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Abstract
Acinetobacter baumannii is a Gram-negative, glucose-non-fermenting, oxidase-negative coccobacillus, most 
commonly associated with the hospital settings. The ability to survive in adverse environmental conditions as 
well as high level of natural and acquired antimicrobial resistance make A. baumannii one of the most important 
nosocomial pathogens. While carbapenems have long been considered as antimicrobials of last-resort, the rates 
of clinical A. baumannii strains resistant to these antibiotics are increasing worldwide. Carbapenem resistance 
among A. baumannii is conferred by coexisting mechanisms including: decrease in permeability of the outer 
membrane, efflux pumps, production of beta-lactamases, and modification of penicillin-binding proteins. The 
most prevalent mechanism of carbapenem resistance among A. baumannii is associated with carbapenem-hydro-
lysing enzymes that belong to Ambler class D and B beta-lactamases. In addition, there have also been reports 
of resistance mediated by selected Ambler class A carbapenemases among A. baumannii strains. Resistance 
determinants in A. baumannii are located on chromosome and plasmids, while acquisition of new mechanisms 
can be mediated by insertion sequences, integrons, transposons, and plasmids. Clinical relevance of carbapen-
em resistance among strains isolated from infected patients, carriers and hospital environment underlines the 
need for carbapenemase screening. Currently available methods vary in principle, accuracy and efficiency. The 
techniques that deserve particular attention belong to both easily accessible unsophisticated methods as well 
as advanced techniques based on mass spectrometry or molecular biology. While carbapenemases limit the 
therapeutic options in A. baumannii infections, studies concerning novel beta-lactamase inhibitors offer a new 
insight into effective therapy. (Folia Histochemica et Cytobiologica 2016, Vol. 54, No. 2, 61–74)
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Introduction

Acinetobacter baumannii is a Gram-negative, nonmo-
tile, glucose-non-fermenting oxidase-negative and 
increasingly important opportunistic pathogen. The 
bacterium can survive on solid and dry surfaces up 
to 5 months, which is attributed to: simplicity of its 
nutritional requirements, ability to grow in the wide 

range of temperatures and pH values, high degree 
of resistance to disinfectants and antiseptics, ability 
to form biofilm on abiotic substrata (environmental 
surfaces or medical devices, such as catheters or res-
piratory equipment) as well as biotic surfaces [1–5]. 
These features are likely to be a major contributing 
factor to nosocomial spread of the A. baumannii [5]. 
It is thought that A. baumannii infections are mostly 
acquired after exposure to contaminated hospital 
equipment or by direct contact with healthcare 
personnel that have been previously exposed to the 
microorganism [6]. The other important features re-
sponsible for A. baumannii clinical relevance are: high 
natural resistance as well as an outstanding ability to 
up-regulate innate and acquire foreign mechanisms 
of antimicrobial resistance [5].
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Clinical relevance

Since the 1980s the clinical importance of A. bauman-
nii has radically emerged [7]. The increase of incidence 
of A. baumannii infections is believed to be attributed 
to advancements in medical procedures, which may 
result in rise of susceptible population of patients [8].  
It was also noted that its antimicrobial resistance 
has progressively increased since the 1970s [7].  
Consequently, A. baumannii has been described 
by Infectious Diseases Society of America as one 
of the most significant hospital pathogens [9]. The 
genus Acinetobacter belongs to Moraxellaceae family 
and consists of at least 21 described species, with  
A. baumannii as the most clinically relevant [10]. 
While Acinetobacter spp. phenotypical identification 
system was described, it does not distinguish all known 
so far Acinetobacter species [11]. Current Acinetobac-
ter spp. taxonomy comprise A. calcoaceticus–A. bau-
mannii complex (Abc) which includes: A. calcoaceticus 
(genomic species 1), A. baumannii (genomic species 2),  
A. pittii (genomic species 3) and A. nosocomialis 
(genomic species 13TU), that are all highly genetically 
related and difficult to distinguish phenotypically [10]. 
It is considered that more reliable methods of identi-
fication are represented by amplified 16S rRNA gene 
restriction analysis (ARDRA) and amplified fragment 
length polymorphism (AFLP) [12]. Acinetobacter bau-
mannii can cause numerous acute hospital infections 
represented by: respiratory infections (in particular 
ventilator-associated pneumonia; VAP), bloodstream 
infections, urinary tract infections, skin and soft tissue 
infections, burn and surgical wound infections, endo-
carditis, meningitis, and osteomyelitis [7]. The risk fac-
tors that make patients prone to the colonisation and 
infection with A. baumannii comprise: considerable 
surgical procedures, major trauma, premature or old 
age, hospitalisation, antimicrobial therapy as well as 
medical treatment including mechanical ventilation, 
intravascular catheters, urinary catheters and drainage 
tubes [11]. This bacterium is reported as responsible 
for 2–10% of all Gram-negative hospital infections, 
mainly affecting critically ill patients, particularly 
hospitalised in intensive care units [7]. Furthermore, 
A. baumannii healthcare-associated infections may 
increase the risk of mortality from 8% to 40% [13]. 
The multicentre studies conducted by Hidron and 
co-workers revealed the growing occurrence of 
A. baumannii nosocomial infections, with 8.4% of 
VAP, 2.2% of central line-associated bloodstream 
infections, 1.2% of catheter-associated urinary tract 
infections and 0.6% of surgical site infections [14]. 
Despite the nosocomial infections, A. baumannii can 
also induce community-acquired infections (CA-Ab 

— community-acquired A. baumannii), which are 
reported predominantly in tropical regions of the 
world [15]. Pneumonia and bacteraemia are the most 
prevalent clinical syndromes related to A. baumannii 
infection in these settings. Community acquired pneu-
monia affects particularly individuals with underlying 
chronic obstructive pulmonary disease, renal failure, 
or diabetes mellitus, as well as heavy smokers or al-
coholics [8]. As described by Dexter and co-authors 
CA-Ab pneumonia is characterised with fulminant 
course associated with a rapid onset of fever, acute 
respiratory symptoms and multi-organ dysfunction, 
with high mortality rate representing 64% [16]. De-
spite the hospital and community acquired A. bau-
mannii infections, its occurrence appeared to be also 
related to injuries in war conflicts in e.g. Afghanistan, 
Iraq and Syria [17, 18] as well as natural disasters, 
such as earthquakes and tsunami [19, 20]. Epidemic 
spread of A. baumannii in above-mentioned extreme 
situations is attributed by some authors to substantial 
pressure on hospital emergency wards, which may 
result in failure in infection control precautions [7]. 

Virulence factors

Till date, there have been only a few virulence factors 
(VF) described in A. baumannii. Recent analysis con-
cerning genome sequencing, genetic manipulations 
and applications of animal models allow believing 
that current knowledge regarding additional factors 
will be broadened. Among virulence determinants 
responsible for the A. baumannii pathogenicity, 
there may be mentioned: lipopolysaccharide (LPS), 
capsular polysaccharides (CPS), A. baumannii outer 
membrane protein A (AbOmpA), outer membrane 
vesicles (OMV), phospholipase D (PLD), and biofilm 
[6, 21].

The studies concerning the role of A. bauman-
nii LPS indicated the contribution of the surface 
carbohydrates residues in the virulence [22]. The 
endotoxins are also considered as a potent stimula-
tors of inflammatory signalling in human monocytic 
cells, dependent on both TLR2 (toll-like receptor) 
and TLR4 receptors. Therefore, the pathology of 
Acinetobacter infections may be associated with exag-
gerated innate immune response to the LPS [23–25]. 
Further determinants implicated in the virulence of 
A. baumannii are capsular polysaccharides. Studies 
conducted by Russo and co-workers revealed that K1 
capsule acquired from clinical isolate of A. baumannii 
AB307-0294 appeared to play an important role in in 
vivo as well as in vitro bacterial protection. The active 
protection of the CPS enables A. baumannii to avoid 
bactericidal activity of the complement. The authors 
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also suggested that the CPS protection against the 
effects of phagocytes or antimicrobial peptides re-
quires further studies [26]. AbOmpA is considered 
to be one of the best-characterised A. baumannii 
virulence factors. It is responsible for the damage to 
the human airway cells via induction of the apoptosis. 
This process is mediated by the release of proapopto-
tic molecule cytochrome c and the apoptosis-inducing 
factor. Moreover, AbOmpA is believed to play a role 
in adherence, invasion of epithelial cells and may con-
tribute to the dissemination of A. baumannii during 
infection [27, 28]. Furthermore, above-mentioned 
protein is also implicated in the surface motility, re-
sistance to complement and biofilm formation [6, 21].  
Acinetobacter baumannii as well as some other 
Gram-negative bacteria secrete outer membrane  
vesicles. OMVs have been reported to take part in de-
livering virulence factors to the interior of the host cells, 
facilitating horizontal gene transfer, and protecting  
bacterial cells from the host immune response [29]. 
Proteomic analysis of A. baumannii OMVs revealed the 
presence of more than 130 proteins including: AbOmpA,  
serine- as well as Zn-dependent proteases, phospho-
lipases, bacterioferritin, Cu/Zn superoxide dismu-
tase, catalase, and ferrichrome-iron receptor [30].  
Further data published by Jun and co-workers demon-
strated considerable role of A. baumannii OMVs in 
stimulation of innate immune response that may con-
tribute to immunopathology of the infected host [31]. 
Another group of A. baumannii VF include phospho-
lipases. These enzymes are associated with cleavage 
of the host cells phospholipids, therefore promoting 
the bacterial invasion [6]. Studies concerning the role 
of A. baumannii phospholipase D in murine model of 
pneumonia revealed that disruption of PLD results 
with reduction of the bacterial survival in serum, 
deficiency in epithelial cell invasion and diminished 
pathogenesis [32].

Biofilm is a multicellular complex with three-di-
mensional structure, relevant in the infection. While 
its formation comprises the surface of the host cells 
and indwelling medical devices, it plays an essential 
role in the pathogenesis. Moreover, the presence of 
biofilm reduces the antibiotic penetration, leading 
to the development of drug resistance [33–37]. The 
CsuA/BABCDE usher-chaperone pili assembly 
system has been involved in A. baumannii biofilm 
organization on abiotic surfaces [38]. The expression 
level of csu operon is regulated by the two-component 
system — BfmS/BfmR, comprising a sensor kinase 
and a response regulator [39]. Biofilm-associated pro-
tein (Bap), expressed on the surface of the bacterial 
cells, is implicated in cell-to-cell adhesion providing 

biofilm development and maturation on different 
substrata [40]. Furthermore, one of the most impor-
tant components of exopolysaccharides constituting 
biofilm matrix was polysaccharide polymer poly- 
-beta-1,6-N-acetylglucosamine (PNAG) that is crucial 
for maintaining the integrity of A. baumannii biofilm 
under nutrient limitation and other environmental 
stresses [41]. As mentioned above, the outer mem-
brane protein OmpA (38 kDa) plays an important 
role in the pathogen attachment to the human cells 
and Candida filaments, as well as in biofilm develop-
ment on plastics [42]. Another factor implicated in 
A. baumannii biofilm formation on abiotic surfaces 
is represented by 3-hydroxy-C12-HSL molecule, 
encoded by the abaI autoinducer synthase gene [43].

Drug resistance

Acinetobacter baumannii is characterised by high level 
of intrinsic resistance to many groups of antimicro-
bials (e.g. glycopeptides, macrolides, lincosamides, 
and streptogramins) [44]. Moreover, this bacterium 
is able to develop resistance to all classes of antimi-
crobial agents used in the therapy. The process can be 
associated with genetic changes leading to membrane 
alterations, overexpression of efflux pumps (EP), 
overexpression of intrinsic antibiotic modifying en-
zymes, modifications of target sites for antimicrobial 
agents, and acquisition of novel resistance deter-
minants. Acinetobacter baumannii strains enhanced 
by selective pressure of hospital environment may 
gain resistance via mutational changes as well as by 
horizontal gene transfer from other members of the 
species, genus, non-fermenters and/or Enterobacte-
riaceae family. Observed for a period of time, rapid 
accumulation of resistance determinants to multiple 
classes of antimicrobials among A. baumannii strains 
resulted in the elimination of penicillins, cephalospor-
ins, aminoglycosides, quinolones, and tetracyclines as 
effective treatment options for many clinical isolates. 
Consequently, due to their good activity and low 
toxicity, carbapenems have left as one of the major 
therapeutic options in A. baumannii infections [9].

Carbapenems

Carbapenems are considered to play an essential 
role in antimicrobial therapy worldwide. Regarding 
antibacterial activity, they demonstrate the broadest 
spectrum among beta-lactam antibiotics. Therefore, 
carbapenems are often administered as “antibiotics of 
last-resort” or “last-line agents” in critically ill patients 
in the treatment a variety of infection.
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Chemistry
The carbapenems differ from penicillins by the pres-
ence of carbon instead of sulphur in the position C-1 
and possession of double bond between C-2 and C-3 
in five-membered ring. The broad spectrum of antimi-
crobial agents is attributed to the natural resistance to 
different groups of beta-lactamases. In comparison to 
penicillins and cephalosporins, carbapenems possess 
trans-alpha-1-hydroxyethyl substituent at the 6 posi-
tion, which results in high stability to beta-lactamases. 
The first described carbapenem was thienamycin, 
however the unstable nature of this compound re-
sulted with the development of an N-formimidoyl 
derivative named imipenem. Nevertheless, imipenem 
as well as panipenem are degraded in brush border of 
renal tubules by dehydropeptidase-1 (DHP-1), forcing 
the co-administration of cilastatin or betamiprion, 
respectively [45]. Following carbapenems, such as 
meropenem, ertapenem, biapenem and doripenem, 
due to the presence of a methyl group in the 1-beta po-
sition, are not affected by DHP-1 inhibition. Merope-
nem as a derivative of thienamycin has a pyrrolidinyl 
substituent at 2 position, which is thought to provide 
the enhanced Gram-negative activity. Doripenem is 
a synthetic 1-beta-methylcarbapenem, differing from 
meropenem with the presence of sufamoylaminome-
thyl group. This modification increases doripenem 
activity towards non-fermentative Gram-negative ba-
cilli [45, 46]. Another carbapenem, introduced to the 
therapy in 2001, is ertapenem. This broad-spectrum 
beta-lactam differs structurally from meropenem in  
a meta-substituted benzoic acid group at the 2 binding 
position. In consequence, increasing of the molecular 
weight and lipophilicity of the molecule was observed. 
Structural changes of the molecule also resulted in the 
increased half-life and decreased permeation through 
the Gram-negative bacteria cell wall [47].

Mechanism of action 
The mode of action of carbapenems as well as other 
beta-lactam antibiotics is associated with the struc-
ture and biosynthesis of the bacterial cell wall [48]. 
Carbapenems enter the Gram-negative bacteria via 
outer membrane proteins (also described as porins), 
cross the periplasmic space and acetylate the peni-
cillin-binding proteins (PBPs). PBPs are described 
as enzymes (i.e. peptidases, transglycosylases) re-
sponsible for the formation of peptidoglycan in the 
bacterial cell wall. Therefore, the bactericidal activity 
of carbapenems is associated with binding to PBP and, 
in consequence, the inhibition of peptide cross-linking 
and other peptidase reactions. Carbapenem binding 
of PBP leads to weakening of the peptidoglycan and 
may result with the cell burst due to the osmotic 

pressure. Furthermore, one of the essential features 
of the carbapenems is the ability to bind to multiple 
different PBPs [46].

Imipenem binds favourably to PBP2 and PBP1, 
while possess weak affinity towards PBP3. Merope-
nem affinity for the various PBPs differs between 
Gram-positive and Gram-negative bacteria. Among 
Gram-negative bacteria, this carbapenem binds pref-
erentially to PBPs 2, 3 and 4, as well as exhibits strong 
affinity to PBPs 1a and 1b. Ertapenem binds primarily 
to PBP2 of Escherichia coli than PBP3, and has good 
affinity for PBP1a, 1b, 4 and 5. Doripenem has high 
affinity towards various PBPs exhibited by many bac-
terial species. This carbapenem presents high affinity 
for PBP2 and PBP3 in Pseudomonas aeruginosa and 
for PBP2 in E. coli. Doripenem is also considered to 
have increased antipseudomonal activity compared to 
imipenem. Taking into consideration the role of PBP 
in the mechanism of action of carbapenems, little is 
known about this processes in A. baumannii [21, 46].

Microbial activity
Carbapenems are beta-lactam antibiotics active 
against a wide range of Gram-positive and Gram-ne-
gative bacteria, including aerobes as well as anaer-
obes. However, in contrast, none of the carbapenems 
is clinically useful against Enterococcus faecium and 
Stenotrophomonas maltophilia. Generally, imipenem, 
panipenem and doripenem are slightly more active 
versus Gram-positive bacteria, while meropenem, 
biapenem, ertapenem, and doripenem are more po-
tent against Gram-negative organisms. Taking into 
consideration carbapenem activity against A. bauman-
nii, it has been shown that imipenem and doripenem 
are more potent than meropenem. Moreover, the 
MIC values of doripenem are lower than presented 
by imipenem and meropenem for A. baumannii. The 
studies concerning analysis of carbapenems MIC90 
values among Acinetobacter spp., revealed more than 
eightfold higher MIC90 for ertapenem, comparing to 
other carbapenems [45–47].

Clinical use
As MDR (multidrug-resistant) pathogens emerge 
worldwide, in many cases carbapenems remain the 
“last-resort” antimicrobials used in empirical as well 
targeted therapy of severe infections. Furthermore, 
increasing phenomenon of carbapenem resistance 
limits available clinical options and stresses the need 
of development of combined therapy. Carbapenems 
can be combined with other antimicrobials to achieve 
an effective and safe therapy for serious A. bauman-
nii infections [21, 46]. The possible advantages of 
combined therapy in comparison to monotherapy 
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comprise a broader antibacterial spectrum, synergistic 
effects, and decreased risk for emerging resistance 
during therapy.

Many combinations have recently been reported 
in the scientific literature. In vitro study conducted 
by Fernández-Cuenca and co-workers revealed the 
additive effect of imipenem and azithromycin in the 
group of clinical strains of A. baumannii [49]. More-
over, Principe and co-authors demonstrated in vitro 
synergistic activity of tigecycline in combination with 
imipenem against tigecycline non-susceptible A. bau-
mannii strains [50]. Another study concerning combi-
nation therapy showed synergistic antibacterial effect 
of imipenem with colistin among 100% of analysed 
imipenem- and meropenem-resistant A. baumannii 
isolates. Furthermore, the triple combinations of 
meropenem, sulbactam and colistin exhibited synergy 
against 96.7% of MDR A. baumannii [51]. Further 
studies concerning the combination of meropenem 
and ciprofloxacin revealed a small synergistic effect 
against the A. baumannii intensive care unit strains 
[52]. The research of Kiffer and co-workers showed 
that the combinations of meropenem and sulbactam 
may show synergism or partial synergism for analysed 
MDR A. baumannii isolates [53]. In the recent study, 
a combination of meropenem with minocycline was 
synergistic to tested XDR (extensively drug-resistant) 
A. baumannii isolates, but neither showed bactericidal 
activity alone. Furthermore, the authors observed that 
also colistin and meropenem presented synergistic 
effect and showed bactericidal activity against all 
tested strains [54, 55].

Carbapenem resistance

While carbapenems representing group 2 (meropen-
em, imipenem–cilastatin and doripenem) have been 
regarded as antimicrobials of “last-resort” in MDR  
A. baumannii infection therapy, recently a rapid increase  
in the rates of carbapenem resistant A. baumannii was 
observed [5]. Studies performed by National Health-
care Safety Network showed carbapenem resistance 
among 33% of A. baumannii strains derived from 
medical centres in the United States of America [14].  
Moreover, Reddy and co-authors revealed the disturb-
ing tendency of sharp increase in the rates of CRAb 
(carbapenem-resistant A. baumannii), from 1% in 
2003, to 58% in 2008, associated with a more than 
twofold rise in occurrence of A. baumannii isolates 
[56]. A multinational study showed that A. baumannii 
imipenem susceptibility rates were higher for strains 
isolated from Europe and North America than those 
from Latin America and the Asia–Pacific Rim [57].  
Another microbiological surveillance reports have 

revealed substantial rates of multidrug resistance in  
A. baumannii, which suggest that this bacterium became  
a growing public-health problem nowadays [8, 58]. 
Growing prevalence of carbapenem-resistant A. bau-
mannii isolates is considered as a threat to healthcare 
and patient safety worldwide, significantly reducing 
the ability to cure the infections. The progressive 
spread of CRAb strains is resulting in an urgent need 
for efficient detection, surveillance and guidance for 
infection prevention and control [58].

Mechanisms mediating A. baumannii resistance 
to carbapenems are presented in the Figure 1. The 
fusion of these mechanisms may result in high levels 
of carbapenem resistance in A. baumannii strains [46]. 

Non-enzymatic mechanisms

While carbapenems enter the bacterial cell via cer-
tain types of porins, their reduced expression play  
a role in the resistance to these antibiotics. The most 
characterised porin among A. baumannii is the car-
bapenem-associated OMP (CarO) [10]. According to 
Catel-Ferreira and co-workers, decrease in the expres-
sion of CarO results in the reduction of susceptibility 
to imipenem [59]. Another carbapenem-associated 
OMP is 33- to 36-kDa protein. Carbapenem resistance 
in the epidemic strain analysed by del Mar Tomás and 
co-workers was considered to be caused by the loss of 
33- to 36-kDa OMP [60]. Efflux pumps extrude anti-
microbials from the bacterial cells, which may result in 
resistance to a wide spectrum of antimicrobial agents 
as well as disinfectants. While five families of EP 
are associated with increased resistance of bacteria, 
only three of them are represented in A. baumannii: 
multidrug and toxic compound extrusion (MATE) 
family, the major facilitator superfamily (MFS), and 

Figure 1. Mechanisms responsible for Acinetobacter bau-
mannii carbapenem resistance. PBPs — penicillin-binding 
proteins.
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the resistance-nodulation-cell division (RND) family. 
In A. baumannii the major efflux pump associated with 
carbapenem resistance is AdeABC. This EP belongs 
to RND family and is comprised of three-components: 
AdeA — membrane fusion protein, AdeB — inner 
membrane protein channel, and AdeC — outer 
membrane protein channel [61]. Overexpression of 
this EP is regulated by adeS and adeR genes contri-
buting to increased resistance to antimicrobials, inter 
alia: meropenem, fluoroquinolones, tetracyclines, 
chloramphenicol as well as aminoglycosides [10]. 
Another mechanism responsible for carbapenem 
resistance in A. baumannii is related to alterations in 
penicillin-binding proteins. This mechanism confers 
resistance to beta-lactam antimicrobials in many 
bacterial species, however the data concerning this 
phenomenon in A. baumannii are limited. Although 
several PBP proteins have been described in A. bau-
mannii so far, their role is attributed only to low-level 
carbapenem resistance [62, 63]. Furthermore, studies 
concerning CRAb strains with multiple mechanisms 
responsible for this process, revealed reduced expres-
sion of selected PBP proteins [63].

Enzymatic mechanisms

Bacterial enzymes responsible for hydrolytic inacti-
vation of different groups of beta-lactam antibiotics, 
such as penicillins, cephalosporins, monobactams 
and carbapenems are represented by beta-lactama-
ses. These enzymes are categorised according to the 
sequence homology into four molecular classes: A, 
B, C and D.

Carbapenem resistance can be mediated by hy-
perproduction or derepression of Ambler class C 
beta-lactamases (AmpC beta-lactamases), selected 
ESBL (extended-spectrum beta-lactamases) and 
carbapenemases [64]. In accordance with the cur-
rent knowledge the most significant mechanism of 
carbapenem resistance in A. baumannii is associated 
with carbapenemases, the most versatile family of be-
ta-lactamases. The Figure 2 shows the clinically rele-
vant carbapenemases occurring among A. baumannii.

Based on the participation of divalent cations in 
enzyme activation, carbapenemases can be segregated 
into metallo-carbapenemases (class B) and non-met-
allo-carbapenemases (class A, C and D) [65]. Both 
groups of enzymes comprise the resistance to carbap-
enems by breaking the amide bond of the beta-lactam 
ring, however the mechanism of this process differs 
substantially. The hydrolysis of carbapenems mediated 
by metalloenzymes involves a water molecule, which 
is coordinated to a divalent cation (zinc) in order to 
activate and disrupt the beta-lactam ring. It is worth 

emphasizing that metallo-beta-lactamases do not form 
the covalent acyl-enzyme intermediate [65, 66].

The hydrolytic inactivation of carbapenem anti-
biotics performed by non-metallo-carbapenemases 
includes acylation and deacylation reactions. In the 
first step, a conserved serine located in the active site 
of enzymes, attacks the beta-lactam amide bond, as-
sembling an acyl-enzyme complex. This intermediate 
is hydrolysed afterwards by a deacylating water mole-
cule, forming the hydrolysed product that is released 
from the active site of the enzyme [65]. It is considered 
that carbapenem hydrolysing class D beta-lactamases 
(CHDL) are the most common factor of carbapenem 
resistance in A. baumannii strains. These enzymes are 
referred as OXAs (oxacillinases) due to their ability 
to hydrolyse isoxazolylpenicillin — oxacillin much 
faster than benzylpenicillin [67, 68]. Among A. bau-
mannii there have been identified so far six groups of 
OXA carbapenemases represented by: OXA-51-like, 
OXA-23-like, OXA-40/24-like, OXA-58-like, OXA- 
-143-like, and OXA-48-like [9, 69].

Figure 2. Clinically relevant carbapenemases occurring 
among Acinetobacter baumannii.
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The groups, occurrence, structure, catalytic mech-
anism and inhibitors of A. baumannii carbapenemases 
have been thoroughly described in the Supplemen-
tary File 1. The acquired carbapenem-hydrolysing 
OXA-type beta-lactamases carried by Acinetobacter 
baumannii strains have been listed in Supplementary 
Table 1 and the metallo-beta-lactamases reported 
among A. baumannii strains — in Supplementary 
Table 2.

Carbapenemase encoding genes: genetic  
location transfer and mechanisms of control 

Carbapenemase encoding genes can be carried 
within A. baumannii genome on chromosome and/
or plasmids. Furthermore, genetic determinants of 
carbapenemases are often associated with mobile 
genetic elements, such as insertion sequences (IS), 
integrons, transposons, resistance islands (RI), and 
plasmids, often contributing to their acquisition, 
dissemination and regulation among bacterial iso-
lates [21].

Insertion sequences
Insertion sequences, also described as insertion se-
quence elements are DNA segments not exceeding 
in size 2500 bp, and therefore considered to be the 
smallest mobile DNA elements. IS can contribute to 
resistance by: providing additional promoters in order 
to amplify the expression of certain genes, disarrang-
ing the coding sequences of particular genes, and 
allowing the dissemination of gene cassettes among 
bacterial strains [21]. According to the Reference 
Centre for Bacterial Insertion Sequences (ISfinder), 
30 different types of IS were described in A. bauman-
nii so far [70]. The insertion sequence of particular 
importance and prevalence is represented by ISAba1. 
It is considered that the first report of A baumannii 
ISAba1 concerned the isolate from 2001, however it 
turned out that the sequences corresponding to this 
element had been reported previously. While the 
presence of ISAba1 has been found in association with 
numerous antimicrobial resistance determinants, its 
role in mobilization of OXA-type carbapenemases 
has been reported in particular [69]. The association 
of ISAba1 and OXA-type carbapenemases encoding 
genes includes intrinsic as well as acquired enzymes. 
Turton and co-authors suggested that the location 
of ISAba1 sequence upstream of blaOXA-51-like is 
providing the gene promoter that may result in resist-
ance to carbapenems [71]. The ISAba1 has been also 
found in association with blaOXA-23-like and blaOXA-58-like 
genes [71–73]. Nevertheless, several authors have 
suggested that overexpression of these CHDLs may be 

also associated with the presence of ISAba1 flanking 
these genes, and therefore may result with decreased 
susceptibility to carbapenems [72, 74, 75].

Integrons
Integrons are genetic elements that are capable of 
capturing antibiotic resistance determinants and able 
to promote their transcription and expression [76]. 
In recent decades it has turned out that integrons 
play a vital role in the acquisition and dissemination 
of antibiotic resistance genes, particularly among 
Gram-negative bacteria [77]. Integrons can be clas-
sified into several classes according to the relative 
homology of integrase encoding gene (intI) [77]. It is 
considered that the occurrence of integrons among 
A. baumannii strains may suggest their high epidemic 
potential. More than five classes of integrons have 
been described so far, with the class 1 integrons to 
be the most prevalent among multidrug-resistant 
A. baumannii clinical strains worldwide [78–80]. 
Moreover, it has been noted so far that among  
A. baumannii isolates class 1 integrons can carry only 
metallo-beta-lactamases, neither OXA nor KPC 
carbapenemase encoding genes. An example of imi-
penem-resistant A. baumannii strain carrying blaIMP-5 
gene within class 1 integron was reported by Da Silva 
and co-workers [81]. Also the studies of Huang and 
co-authors revealed the presence of multidrug-resist-
ant A. baumannii isolates carrying within the class 1 
integron the blaVIM-11 gene [82]. Additionally, the oc-
currence of blaSIM-1 was detected in class 1 integrons 
among seven clinical isolates of A. baumannii from 
Korea [83]. While the genetic determinants of IMP, 
VIM and SIM-type enzymes were found on class 1  
integrons of A. baumannii, blaNDM have not been found 
till date [84].

Resistance islands
Bacterial resistance islands are defined as a particular 
region within the genome harbouring a high con-
centration of horizontally transferred antimicrobial 
resistance genes [9, 21]. There have been numerous 
RI described among A. baumannii strains so far, rep-
resented by AbaR1, AbaR3, AbaR4, AbaR5-Aba19, 
AbaR25, and others [85–87]. The first A. baumannii 
resistance island (AbaR1) was reported in multid-
rug-resistant AYE strain, in 2006 by Fournier and 
co-workers [88]. The whole-genome sequencing of the 
strain revealed the presence of 86 kb resistance island, 
which harboured a cluster of 45 resistance genes, in-
cluding blaOXA-69 (member of blaOXA-51-like group) [88]. 
Studies concerning the group of carbapenem-resistant 
A. baumannii isolates in Latvia disclosed the preva-
lence of AbaR25 resistance island. The Acinetobacter 
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baumannii strain carrying the AbaR25 (variant of 
AbaR4) was linked to international clone II/ST2 
and carried within the resistant island the blaOXA-23-like  
carbapenemase gene [87]. Furthermore, studies 
concerning CRAb isolates from Asia revealed the 
presence of two AbaR4-type resistance islands (D36 
and AB210) that carried blaOXA-23-like genes [89].

Plasmids
Plasmids are circular or linear double-stranded DNA 
molecules distinct from chromosomal DNA, often 
transferred by means of conjugation [90, 91]. Studies 
concerning the sequence analysis of A. baumannii 
plasmid replicons revealed the differences comparing 
to other prokaryotic species, suggesting that A. bau-
mannii strains may carry distinct set of plasmid types 
[92, 93]. It is believed that the most clinically relevant 
carbapenemases are often associated with plasmids 
[68]. While A. baumannii plasmids may vary in size 
as well as genetic content, Bertini and co-authors 
proposed their classification based on the replicase 
gene sequences [92]. Towner and co-authors analysing 
the group of 96 MDR A. baumannii clinical isolates 
from 17 European countries, confirmed the presence 
at least 1 (with a maximum of 4) out of 19 replicases 
(rep) gene groups (GR) among all clinical strains 
tested. The largest group of strains belonged to GR6 
(repAci6; 93 isolates), and the variations in rep gene 
content were even presented among epidemiologically 
related isolates. Further analysis of co-occurrence 
of rep genes and CHDL encoding genes revealed 
the association of blaOXA-58-like genes (22 strains) with 
repAci1, repAci3, repAci4, and repAciX genes, while 
blaOXA-40-like (6 strains) were related to repAci2 and 
p2ABSDF0001, and blaOXA-23-like (8 isolates) were 
correlated with repAci1 [93].

Methods of detection of carbapenemases

The clinical relevance of rapid detection of carbap-
enemases among A. baumannii strains is crucial due 
to selection of appropriate antibiotic therapy as well 
as prevention of the development of the outbreaks. 
Till date, there have been introduced a number of 
methods, differing in principles, accuracy and time 
of detection.

Phenotypic methods
Among phenotypic tests used in the detection of 
carbapenemases, methods based on the inhibition 
of the enzyme activity by specified inhibitors deserve 
particular attention. The culture-based techniques 
of metallo-beta-lactamases detection are, inter alia 
represented by double-disk synergy test and Etest 

MBL (bioMeriéux, France). These methods, enabling 
to detect MBL carbapenemases in routine microbiol-
ogy practice, utilize EDTA as the enzymes inhibitor 
[94, 95]. Another culture-based method, used for 
detection of carbapenemases among A. baumannii 
is represented by KPC combined disk assay. This 
technique utilizes boronic acid compound (BAC) as 
KPC inhibitor [96, 97].

Biochemical methods
Very recently, a novel and promising technique for 
the rapid and accurate detection of carbapenemases 
has been developed. The Carba NP test uses isolated 
bacterial colonies and is based on in vitro hydrolysis 
of imipenem. The carbapenemase activity is detected 
by colour change of pH indicator resulting from the 
hydrolysis of imipenem into a carboxylic derivative, 
leading to a decrease of the pH value [98–100]. While 
the application of Carba NP test in carbapenemase de-
tection among Acinetobacter spp. strains encountered 
certain difficulties, a modified version of the assay — 
the CarbAcineto NP test, has been developed. Dortet 
and co-authors performed the analysis of specificity 
and sensitivity of the CarbAcineto NP test and revealed 
100% and 94.7%, respectively [101]. Another method 
based on hydrolysis of carbapenem beta-lactam ring is 
Rapid CARB Blue Kit (Rosco Diagnostica, Taastrup, 
Denmark). The assay uses Tienam (commercially 
available imipenem) (Merck Sharp & Dohme, France) 
as a substrate for carbapenemases and bromothymol 
blue as a pH indicator. The Rapid CARB Blue Kit 
has been developed for detection of carbapenemase 
among Acinetobacter spp., Enterobacteriaceae and 
Pseudomonas spp. strains [102, 103].

An additional approach to carbapenemase detec-
tion is associated with application of the ultraviolet 
(UV) spectrophotometry. The assay is performed 
for overnight cultures of A. baumannii which are 
centrifuged and sonicated, and then followed by UV 
spectrophotometric measurement (wavelength value 
of 297 nm for imipenem) of specific activity of carbap-
enemases. While this technique is considered to be 
efficient in detection of VIM, IMP and SIM carbap-
enemase producers, it is regarded to be unsuitable for 
testing for CHDL and NDM carbapenemases [104].

Another promising method of carbapenemase 
detection is based on the MALDI-TOF MS (ma-
trix-assisted laser desorption/ionization time of flight 
mass spectrometry). According to the definition pre-
sented by Wieser and co-authors the method is based 
on the ionization of cocrystalized sample material 
by short laser pulses, and then so formed ions are 
accelerated and their time of flight is measured in  
a vacuum flight tube [105]. The application of MAL-
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DI-TOF MS in the detection of carbapenemases is 
based on the identification of native imipenem and 
its natural metabolite, both molecules are identified 
according to their different masses. In the studies by 
Kempf and co-workers the carbapenemase detection 
by MALDI-TOF MS method was carried among  
106 A. baumannii clinical isolates from France and 
Algeria. According to the authors, the method re-
vealed a sensitivity and specificity of 100%. While this 
technique is considered to be rapid and effective, it 
requires particularly expensive equipment and spe-
cialized laboratory personnel [106].

Molecular methods
Among techniques used in the detection of carbapen-
emases, nucleic acid based methods deserve particular 
attention. These methods are considered to be the 
“gold standard” characterised with high specificity 
and sensitivity. Currently, the most of the molecular 
techniques used in the detection of carbapenemases 
are based on the polymerase chain reaction (PCR). 
A single end-point PCR is one of the first molecular 
methods used in epidemiological as well as resistance 
studies [107].

While single end-point PCR allows detection of 
only one gene (per reaction), the multiplex PCR 
technique enables identification of different target 
genes in one reaction. Several multiplex PCR assays 
detecting carbapenemases in A. baumannii strains 
were described so far. Woodford and co-authors de-
veloped the multiplex PCR technique which allows 
identification and distinguishing of alleles encoding 
four groups of OXA carbapenemases — OXA-23- 
-like, OXA-40/24-like, OXA-58-like, and OXA-51-like  
among Acinetobacter spp. [108]. Another reliable and 
rapid method used in the detection of carbapenemas-
es was developed by Poirel and co-workers. The au-
thors defined and evaluated the technique that allows 
detecting 11 carbapenemase encoding genes (blaIMP, 
blaVIM, blaNDM, blaSPM, blaAIM, blaDIM, blaGIM, blaSIM, 
blaKPC, blaBIC, and blaOXA-48) in three multiplex PCR 
reactions. Application of the optimized conditions in 
each reaction mixture allowed obtaining distinct PCR 
amplicons for respective carbapenemase genes [109].

Another step forward in the molecular diagnostics 
was the introduction of real-time PCR (also known 
as quantitative PCR). While the end-point PCR re-
quires gel electrophoresis in amplicon detection, the 
real-time PCR technique utilizes amplification and 
detection in a single step. The product detection can 
be obtained according to two main approaches: ap-
plying a dye that binds to double-stranded DNA (e.g. 
SYBR Green, EvaGreen) or implementing sequence 
specific probes (e.g. TaqMan®, Molecular Beacons, 

Scorpion) [107, 110]. Furthermore, real-time PCR 
in comparison to end-point PCR method allows to 
obtain a quantitative result and also to perform the 
reaction in a shorter period of time. An example of 
the application of real-time PCR in carbapenemase 
detection among A baumannii isolates was reported 
by Pasanen and co-workers. The authors described 
the multiplex real-time PCR assay that detected car-
bapenemase genes for KPC, VIM, IMP, GES-1/-10,  
OXA-48, NDM, GIM-1, SPM-1, IMI/NMC-A, 
SME, CMY-10, SFC-1, SIM-1, OXA-23-like, OXA-
-40/24-like, OXA-58, and ISAba1-OXA-51-like in 
just two separate reactions. This SYBR Green based 
assay demonstrated the good performance detecting 
relevant carbapenemases among clinical isolates 
of A. baumannii [111]. Despite the SYBR Green 
chemistry based real-time PCR methods, sequence 
specific TaqMan® probes are applied in carbapene-
mase detection among A. baumannii strains. Huang 
and co-workers described the multiplex TaqMan® 
real-time PCR assay for simultaneous detection of 
four carbapenem-resistance genes — blaOXA-23-like, 
blaOXA-51-like, blaOXA-40/24-like, and blaOXA-58-like. The assay 
demonstrated a high specificity, suggesting its ap-
plication in early diagnosis of carbapenem resistant  
A. baumannii [112].

Another method of gene amplification is repre-
sented by loop-mediated isothermal amplification 
assay (LAMP). This technique is based on autocy-
cling strand displacement DNA synthesis performed 
under isothermal conditions in the presence of Bst 
DNA polymerase. Solanki and co-workers evaluated 
the application of LAMP method in the detection of 
blaNDM-1 and blaKPC genes among carbapenem resistant 
Gram-negative isolates, including A. baumannii. The 
authors compared the LAMP assay with phenotypic 
and PCR based methods. The studies revealed that 
LAMP technique appeared to be more sensitive than 
conventional PCR, indicating the presence of blaNDM-1 
and blaKPC genes among four strains that were not 
detected by PCR. The authors also concluded that 
LAMP method with its high sensitivity and short 
turnaround time could be considered as a rapid and 
accurate point-of-care assay in the detection of NDM 
and KPC carbapenemases [113, 114].

Yet another latest molecular technique is the DNA 
microarray, also known as DNA chip or bio-chip. 
This method is based on hybridization of nucleic acid 
sample to a large set of oligonucleotide probes, which 
are attached to a solid surface [115]. DNA microarray 
allows for the simultaneous analysis of multiple genes; 
therefore, it could be applied in the identification of 
various resistance as well as virulence genes among 
tested strains within one assay. Dally and co-work-
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ers developed a microarray which allows detecting  
91 target sequences of resistance determinants among 
multidrug-resistant A. baumannii strains within  
4 hours from bacterial culture to the result. Among 
resistance determinants included in the study, car-
bapenemase genes were represented by: blaOXA-23, 
blaOXA-37, blaOXA-40, blaOXA-48, blaOXA-51, blaOXA-58, blaKPC, 
blaVIM, blaIMP-1, blaIMP-2, blaSIM, blaGES, and blaNDM. In 
the group of 60 A. baumannii strains the carbapen-
emase genes were detected among: 14, 13, 11, and 8 
strains, carrying blaOXA-23-like, blaOXA-40/24-like, blaOXA-58-like,  
and MBL genes, respectively. Furthermore, 10 iso-
lates harboured deregulated blaOXA-51-like genes due 
to ISAba1 integration. Application of the microarray 
assay in the detection of carbapenemases revealed 
complete concordance with singleplex PCR pro-
vided by German National Reference Centre for 
Gram-negative Pathogens. Taking into consideration 
microarray’s reliability and short handling time, it 
can be applied as a fast and reliable tool in resistance 
studies concerning both adequate treatment selection 
of intensive therapy patients as well as epidemiolog-
ical studies [116]. The overview of mentioned above 
methods is presented in Table 3.

Conclusions

Over the last decades A. baumannii has emerged as an 
important nosocomial pathogen. While carbapenems 
have long been considered as an effective antimi-
crobial against A. baumannii infections, emerging 
resistance has been causing substantial difficulties 
in the treatment of this nosocomial pathogen world-
wide. Currently, the most relevant mechanism of  
A. baumannii carbapenem resistance is associated 
with the beta-lactams hydrolysing enzymes repre-
sented by OXA-type and MBL carbapenemases. 
While laboratory detection and identification of 

carbapenemases among A. baumannii is troublesome, 
numerous promising methods have been described. 
The techniques which deserve particular attention 
belong to unsophisticated screening methods that can 
be used in routine microbiological laboratory, modern 
methods based on mass spectroscopy, and molecular 
biology, which enable detection of different carbapen-
emases in one run. While carbapenemase-producing  
A. baumannii strains are often multidrug-resistant, studies 
concerning carbapenemases inhibitors may offer a new 
insight into effective treatment of MDR A. baumannii.
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