensus. The readers were blinded to the patient’s 
history and symptoms. Adenosine perfusion im-
ages were evaluated according to the 16-segment 
model [25]. Regional hypoenhancement present 
during adenosine perfusion without corresponding 
LGE was considered to be a reversible perfusion 
deficit. In the presence of LGE, a perfusion defect 
was considered reversible if the perfusion defect 
extended beyond the area of LGE.

Endo- and epicardial contours were drawn 
manually into each slice of the perfusion series 
in order to yield the global myocardial area. The 
extent of myocardial necrosis was assessed on 
corresponding LGE series using a semi-automatic 
approach. Myocardial necrosis was defined as signal 
intensity of above 5 standard deviations of remote 
myocardium as previously reported [26]. LGE pat-
terns unlikely to be of ischemic origin (e.g. spotty, 
intramural or epicardial) were excluded from fur-
ther quantification. The extent of necrosis was ex-
pressed as a percentage of global myocardial area. 

Late gadolinium enhancement delineation was 
then copied into the perfusion series and compared 
to the extent of reversible ischemia. Two criteria 
had to be fulfilled to define a perfusion defect: an 
area of regional hypoenhancement had to below 5 
standard deviations from remote myocardium in 
the dynamic with maximum contrast in the myo-
cardium; the hypoenhancement had to be present 
in 5 sequential phases. The dynamic with the 
greatest extent of perfusion defect was then used 
for quantification which was achieved by manual 
delineation of the perfusion defect. Ischemia quan-
tification was expressed as percentage of global 
myocardium. The observers manually excluded 
artifacts such as dark rim phenomena. Figure 1 
provides several examples.

For analyses, the software provided by the 
manufacturer of the CMR system (ViewForum, 
Philips Medical Systems) was used.

Follow-up
Follow-up information was acquired from pa-

tients by telephone interview or from outpatient 
clinic, hospital chart review or by contact with the 
patients’ general practitioner or hospital. Primary 
endpoint was defined as cardiac death, non-fatal 
myocardial infarction, or stroke. Cardiac death was 
defined as death from any cardiac cause (e.g. myocar-

dial infarction, ventricular fibrillation or other lethal 
arrhythmia, heart failure) or sudden unexplained 
death. Non-fatal myocardial infarction was defined 
according to the current universal definition [27]. 

Statistical analysis
Continuous variables were tested for normal 

distribution by the D’Agostino-Pearson test. In cas-
es of normal distribution, variables were reported 
as mean ± standard deviation and a 2-tailed t-test 
was applied for comparison. Variables without 
normal distribution were reported as median with 
percentiles [5; 95] and compared by the Mann-
-Whitney rank sum test.

Univariate regression analyses using Cox 
proportional hazard models were performed to 
estimate the predictive value of the variables. 
Hazard ratio and corresponding 95% confidence 
interval are provided.

To test for incremental predictive power, 
the following approach was applied: Multivariate 
models based on significant variables were defined 
and compared. Chi-square values were calculated 
with Cox’s proportional hazard overall model fit. 
Integrated discrimination index and net reclassi
fication index were assessed as well. In cases of  
a significant increase in these variables, a particular 
model was judged superior [28]. In order to avoid 
over-fitting, the variable ‘history of CAD’ was cre-
ated as a combination of the variables which include 
previous myocardial infarction, previous PCI and 
previous coronary artery bypass graft.

Cumulative event curves were compared us-
ing the Kaplan-Meier method using a log-rank test.

Overall, a p value ≤ 0.05 was judged significant. 
Statistical analysis was performed using commer-
cially available software (Stata13, College Station, 
USA, MedCalc, Mariakerke, Belgium).

Results

Patients
922 consecutive patients were enrolled in 

the study. 72 (7.8%) were lost to follow-up. Five 
patients (0.5%) were excluded due to insufficient 
CMR image quality. Thus, the study group con-
sisted of 845 patients. Median age was 64.0 [39; 78] 
years, 32.1% were female. Median follow-up was 
3.64 [1.03; 10.56] years. According to the estab-
lished Morise score [29], 71 (8.4%) patients were 
assigned to the low risk group (< 9 points), 505 
(59.8%) patients were assigned to the intermediate 
risk group (9–15 points) and 269 (31.8%) patients 
were assigned to the high risk group. Clinical and 
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demographic patient characteristics, including 
cardiovascular risk factors and prior cardiac events 
are provided in Table 1.

CMR examination and analysis
Median left ventricular end-diastolic volume 

was 130 [85; 208] mL; median left ventricular 
ejection fraction (LVEF) was 68 [42; 81] %. Among 
the 845 patients that formed the study group, LGE 
was present in 178 (20.9%) patients and reversible 
perfusion deficit in 200 (23.7%) cases. Table 1 gives 
further insight into particular CMR results.

Follow-up and comparison of patients  
with and without event

During the follow-up period, 61 primary end-
points occurred. 29 (47.5%) were cardiac deaths, 

26 (42.3%) non-fatal myocardial infarctions and  
6 (9.8%) were strokes. 

Table 1 provides a comparison of patients 
with and without primary endpoint during follow-
up. Patients with occurrence of primary end-
point were significantly older, often had more 
diabetes mellitus, a history of cardiac events 
and an impaired LVEF. Patients with primary 
endpoint exhibited significantly larger extents  
of ischemia (3.73 ± 8.29% vs. 10.7 ± 12.25%,  
p < 0.0001) and LGE (17.73 ± 10.72% vs.  
21.09 ± 15.11%, p < 0.0001).

Univariate and multivariate analysis  
of endpoint prediction

Several demographic, clinical and CMR de-
rived variables were analyzed concerning the 

Figure 1. Examples of assessment of myocardial ischemia and necrosis; A. Adenosine perfusion imaging (midventricu-
lar slice) with a septal perfusion deficit (native and after delineation) and no underlying late gadolinium enhancement;  
B. Adenosine perfusion imaging (basal slice) with perfusion deficit in the lateral segments (native and after delineation) 
and matching late gadolinium enhancement; C. Perfusion deficit in the anterolateral segments (native and after deline-
ation) and late gadolinium enhancement inferolateral. The perfusion deficit exceeds the area of myocardial scar.

A

C

B
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occurrence of primary endpoints (Table 2). There 
were strong associations for age, diabetes mel-
litus, history of prior cardiac events and LVEF. 
The highest hazard ratios were observed with the 
presence of LGE and the presence of reversible is-
chemia (4.89 and 4.48, respectively, p in both cases  
< 0.0001). Quantification of these variables also 
lead to highly significant results with an increase 
per percentage point of left myocardium of 1.07 for 
LGE and 1.04 for reversible ischemia (p < 0.0001). 

Based on the univariate analysis, multivariate 
models were defined and their predictive power 
calculated using the stepwise approach (Table 3). 
Model 1 contained established clinical risk factors, 
including age, hypertension, smoking, hyperlip-
idemia, and diabetes mellitus, which resulted in 
a c2-value of 18.501 (p = 0.0001). After the addi-
tion of the variable ‘history of CAD’ in model 2, 
an increase of c2 could be observed (c2: 28.386,  
p < 0.0001). In model 3 LVEF was added to model 2,  

Table 1. Patient characteristics and cardiac magnetic resonance imaging (CMR) results including  
a comparison of patients with and without event.

Total (n = 845) No event (n = 784) Event (n = 61) P 

Age [years] 64.0 [39; 78] 63 [39; 78] 68 [41; 81] 0.0007

Female sex 271 (32.1%) 258 (32.9%) 13 (21.3%) 0.08

Cardiovascular risk factors:

BMI [kg/m2] 26.51 [21.22; 33.93] 26.5 [21.22; 33.94] 26.7 [21.04; 34] 0.71

Hypertension 579 (68.5%) 534 (68.1%) 45 (74.1%) 0.42

Smoking 186 (22.0%) 168 (21.4%) 18 (29.3%) 0.21

Hyperlipidemia 491 (58.1%) 452 (57.7%) 39 (63.8%) 0.44

Diabetes mellitus 166 (19.6%) 144 (18.4%) 22 (36.2%) 0.002

Family history 207 (24.5%) 194 (24.7%) 13 (20.7%) 0.60

Morise score < 9 71 (8.4%) 68 (11.5%) 3 (4.9%) 0.58

Morise score 9–15 505 (59.8%) 469 (59.8%) 36 (59.0%)

Morise score > 15 269 (31.8%) 247 (31.5%) 22 (36.1%)

History of CAD: 363 (43.0%) 321 (41%) 42 (68.3%) < 0.0001

Previous MI 180 (21.3%) 151 (19.3%) 29 (48.3%) < 0.0001

Previous PCI 275 (32.6%) 240 (30.6%) 35 (56.7%) < 0.0001

Previous CABG 89 (10.5%) 78 (9.9%) 11 (18.3%) 0.007

Symptoms:

CCS I 106 (12.5%) 103 (13.1%) 3 (4.9%)

CCS II 459 (54.3%) 422 (53.8%) 37 (60.7%)

CCS III 280 (33.1%) 259 (33.0%) 21 (34.4%)

CCS IV 0 (0%) 0 (0%) 0 (0%)

CMR characteristics:

LVEDV [mL] 130 [85; 208] 129.5 [85; 201.5] 137 [77; 276] 0.063

LVEF [%] 68 [42; 81] 68.2 [44; 80] 60.5 [27.5; 84.92] 0.0001

RVEDV [mL] 131 [84.4; 198] 131 [86.4; 199.2] 120 [75; 189.5] 0.008

RVEF [%] 65 [53; 76] 65 [54; 76] 67 [48; 77.3] 0.621

Wall motion score 17 [17, 29.5] 17 [17; 28] 20 [17; 35.7] < 0.0001

LGE 175 (20.7%) 142 (18.1%) 33 (54.1%) < 0.0001

LGE in % of left myocardium 17.73 (10.72%) 16.87 (9.16%) 21.09 (15.11%) < 0.001

Ischemia 200 (23.7%) 163 (20.8%) 37 (60.7%) < 0.0001

Ischemia in % of left myocardium 4.23 (8.81%) 3.73 (8.29%) 10.70 (12.25%) < 0.0001

BMI — body mass index; CABG — coronary artery bypass graft; CAD — coronary artery disease; CCS — Canadian Cardiovascular Society 
class; LGE — late gadolinium enhancement; LVEDV — left ventricular end-diastolic volume; LVEF — left ventricular ejection fraction;  
RVEDV — right ventricular end-diastolic volume; RVEF — right ventricular ejection fraction; MI — myocardial infarction; PCI — percutaneous 
coronary intervention
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which lead to a further increase of c2 to 39.678 
(p < 0.0001). Model 4 contained the variables 
which proved to be significant in previous mod-
els plus LGE and Ischemia as categorical vari-
ables resulting in a further c2 increase to 50.616,  
(p < 0.0001). Finally, in model 5, ‘quantification 
of LGE’ and ‘ischemia’ was added. This lead to  
a further increase in c2-value (56.676, p < 0.0001). 
LVEF lost its significance in latter model. Table 3 
also provides results of the analyses of the integrat-
ed discrimination index estimate and the net reclas-
sification index estimate. The assessment of these 
parameters supported the superiority of model  
5 over model 4 and of both models over model 3.

Event rates and impact of revascularization 
in dependency of ischemia

Overall annual event rate was 1.88%. 200 pa-
tients exhibited reversible myocardial ischemia, 
which equals 23.67% of the total study cohort. Pa-
tients without ischemia had an event rate of 0.93%, 
in contrast to patients with ischemia who exhibited 
an event rate of 4.25% (log-rank test for equality of 
survivor function: c2: 38.50, p < 0.0001) (Table 4).

In order to evaluate the effect of revasculariza-
tion subsequent to positive stress-testing in depen-
dency of the extent of ischemia, patients who re-
ceived interventional or surgical revascularization 
within 45 days after CMR were further analyzed 

Table 2. Univariate analysis of predictors of primary endpoint.

Hazard ratio 95% confidence interval P

Age, per year 1.04 1.016–1.066 0.001

Female sex 0.64 0.343–1.173 0.146

Cardiovascular risk factors:

BMI, per kg/m2 1.00 0.936–1.067 0.980

Hypertension 1.37 0.759–2.461 0.298

Smoking 1.35 0.767–2.385 0.297

Hyperlipidemia 1.24 0.728–2.129 0.424

Diabetes mellitus 2.46 1.437–4.198 0.001

Family history 0.814 0.431–1.537 0.526

Morise score 1.03 0.967–1.10 0.354

Symptoms:

CCS, per higher class 1.28 0.856–1.907 0.231

History of CAD: 2.86 1.661–4.936 0.0002

Previous MI 3.33 2.007–5.536 < 0.0001

Previous PCI 2.811 1.683–4.695 0.0001

Previous CABG 2.09 1.086–4.024 0.027

CMR characteristics:

LVEDV [mL] 1.004 1.000–1.009 0.062

LVEF [%] 0.96 0.946–0.976 < 0.0001

RVEDV [mL] 0.99 0.979–0.995 0.002

RVEF [%] 0.99 0.960–1.025 0.622

Wall motion score [Unit] 1.11 1.070–1.148 < 0.0001

LGE 4.89 2.923–8.181 < 0.0001

LGE, per % of left myocardium 1.07 1.05–1.086 < 0.0001

Ischemia 4.48 2.669–7.506 < 0.0001

Ischemia, per % of left myocardium 1.04 1.035–1.061 < 0.0001

Follow up:

PCI within 45 days after CMR 1.16 0.0447–2.787 0.815

BMI — body mass index; CABG — coronary artery bypass graft; CAD — coronary artery disease; CCS — Canadian Cardiovascular Society 
class; CMR — cardiac magnetic resonance imaging; LGE — late gadolinium enhancement; LVEF — left ventricular ejection fraction;  
LVEDV — left ventricular end-diastolic volume; RVEDV — right ventricular end-diastolic volume; RVEF — right ventricular ejection fraction;  
MI — myocardial infarction; PCI — percutaneous coronary intervention
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Table 3. Risk prediction models using a stepwise multivariate approach.

HR CI P

Model 1: Basic Model

Age 1.035 1.012; 1.061 0.005

Hypertension Excluded

Smoking Excluded

Hyperlipidemia Excluded

Diabetes mellitus 2.270 1.326; 3.885 0.003

Overall Model Fit: c2 18.501; p = 0.0001

Model 2: Basic Model + History of CAD

Age 1.029 1.004; 1.055 0.023

Diabetes mellitus 2.004 1.166; 3.445 0.012

History of CAD 2.419 1.368; 4.277 0.002

Overall Model Fit: c2 28.386; p < 0.0001

Model 3: Model 2 + Basic CMR Features

Age 1.029 1.004; 1.054 0.025

Diabetes mellitus 1.761 1.007; 3.079 0.047

History of CAD 2.327 1.322; 4.095 0.003

LVEF 0.970 0.954; 0.986 0.0003

RVEF Excluded

Overall Model Fit: c2 39.678; p < 0.0001

Model 4: Model 3 + Extended CMR Features

Age 1.028 1.004; 1.053 0.023

Diabetes mellitus 1.887 1.077; 3.308 0.027

History of CAD Excluded

LVEF 0.975 0.959; 0.992 0.004

LGE (categorical) 2.104 1.024; 4.324 0.043

Ischemia (categorical) 2.139 1.054; 4.342 0.035

Overall Model Fit: c2 50.616; p < 0.0001

Improvement Model 4 vs. Model 3:

IDI-estimate: 0.03110; SE: 0.01161; p: 0.00738

NRI-estimate: 0.14381; SE: 0.05419; p: 0.00796

Model 5

Model 3 + Quantified CMR Features

Alter 1.028 1.004; 1.052 0.019

Diabetes mellitus 2.170 1.261; 3.735 0.005

History of CAD Excluded

LVEF Excluded

LGE, per % 1.056 1.036; 1.076 < 0.0001

Ischemia, per % 1.033 1.013; 1.053 0.001

Overall Model Fit: c2 56.676; p < 0.0001

Improvement Model 5 vs. Model 3:

IDI-estimate: 0.03851; SE: 0.01311; p: 0.00330

NRI-estimate: 0.11516; SE: 0.04274; p: 0.00705

Improvement Model 5 vs. Model 4:

NRI-estimate: 0.01929; SE: 0.00742; p: 0.00932

CI — confidence interval; CAD — coronary artery disease; CMR — cardiac magnetic resonance imaging; HR — hazard ratio; IDI — integrated 
discrimination index; LGE — late gadolinium enhancement; LVEF — left ventricular ejection fraction; NRI — net reclassification index;  
RVEF — right ventricular ejection fraction; SE — standard error
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(Table 5, Fig. 2). Of the 200 patients exhibiting 
reversible ischemia, 43 received revascularization 
(21.5%). Patients with ischemia > 5% of myocar-
dial volume without revascularization showed an 
event rate of 4.46%. In patients with ischemia  
> 5% of myocardial volume who were revascular-
ized an event rate of 3.17% was observed (c2: 0.59, 
p = 0.44, risk reduction of 0.692). Patients with 
ischemia > 10% of myocardial volume had annual 
event rates of 4.06% without revascularization and 
2.89%, if revascularized (c2: 0.50, p = 0.48, risk 
reduction of 0.681). In patients with myocardial 
ischemia > 15%, primary endpoint rates were 
4.44% without vs. 2.70% with revascularization 
(c2: 0.85, p = 0.36, risk reduction of 0.564). 

Discussion

In the present study, a simple and intuitive 
approach to quantify the extent of myocardial is-

chemia and necrosis is described. The superiority 
of a risk prediction model containing these vari-
ables could be demonstrated.

As reported by Bingham et al. [19], the com-
bination of several CMR parameters was superior 
regarding correct risk stratification over preimag-
ing information alone. As the authors of latter man-
uscript discuss, it is difficult to identify the most 
predictive CMR variable because of collinearity 
especially of reversible ischemia and LGE. Thus, 
they concluded that CMR-derived results provide 
rather complementary than overlapping informa-
tion. This finding is consistent with other recently 
published studies [30]. The present hypothesis was 
that a risk prediction model containing myocardial 
ischemia and LGE only as dichotomous variables 
could further be improved by quantification of 
these parameters. This could be demonstrated by 
the data contained in this study (statistical signifi-
cant increase in c2-, NRI- and IDI-values). A large 

Table 4. Annual event rates of dependency in presence of myocardial ischemia.

Total study cohort (n = 845) Ischemia (of any extent) No ischemia

Number of subjects 200 645

Events in this category 24 37

Annual event rate 4.25% 0.93%

Log-rank test c2: 38.50, p < 0.0001

Table 5. Annual event rates and impact of revascularization of dependency for extent of ischemia.

Patients with myocardial ischemia > 5% Total number of subjects (n = 192)

Revascularization Conservative treatment

Number of subjects 42 150

Events in this category 5 30

Annual event rate 3.17% 4.46%

Log-rank test c2: 0.59, p = 0.44

Patients with myocardial ischemia > 10% Total number of subjects (n = 151)

Revascularization Conservative treatment

Number of subjects 35 116

Events in this category 4 21

Annual event rate 2.89% 4.06%

Log-rank test c2: 0.50, p = 0.48

Patients with myocardial ischemia > 15% Total number of subjects (n = 115)

Revascularization Conservative treatment

Number of subjects 28 87

Events in this category 3 17

Annual event rate 2.70% 4.44%

Log-rank test c2: 0.85, p = 0.36
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meta-analysis has recently been published [31]. 
The authors point out that presence of LGE itself 
is associated with a worse outcome in patients 
with CAD. They also explain that, in some of the 
studies that formed the evidence base, LGE lost its 
significance on multivariate testing when ischemia 
was assessed as well. They therefore, recom-
mended further studies to determine whether LGE 
provides truly incremental prognostic informa-
tion in patients undergoing stress CMR. It could 
be suspected that quantification of ischemia and 
LGE may contribute to a better understanding of 
the complex interactions. In this study, quantified 
LGE and myocardial ischemia maintained their 
statistical significance throughout all the evalu-
ated models, a finding which supports the above 
mentioned suggestion.

There already exist approaches for the quantifi-
cation of ischemia and LGE based on 2-dimensional 
(2D) myocardial perfusion CMR [20]. Some of them 
just report the number of affected segments according 
to the 16 segment model provided by current guide-
lines [20, 25], others have tried to take transmurality 
into account [32]. The presented presumption herein 
is that it is more intuitive and reliable to directly 
delineate the areas of perfusion deficit and LGE and 
relate them to the total left ventricular area. We ac-
knowledge, that this approach may not reflect the true 
portion of affected myocardium due to the incomplete 
coverage of the left ventricle [33]. However, it is an 
easy to use algorithm which can be implemented in 
a daily clinical work-up routine and does not demand 
special analysis tools or additional sequences.

The feasibility of assessing the extent of myo-
cardial perfusion deficit using a three dimensional 
first-pass myocardial perfusion approach has been 
demonstrated [20]. A recently published study with 
45 patients reports a good correlation between 
2D and the much more elaborated 3D myocardial 
perfusion CMR approach [32]. The authors dem-
onstrate that the 2D approach tends to slightly 
underestimate the ischemic burden in comparison 
to the whole-heart analysis. Nevertheless, there 
was no significant difference concerning the assign-
ment to  designated further therapy. The authors 
of that trial therefore raise the question about 
relative benefits of whole-heart perfusion imaging 
that need to be explored in future studies. Overall, 
2D first-pass perfusion stress CMR remains the 
current clinical standard which is supported by  
a robust evidence base.

In order to evaluate the potential improvement 
achieved by ischemia quantification with regard to 
patient management, the impact of revasculariza-

Figure 2. Kaplan-Meier plot showing event-free survival 
in dependence of ischemia and revascularization.

www.cardiologyjournal.org 301

Dominik Buckert et al., Quantifying myocardial ischemia and scar for risk stratification



Limitations of the study
There are several limitations that need to be 

addressed. The approach in quantifying reversible 
ischemia and LGE has not been sufficiently validat-
ed as yet. A prospective validation and comparison 
of the presented method in comparison with other 
techniques and modalities has not been done. The 
results of this study are concur with other studies 
in the field and are substantiated by an appreciable 
gain in prognostic prediction.

Moreover, a consensus method was chosen for 
ischemia and LGE quantification. Therefore, inter- 
and intra-reader variabilities cannot be reported. 
Nevertheless, image analysis was done by two 
experienced readers capable of attaining reason-
able quality. In future evaluation, determination 
of procedures with specific operating figures will 
be necessary.

Because of the retrospective nature of our 
study, it was not possible to control for treatment 
effects such as the decision for or against revas-
cularization in a particular patient. Therefore, 
treatment effects might be under or overestimated 
which might be an explanation as to why statistical 
significance could not be reached. Moreover, data 
on further testing after the CMR evaluation (e.g. 
results of subsequent coronary angiographies) 
were not complete. Thus, it presented an inability 
to assess important parameters such as diagnostic 
accuracy.

Conclusions

Quantification of myocardial ischemia and ne-
crosis by CMR provides improved risk prediction 
in patients with stable CAD. 
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