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Abstract
Introduction. Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model for studying 
immunopathology of multiple sclerosis (MS) because it repeats the hallmarks of the human disease, such as focal 
inflammation and demyelination of the central nervous system, subsequently leading to axonal and neuronal 
loss. The interrelationships, timing and sequence of different pathological processes that lead to histologically 
observed lesions in SM are still incompletely understood.
Material and methods. EAE was induced in female C57Bl/6 mice by active immunization with MOG35-55 antigen. 
Development of the neurological symptoms in the animals was monitored and on that basis spinal cords were 
collected in three successive phases of the disease (onset, peak, chronic). Total leukocytes, T cells, macrophages/ 
/microglia, oligodendrocytes, damaged axons and surviving neuronal cell bodies were visualized using appropri-
ate immunohistochemical markers and their density was quantitatively assessed using image analysis software.
Results. The density of all studied cells except neurons was significantly higher in EAE mice than in the control 
mice. The density of total leukocytes, T cells, and damaged axons increased from the onset to the peak phase and 
decreased in the chronic phase to reach values lower than those in the peak phase. The density of macrophages/ 
/microglia increased in the peak phase and remained at the elevated level in the chronic phase. Oligodendrocytes 
showed the highest density in the onset phase and gradually decreased afterwards. The density of neuronal cell 
bodies decreased only in the chronic phase of the disease.
Conclusions. In mouse model of EAE, inflammatory cells predominate in the early phases of the disease. 
This study shows for the first time that inflammation precedes oligodendrocyte death and neuronal loss and 
that macrophages/ microglia are the only cells persisting in large numbers in the chronic phase of the disease, 
probably because of the switch from proinflammatory to anti-inflammatory phenotype. (Folia Histochemica et 
Cytobiologica 2018, Vol. 56, No. 3, 151–158)
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Introduction

Experimental autoimmune encephalomyelitis (EAE) 
is a widely used animal model for studying immu-
nopathology of multiple sclerosis (MS) because it 

repeats the hallmarks of the human disease, such as 
focal inflammation and demyelination of the central 
nervous system (CNS), subsequently leading to axonal 
and neuronal loss [1]. In C57Bl/6 mice, EAE can be 
induced by active immunization with MOG35-55 an-
tigen which triggers the inflammatory demyelinating 
disease [2]. The clinical symptoms in EAE reflect 
inflammation localized predominantly in the spinal 
cord, although MOG-induced EAE also targets the 
optic nerve [3]. The neuroinflammatory response 
is manifested by infiltrations of T cells, B cells and 
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macrophages, as well as by formation of focal demy-
elination plaques in the CNS, similar to the pathology 
seen in MS [4]. The interrelationships, timing and 
sequence of different pathological processes that 
lead to histologically observed lesions in MS are still 
incompletely understood. It is also unclear, whether 
neuroinflammation or demyelination are primary or 
secondary events during development of the disease 
[5]. Hence, EAE is a good model for studying MS 
mechanisms and for testing or developing drugs [6].

The aim of the present study was to investigate 
the progressive neurodegenerative process in EAE 
mice by analyzing the occurrence and number of the 
demyelination plaque components: leukocytes, mac-
rophages/microglial cells, oligodendrocytes, as well as 
damaged axons and surviving nerve cells at different 
stages of the disease. These parameters reflect spinal 
cord inflammation and neurodegeneration in EAE 
which occur in both white and gray matter.

Material and methods

Animals. Female C57Bl/6 mice (18 animals for EAE and  
18 for control) aged 10–11 weeks were habituated for at least 
1 week before the experiment and then were immunized. The 
animals were housed under controlled environmental condi-
tions (LD 12:12 h regime in air-conditioned rooms: 22 ± 2°C, 
55 ± 10% humidity) and allowed free access to food and water 
throughout the experiment. All experiments were conducted 
in compliance with the Council Directive 2010/63EU of the 
European Parliament and the Council of 22 September 2010 

on the protection of animals used for scientific purposes and 
approved by the First Local Ethics Committee of the Jagiello-
nian University Medical College, Krakow, Poland. 

Induction of EAE. For induction of EAE, Hooke Kits™ EAE 
Emulsion (Hooke Laboratiores, Lawrence, Massachusetts 
USA) were used. Kits contained MOG35-55 antigen in an 
emulsion with Complete Freund’s Adjuvant (CFA) including 
Mycobacterium tuberculosis (H37Ra). Emulsion was adminis-
tered subcutaneously at two sites (100 µl between the ears and 
100 µl in hind flank). Each mouse was also injected intraperi-
toneally (i.p.) with 340 µl of Bordatella pertussis pertussis toxin 
(PTx) dissolved in phosphate-buffered saline (PBS) (Hooke 
Laboratiores) 2 h after the administration of the emulsion 
and again 24 h later. PTx enhanced EAE development by 
providing additional adjuvant and facilitating entrance of 
autoimmune T cells into the CNS [2]. Control mice were 
injected with CFA and PTx only (Hooke Control Kits™, 
Hooke Laboratiores, USA) according to the same schedule.

Monitoring of the course of the disease and study design. All 
mice were weighed and examined daily for the neurological 
symptoms of EAE, scored according to the following scale: 
(0) no symptoms; (1) floppy tail; (2) hindlimb weakness; 
(3) hindlimb paralysis; (4) forelimb paralysis; (5) mouse 
moribund or dead (0.5 gradations represent intermediate 
scores) [7]. 

For histological analysis EAE mice were sacrificed at 
three different time points representing three phases of 
disease: onset phase (day 15; n = 6), peak phase (day 19;  
n = 6) and chronic phase (day 32; n = 6) (Fig. 1). Control 

Figure 1. Development of neurological symptoms in experimental autoimmune encephalitis (EAE) mice. EAE was elicited 
and mice were scored for EAE symptoms over 30 days using the scale as described in Methods. Day 0 was the day of immu-
nization. Arrows show three time points (tissue collection for EAE and control groups) representing three successive phases 
of the disease. Values represent means ± SEM.
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mice were sacrificed at the same time points (n=6 for each 
phase).

All EAE mice showed initial symptoms of the disease 
between 13th and 16th day after immunization and this 
was the onset phase in our experiment. The peak of dis-
ease almost always occurred 3–4 days later, between days  
16 and 21. The maximum scores of the peak phase continued 
for several days and then mice partially recovered (chronic 
phase). During the progress of EAE, changes in body weight 
also reflected disease severity. Mice steadily increased their 
body weight until disease onset. Afterwards, mice gradually 
lost 5–10% of their weight and after the peak of disease they 
slowly gained weight again.

Tissue collection and processing. Animals were anaesthe-
tized i.p. with 100 mg/kg ketamine and 10 mg/kg xylazine 
and transcardially perfused with ice-cold PBS for 10 min, 
followed by 4% paraformaldehyde for the next 10 min. Spi-
nal cords were carefully removed from the vertebral canal 
and postfixed in the same fixative for 4 h. After overnight 
incubation in 5% sucrose at 4°C, tissue was embedded 
in OCT (Shandon Cryomatrix, Thermo Fisher Scientific, 
Rockford, IL USA) and snap-frozen at –80°C. The examined 
area of the spinal cord included the lumbar part, a region 
commonly and rapidly affected in EAE. Serial cryosections 
10 µm — thick were cut at 100 µm intervals, collected on 
poly-L-lysine coated slides and air dried.

Immunofluorescence staining. Immunohistochemistry 
was performed using the following primary antibodies: 
rat anti-CD45 (1:100, Thermo Fisher Scientific, MA1-
81247) for total leukocytes, rat anti-CD3 (1:100, Thermo 
Fisher Scientific, cat. # MA1-80783) for T cells, rabbit 
anti-ionized calcium binding adaptor molecule (anti-Iba1) 
for activated macrophages and microglial cells (1:200, 
Synaptic Systems, Goettingen, Germany, cat. # 234003), 
rabbit anti-2’,3’-Cyclic nucleotide 3’-phosphodiesterase 1 
(anti-CNP1) for oligodendrocytes (1:500, Synaptic Systems, 
cat. # 355002), rabbit anti-beta-amyloid precursor protein 
(beta-APP) for detection of injured axons (1:100, Synaptic 
Systems, cat. # 218903) and rabbit anti-NeuN for detection 
of surviving neurons (1:100, Thermo Fisher Scientific, cat. 
# PA5-37407).

In short, the sections were preincubated for 40 min in 
PBS containing 5% normal goat serum (Sigma-Aldrich, 
St. Louis, MO, USA), 0.01% sodium azide, 0.05% thi-
merosal, 0.1% bovine serum albumin, 0.5% Triton X-100, 
and 2% dry milk. They were next incubated overnight at 
room temperature with primary antibodies and after a 
rinse in PBS incubated for 90 min with the secondary goat 
anti-rat Alexa488-conjugated antibodies (1:100, Jackson 
IR, West Grove, PA, cat. # 112-545-167), goat anti-rabbit 
Alexa488-conjugated antibodies (1:100, Jackson IR, West 
Grove, PA, cat. # 111-545-144) or Cy3-conjugated goat 

anti-rat antiserum (1:300, Jackson IR, West Grove, PA, 
112-165-167). Sections were washed three times in PBS and 
mounted in glycerol/PBS solution.

Microscopy and morphometry. The sections were examined 
under Olympus BX50 brightfield/epifluorescence micro-
scope (Olympus, Tokyo, Japan). Images of the spinal cords 
were recorded using Olympus DP71 digital CCD camera, 
stored as TIFF files and processed for quantitative analysis 
using Cellsense Dimension Software (Olympus). A total of at 
least 24 slides were analyzed per experimental group (n = 6).  
The density of the immunopositive cells was assessed in 
sections encompassing the whole area occupied by the gray 
and white matter and expressed in two ways: as the number 
of T cells and surviving neurons and as the immunoreactive 
profile area in case of total leukocytes, macrophages, oli-
godendrocytes and damaged axons. The analysis was done 
blind (the observer did not know whether the specimen 
comes from the control or EAE mouse).

Statistical analysis. The obtained results were analyzed by 
the Mann-Whitney U-test for nonparametric data using 
Prism 5.0 software (GraphPad, La Jolla, California, USA). 
P < 0.05 was regarded as statistically significant.

Results

All mice immunized with MOG developed neurolog-
ical symptoms of EAE. Control mice did not develop 
any signs of neurological disease.

Histological examination of spinal cords  
of EAE and control mice
Immunoreactivity for CD45 showed large accumu-
lations of leukocytes in the white and gray matter in 
EAE mice and much less leukocytes in control mice. 
In all phases of the disease, leukocytes formed local 
aggregates with very high cell density, indicative of 
the presence of inflammatory foci. 

The immunostaining of the spinal cord sections 
with anti-CD3 antibody revealed areas containing 
numerous CD3-positive T cells in white matter of 
EAE mice and relatively few in gray matter of EAE 
and control mice. 

Iba1-positive activated macrophages/microglial 
cells showed an equal distribution in white and gray 
matter and were much more numerous in EAE mice, 
as compared to control animals. 

Oligodendrocytes revealed by CNP1 immunore-
activity were abundant, mainly in the white matter 
of both EAE and control mice. In EAE mice they 
seemed to be most numerous during the onset phase 
and to decrease in number in the following phases of 
the experimental disease.
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Axonal damage was observed in the white matter 
of EAE mice in all phases of the disease with the 
highest immunoreactivity at the peak of neurological 
symptoms. Control mice did not show immunostaining 
indicative of axonal damage.

NeuN-positive cells bodies of surviving neurons in 
gray matter seemed to be less numerous in EAE mice 
than in control mice only in the chronic phase of EAE.

Quantitative analysis of spinal cord  
sections of EAE and control mice
The density of all studied cells was significantly higher 
in EAE mice than in the control mice. The only ex-
ception were neurons — the density of neuronal cell 
bodies in EAE mice was comparable to that in control 
mice in the onset and peak phases. The density of 
total leukocytes, T cells, and damaged axons generally 
revealed a similar phase-dependent course in EAE 
mice: it increased from the onset to the peak phase 
and decreased in the chronic phase (Figs. 2, 3, 6) to 
reach values lower than those in the peak phase. The 
density of activated macrophages/microglia increased 
in the peak phase and remained at the elevated level in 
the chronic phase (Fig. 4). Oligodendrocytes showed 
the highest density in the onset phase and gradually 
decreased afterwards. In the chronic phase, their 
density was even significantly lower than that in the 
control mice (Fig. 5). The number of neuronal cell 
bodies decreased only in the chronic phase and there 
were no significant differences between the other 
phases of the disease (Fig. 7). Numerical results of 
the measurements are presented in Table 1. 

Discussion

Results of this study show dynamics of cells involved 
in the pathogenesis of EAE and progress of the 
main histopathological changes, axonal damage and 
neuronal death during development and progression 
of the disease. The investigated parameters were 
correlated with three successive phases of EAE: on-
set, peak and chronic, characterized by neurological 
symptoms [2]. It could be expected that cells involved 
in the inflammatory process in the onset phase would 
reveal higher density as compared with the control, 
their density would further increase in the peak phase 
and decline during the chronic phase, as suggested by 
partial recovery of the mice in that phase.

Indeed, the density of T cells, the key players in 
the pathology of EAE and SM follows such pattern. 
It is widely accepted that EAE is initiated by T helper 
(Th) cells which escape self-tolerance mechanisms 
and bind myelin proteins via their TCR receptors. In 
further phases of the disease, two subsets of T cells: 

IFNγ-secreting Th1 cells and IL-17-secreting Th17 
cells, acting in cooperation with antigen presenting 
cells, recruit effector cells of EAE: monocytes/mac-
rophages and microglia to the areas of the developing 
inflammation (mostly perivascular regions of the 
central nervous system and meninges) and the phago-
cytotic activity of the latter cells is directly responsible 
for demyelination [8, 9]. A decrease in the number 
of T cells at later stages of EAE was also reported by 
Herrero-Herranz et al. [10].

Total leukocytes showed a similar behavior. 
CD45 antibody detects T cell, B cells, neutrophils 
and monocytes/macrophages. B cells and neutrophils 
have been recently demonstrated to play significant 
roles in the development and progression of EAE. 
B cells amplify the autoimmune process by taking 
up myelin antigens and presenting them to Th cells, 
they also produce anti-myelin antibodies [11, 12]. It 
has been recently demonstrated that some, not yet 
identified, secretory products of B cells obtained from 
MS patients induce apoptosis of oligodendrocytes and 
neurons in vitro [13].

Neutrophils, which were found to infiltrate EAE 
lesions in large quantities, together with lympho-
cytes and macrophages [14], seem to contribute to 
the pathogenesis of EAE via several mechanisms. 
They significantly participate in the disruption of 
blood-brain/spinal cord barrier, thus facilitating 
transmigration of other cells involved in EAE [15]. By 
producing IL-1b, neutrophils promote differentiation 
of a Th cell subset important for the development of 
EAE [16], they also secrete cofactors necessary for 
maturation of professional antigen presenting cells 
in EAE lesions [17]. 

We observed that the density of macrophages/ 
/microglia increases during the first two phases of 
EAE and remains at the elevated level in the chronic 
phase. This behavior well corresponds with the activity 
of these cells during progression of the disease. The 
initial phase of EAE is characterized by massive infil-
tration of the nerve tissue by blood monocytes which 
are transformed into macrophages and by activation 
of resident microglia [18]. The vast majority of these 
cells show “classically activated” proinflammatory M1 
phenotype [19] and they secrete cytokines promoting 
tissue damage, neuronal death and demyelination, the 
latter being additionally intensified by the phagocy-
totic activity of both cell types. This involvement of 
M1 macrophages/microglia greatly contributes to the 
development of the lesions in the initial and peak 
phases [20]. However, later in the course of EAE, M1 
phenotype is gradually replaced by M2 macrophages/ 
/microglia [21] showing anti-inflammatory properties 
promoting tissue repair and subsequent functional 
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improvement observed in the chronic phase of EAE. 
This seems to explain our finding of the retention of 
macrophages/microglia in EAE lesion after the peak 
phase of the disease. 

It has been a striking observation made in this 
study that already at the onset phase of EAE the 
number of oligodendrocytes is substantially higher 
than in the control mice. Under demyelinating con-
ditions, oligodendrocyte precursor cells (OPS) are 

recruited to the lesion site and maturate into myeli-
nating oligodendrocytes [22] involved in tissue repair. 
Our observation indicates that the recruitment of 
OPC and their maturation occurs very early, shortly 
after the beginning of the demyelination processes. 
High density of oligodendrocytes persists in the peak 
phase; however, intense demyelination and extensive 
accumulation of myelin debris in the lesion results in 
the inhibition of OPC maturation [23] and inefficient 

Figures 2–4. Cell density in spinal cords of EAE mice in three successive phases of the disease (A) with representative  
micrographs showing immunostained cells in the peak phase of EAE (B). Fig. 2. Total leukocytes immunostained for  
CD45. Fig. 3. T cells immunostained for CD3. Fig. 4. Macrophages/microglia immunostained for IbA1. Histomorpho- 
metry was performed as described in Methods. Values represent means ± SEM; n = 6 per group; EAE vs control:  
***p < 0.0001.
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re-myelination. The density of oligodendrocytes 
showed a decrease in the chronic phase, to a level 
even significantly lower than that in the control mice, 
indicating a substantial loss of these cells. Indeed, 
advanced EAE is characterized by a massive oligo-
dendrocyte death [24]. The main mechanism of death 
seems to be caspase-mediated apoptosis [25]. It has 
been a matter of debate, whether oligodendrocyte 
death precedes local inflammation or whether inflam-
mation induces death of these cells. Results of this 

study clearly point to the latter sequence of events, 
at least in the model of MOG-induced EAE, since 
a decrease in oligodendrocyte density was noted no 
sooner than in the chronic phase of EAE.

According to the expectations, axonal damage 
shows progress in the onset and peak phases of 
EAE and becomes stabilized in the chronic phase, in 
which the demyelination and remyelination processes 
become balanced. This result confirms earlier ultras-
tructural data indicating that axonal damage in EAE 

Figures 5–7. Cell and axonal damage density in spinal cords of EAE mice in three successive phases of the disease (A) with 
representative micrographs showing immunostained structures in the peak phase of EAE (B). Fig. 5. Oligodendrocytes 
immunostained for CNP1 (note much higher density in white matter, top). Fig. 6. Damaged axons immunostained for beta 
APP. Fig. 7. Surviving neurons immunostained for NeuN. Histomorphometry was performed as described in Methods. Values 
represent means ± SEM.; n = 6 per group; EAE vs control: *p < 0.05, **p < 0.001, ***p < 0.0001.
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coincided with initial neurological symptoms and 
remained stable in the further course of the disease 
[26]. However, as demonstrated in the latter study, 
myelin pathology (myelin swelling or loss) gradually 
accumulates with disease progression.

Axonal damage is not concomitant with neuronal 
death, since significant decrease in the number of 
surviving neurons was observed only in the chronic 
phase. Although the predominant view emphasizes 
the principal role of demyelination in the pathogenesis 
of MS/EAE, there is a growing evidence indicating 
the significance of neuronal loss in the disease [27]. 
Neuronal apoptosis in EAE can be induced by ER 
stress [28], matrix metalloproteinase 9 released by 
microglia [29] and perforins secreted by Tc cells [30]. 
We found that neuronal loss occurred relatively late, 
in the chronic phase of EAE. It suggests that neurons 
can survive demyelination and damage of their axons 
and that prolonged exposition to the inflammatory 
milieu is necessary to induce their death. This ob-
servation does not, however, agree with the results 
of a study of Vogt et al. [27] who reported death of 
neurons already in the early phase of an identical 
model of EAE and no further neuronal loss in the 
later phases. The discrepancy can stem from different 
quantification method employed be the latter authors 
(high precision stereology), and the time course of 
neuronal loss should be verified in further studies.

Histological correlates of autoimmune disease 
can provide important information concerning the 

underlying pathology. The analysis of cells involved 
and their behavior in the successive phases of EAE 
could also be useful in evaluating the therapeutic 
efficiency of anti-inflammatory, immunosuppressive 
and neuroprotective strategies employed in MS.
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