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Abstract
Metallothioneins (MTs) are low weight proteins involved in several key cellular processes such as metal ions 
homeostasis, detoxification and scavenging of free radicals. Four groups of MTs are distinguished: MT-1, MT-2,  
MT-3 and MT-4. Regardless of the type, MTs are characterized by high content of cysteine, responsible for 
their biological properties such as binding of relevant zinc and copper ions, as well as toxic ions such as lead 
and cadmium. MTs were additionally shown to protect cells against oxidative stress damage and participate in 
differentiation, proliferation and/or apoptosis of normal and cancer cells. Many studies of different neoplasms 
showed association of elevated MTs levels with occurrence of chemo- and radiotherapy resistance and poor pa-
tients’ outcome. In this review, we summarize and discuss the potential mechanism of action of metallotioneins 
in lung physiology and pathology. (Folia Histochemica et Cytobiologica 2015, Vol. 53, No. 1, 1–10)
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Abbreviations: AC — adenocarcinoma, ARE — anti- 
oxidant response element, CCT-LC — chronic 
cadmium-treated lung cells, EMT — epithelial-to- 
-mesenchymal transition, FGF — fibroblast growth 
factor, GIF — growth inhibitory factor, GRE — glu-
cocorticoid response element, HIF-1a — hypoxia-in-
ducible factor-1a, HO-1 — heme oxygenase-1, iNOS 
— inducible nitric oxide synthase, LCC — large-cell 
carcinoma, LPS — lipopolysaccharide, MRE — metal 
response element, MT — metallothionein, MTF-1  
— metal regulatory transcription factor, NSCLC 
— non-small cell lung cancer, OVA — ovalbumin, 
SCC — squamous cell carcinoma, SCLC — small cell 
lung cancer, SOD — superoxide dismutase, TGFb — 
transforming growth factor b, VEGF-A — vascular 
endothelial growth factor A

Introduction

Lung cancer is reported to be one of the malignan-
cies with the highest mortality both in Poland and 
worldwide [1, 2]. The majority of the diagnosed lung 
malignancies (84%) belong to the group of non-small 
cell lung cancers (NSCLC), and they are divided into 
three histological subtypes: squamous cell carcinoma 
(SCC), adenocarcinoma (AC) and large-cell carcino-
ma (LCC). Small cell lung cancers (SCLC) account 
for approximately 14% of the diagnosed cases [3]. 
Despite improvements in diagnostics and treatment, 
majority of the cases are diagnosed in advanced 
clinical stages with unfavorable disease course. It is 
estimated that only 16% of the patients survive longer 
than 5 years [1]. Taking into account high mortality 
and poor patients’ outcome, studies on new prognostic 
and predictive markers of lung cancer are necessary.

Metallothioneins (MTs) are highly conserved low 
weight proteins (6–7 kDa) localized in the cytoplasm 
and cell nucleus. They were initially isolated from 
equine renal cortex and subsequently tested in other 
species [4]. A single MT molecule comprises 61 to 
68 amino acids, which form two main domains desi-
gnated as a and b [4, 5]. Studies on rodents enabled 
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distinguishing four groups of metallothioneins: MT-1, 
MT-2, MT-3 and MT-4 [5, 6]. In humans, MTs are 
encoded by 17 genes, from which thirteen code for 
MT-1, two for MT-2 and one gene each codes for 
MT-3 and MT-4 [7–9]. Since now, ten genes were 
identified which encode functional MT proteins, 
MT-1A, MT-1B, MT-1E, MT-1F, MT-1G, MT-1H, 
MT-1X, MT-2A, MT-3, MT-4, and seven genes coding 
for non-functional isoforms: MT-1C, MT-1D, MT-1I, 
MT-1J, MT-1K, MT-1L and MT-2B [7, 10]. Recently, 
a gene called MT-like 5 (MTL-5) and closely related 
in structure to other MTs was identified in mice 
testes. MTL-5 encodes protein tesmin, differentially 
regulating meiosis in male and female cells [11]. 
Regardless of the type, MTs are characterized by 
high content of cysteine (up to one third of all amino 
acids), which thiol groups are responsible for their 
biological properties such as binding of relevant zinc 
and copper ions, as well as toxic ions such as lead, 
cadmium and mercury. Due to their properties, MTs 
participate in zinc and copper ions homeostasis and 
are capable of detoxifying the organism of other toxic 
metals [6]. MTs were additionally shown to protect 
cells against oxidative stress damage and participate 
in cell proliferation and/or apoptosis [4]. Although 
MT isoforms possess similar structure, their biologi-
cal role may vary depending on cell type. Since now 
MT-1 and MT-2 isoforms are the best characterized 
and are ubiquitously expressed in normal, as well as 
cancer cells [4, 12, 13]. MT-3, isolated first from hu-
man brains affected by Alzheimer disease, was initially 
regarded as specific for nervous system; however, later 
studies demonstrated its expression also in cancer cells 
[14–18]. The MT-4 is so far the least characterized 
member of the MTs family and its expression has been 
mainly observed within the differentiating stratified 
squamous epithelia [8].

Metallothioneins MT-1 and MT-2 

Metallothioneins of both these groups will be discus-
sed together under the term MT-1/2, due to their high 
structural homology and functional, as well as biolo-
gical, similarities. MT-1/2 are built of the a domain 
(comprising amino acids 31–68) and the b domain 
(comprising amino acids 1–30) [4]. The a domain 
comprises 11 cysteine residues capable of binding up 
to four divalent or six univalent metal ions, whereas 
the b domain comprising of 9 cysteine residues was 
shown to bind up to three bivalent and six univalent 
metal ions [19]. Due to the high structural homology 
of these conserved proteins, antibodies against their 
antigenic domains are not capable of distinguishing 
particular MT-1/2 members [20]. MT-1/2 expression 

was shown in numerous studies to be induced by 
various agents such as heavy metals, steroid, free ra-
dicals, glucose, growth factors and cytokines. Among 
the above mentioned factors, zinc ions seem to be 
the main regulators of MT-1/2 expression in normal 
conditions [21–25]. Zinc ions regulate transcription 
of MT-1/2 genes via activation of metal response ele-
ment-binding transcription factor 1 (MTF-1), leading 
to its subsequent linking by its zinc finger domains 
with a specific DNA region — the metal response 
element (MRE) in the MT-1/2 gene promoter [26, 27]. 
Besides, it was shown that metal ions other than zinc 
(e.g. cadmium and lead) may indirectly induce MT-1/2 
transcription. Due to their higher affinity to MT-1/2, 
cadmium and lead ions displace zinc ions from the 
MT-1/2 molecule resulting in elevated intracellular 
zinc concentration. Zinc ions bind next to the MTF-1,  
which, in turn, increases the expression of MT-1/2 
genes [28, 29]. Comparable mechanism was observed 
in regard to hydrogen peroxide (H2O2) that oxidizes 
MTs molecules, which results in the release of zinc 
ions [30, 31]. Moreover, the MT-1/2 transcription was 
also shown to be initiated independently of MTF-1 
through the activation of other MT-1/2 promoter ele-
ments, such as antioxidant response element (ARE) 
during oxidative stress or glucocorticoid response 
element (GRE) in response to restrained stress con-
ditions [32, 33].

MT-1/2 were shown to play important roles in 
various cellular processes. MT-1/2 regulate zinc ion 
homeostasis and may therefore regulate the activity 
of numerous transcription factors or zinc-dependent 
enzymes, e.g. metalloproteinases [34, 35]. Abundant 
lines of evidence point to the role of MT-1/2 in cell 
proliferation. Localization of MT-1/2 in proliferating 
cells depends on the phase of the cell cycle and was 
observed in nuclei, whereas in quiescent cells these 
isoforms are predominantly localized in the cytoplasm 
[36, 37]. Biochemical studies showed that while in 
the G1 phase the highest concentrations of MT-1/2 
are found in the cytoplasm, during the G1/S phase  
a translocation of MT-1/2 molecules into the nucleus 
may be observed [37]. Furthermore, the highest con-
centrations of MT-1/2 molecules were detected in the 
S and G2 phases of the cell cycle, which underlines 
their role in cell division [37, 38]. Cytoplasmic-nuc-
lear expression of MT-1/2 was noted in regenerating 
kidney [39] and liver [40] as well as proliferating basal 
and parabasal cells of stratified epithelia [41]. The role 
of MT-1/2 in the activation of cell proliferation seems 
to be supported by studies showing its positive cor-
relation with the expression Ki-67 antigen in various 
tumors, e.g. breast cancer [42, 43], squamous and basal 
cell skin cancers [41, 44], adrenocortical cancers [45], 
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non-small cell lung cancers [19, 46], gastrointestinal 
stromal tumors [47] and sarcomas [48].

Many studies provided evidences for the key role 
of MT-1/2 in the protection of DNA against damaging 
effects of free radicals [49, 50], whether induced by 
radiation [51–53] or chemotherapeutic agents, e.g. cis- 
platin, bleomycin, etoposide, melfalan or irinotecan 
during ovarian, gastric, breast or prostate cancer  
treatment [13, 54–60]. Furthermore, MT-1/2 may also 
diminish the cytotoxicity of some alkylating drugs, like 
cisplatin and carboplatin by binding to their heavy 
metal ions [4]. In relation to its free radical scavenging  
function, MT-1/2 isoforms were shown to be potent 
anti-inflammatory mediators protecting cells against 
carcinogenic compounds [61, 62]. Furthermore, 
the stimulatory role of MT-1/2 on angiogenesis and 
collaterogenesis under stress conditions such as 
hypoxia was also presented [63, 64]. Elevated levels 
of MT-1/2 protein found in hypoxic conditions were 
shown to stabilize expression of hypoxia-inducible 
factor-1a (HIF-1a) [65]. It was also found that MT1/2 
may induce the expression of proangiogenic factors,  
e.g. fibroblast growth factor (FGF), transforming 
growth factor b (TGF-b) and vascular endothelial 
growth factor A (VEGF-A) [19].

In spite of these apparently cytoprotective activi-
ties, in the majority of the studies MT-1/2 overexpres-
sion was associated with unfavorable prognosis in se-
veral malignancies, e.g. non-small cell lung cancer [66],  
intrahepatic cholangiocarcinoma [67], renal cancer [68],  
ovarian cancer [57], sarcoma [69] and melanoma [70].  
However, in some tumors the prognostic significan-
ce of MT-1/2 expression seems to be limited, as in 
case of thyroid or laryngeal cancer [71, 72]; whe-
reas in colorectal cancer high expression of MT-1 
and MT-2 isoforms was associated with patient’s 
favorable outcome [73]. Interestingly, the identi-
fication of particular isoforms of MT-1 and MT-2 
revealed that not all of them were associated with 
patient’s poor outcome. Some of them were shown 
to have cancer suppressive function. The MT-1G  
isoform was shown to be a potent oncosuppressor in 
papillary thyroid [74] and hepatocellular cancers [75],  
and MT-1F isoform — in colon cancer [76]. In con-
trast, the MT-2A isoform induces breast cancer cells 
proliferation and invasiveness via upregulation of 
matrix metalloproteinase-9 expression as well as the 
chemoresistance [35, 58, 77–79]. The overexpression 
of MT-2A in osteosarcoma cells suppressed the an-
tineoplastic activity of the p53 protein and rendered 
the cells chemoresistance towards doxorubicin [80]. 
These data may indicate that despite high structural 
homology of particular MT-1 and MT-2 isoforms, they 
may play different roles in normal and cancer cells.

Metallothionein-3 (MT-3)

MT-3 was first described as GIF (growth inhibitory 
factor), because of its unique inhibitory role in neu-
ronal outgrowth [14, 81, 82]. It was first isolated from 
human brains affected by the Alzheimer disease [14]. 
Its expression was initially thought to be restricted 
only to the nervous system — glial cells and neurons, 
but further research identified the presence of MT-3 
also in other tissues, like testis, epididymis, seminal  
vesicles, prostate gland, ovary, uterus, heart, tongue,  
and stomach of rat and components of genitouri-
nary tract in humans [16, 83–88].

MT-3 is built of 68 amino acids and, similarly to 
MT-1/2, organized into two domains, a and b. In 
spite of 70% structure homology, MT-3 molecule 
is characterized by the presence of a glutamate-rich 
hexapeptide containing a CPCP (Cys-Pro-Cys-Pro) 
motif localized near the C-terminus (amino acids 
6–9). This unique peptide renders the structure of the 
MT-3 more nucleophilic and dynamic, and is probably 
responsible for the specific functions of MT-3 [81, 82]. 
The b-domain of the MT-3 molecule may bind only 
three bivalent ion metals, leaving two cysteine residues 
eligible. These residues may possibly participate in the 
interactions of MT-3 with thiol and disulfide groups 
of other proteins [89].

Although majority of studies suggest the uniform 
role of MT-1 and MT-2 isoforms in zinc ion home-
ostasis, scavenging of free radicals, proliferation, 
differentiation and apoptosis, studies analyzing the 
functions of MT-3 expression are not so consistent 
and bring divergent results. MT-3 was shown to exert 
protective effects, e.g. in in vitro models of epileptic 
brain and peripheral nerve injury [90]. However, the 
damage-promoting effects to neurons via highly in-
creased intracellular zinc levels released from MT-3 
molecules were also observed in in vitro studies [90]. 
Interestingly, also in other normal tissues and cancers 
frequently divergent results were observed in regard 
to the MT-3 function. The MT-3 immunoreactivity 
was found in normal human kidney [91] and in some 
cancer types; however, it varied strongly depending on 
the type of malignancy. Elevated expression of MT-3 
mRNA, as well as MT-3 protein, was observed in 
prostate [16], breast [17, 88], and urinary bladder [18]  
cancers, whereas in gastric [83] and both types of 
esophageal cancer, i.e. squamous cell carcinoma and 
adenocarcinoma, expression of MT-3 mRNA was 
downregulated, but only in patients with methylated 
MT-3 promoter [92, 93]. Taking into account that 
expression of MT-3 may additionally regulate lyso-
somal functions [90] and was shown to be induced 
in adipocytes under hypoxic conditions [94], further 
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studies are needed to fully elucidate its role in car-
cinogenesis.

Role of metallothioneins in lung physiology 
and pathology 

MTs were shown to be expressed in the cytoplasm and 
nuclei of normal pneumocytes and bronchial epithe-
lial cells as well as cancer cells (Figure 1). 

MT-1/2 were shown to protect lung tissue from 
several damaging agents such as bacterial endotoxin 
[95], ozone [96], carmustine (lipid soluble alkylating 
agent with high pulmonary toxicity) [97], ovalbumin 
(OVA) [98] and toxic metal ions such as cadmium 
[99–103]. It was demonstrated in human airway 
epithelial cells (BFAS-2B) that nickel increases 
MT-2A mRNA expression by mobilizing free in-
tracellular zinc level [104]. MT-1/2 knock-out mice 

Figure 1. Immunohistochemical expression of MT-1/2 (A–C) and MT-3 (D–F) in normal lung and lung cancer. A. MT1/2 
immunoreactivity is present in the nuclei of bronchial epithelial cells (arrow) and alveolar cells (arrowhead) of normal 
human lung; B. The presence of MT1/2 in the nuclei of bronchial epithelial cells (arrow) and in cytoplasm and nuclei of 
squamous cell carcinoma (SCC) cells (asterisk); C. MT1/2 presence in cytoplasm and nuclei of adenocarcinoma (AC)  
cells (arrow); D. MT-3 immunoreactivity in nuclei of alveolar cells (arrow) and alveolar macrophages (arrowhead)  
of normal human lung; E. MT-3 presence in the cytoplasm of SCC cells (asterisk); F. MT-3 in the cytoplasm of AC cells 
(arrow). The immunohistochemical reactions were performed by using commercial anti-MT-1/2 antibody (Clone E9, 
DakoCytomation, Denmark) and non-commercial, anti-MT-3 antibody (rabbit polyclonal antibody raised against  
GGEAAEAEAEKC peptide, Invitrogen, Carlsbad, USA). Normal human lung tissue was resected from non-malignant 
lung tissue adjacent to the primary lung tumor. Tumor tissue was obtained from patients during cancer resection
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were more susceptible to lung edema induced by 
intratracheal challenge with lipopolysaccharide (LPS) 
as compared with wild type controls [95]. The most 
prominent changes were observed in endothelial cells 
of pulmonary vessels and type I alveolar epithelial 
cells. In these cells, vacuolar degeneration and loss of 
basement membranes following LPS treatment were 
noted; however, these alterations were not found in 
wild-type control mice [95]. Moreover, higher levels 
of lipid peroxides in the lung suggested that oxidative 
stress could be important damaging factor in the lungs 
of LPS-treated MT-1/2-deficient mice [95]. Similar 
observations of the changes of lung ultrastructure 
and oxidative stress-related molecules were noted 
in MT-1/2 knock-out mice subjected to ozone treat
ment [96]. Moreover, expression of the oxidative 
stress-related molecules, such as heme oxygenase-1 
(HO-1), inducible nitric oxide synthase (iNOS), levels 
of 8-hydroxy-2’-deoxyguanosine, and nitrotyrosine, 
were significantly higher in the lungs of MT-1/2 knock- 
-out mice as compared with the control group [96]. 
Although ozone and LPS exposure damaged lungs of 
MT-1/2 deficient mice more intensely, no changes in 
the expression levels of proinflammatory cytokines in 
bronchoalveolar lavage (BAL) could be observed in 
both these studies [95, 96]. Nevertheless, treatment 
of mice with ovalbumin led to much stronger increase 
of interleukin-1b levels in lungs of MT-1/2 knock-out 
mice as compared with wild type controls [98]. Similar-
ly, 8-oxy-deoxyguanosine and nitrotyrosine levels were 
significantly higher in lungs of MT-1/2 knock-out mice 
which could indirectly indicate the protective function 
of MT-1/2 proteins against OVA-induced airway 
inflammation by oxidative damage suppression [98]. 
Taking into account the results of the above studies, 
besides MT-1/2 cytoprotective effects, its role of lung 
anti-inflammatory mediator and a possible marker of 
cell integrity can be implicated [61, 96].

The impact of MT-1/2 expression on tissue integri-
ty and cell phenotype of pneumocytes and bronchial 
epithelial cells was also observed in in vivo and in vitro 
models following cadmium exposures; however, diffe-
rent mechanisms of action occurred in metal-intoxica-
ted cells. Induction of MTs expression was noted follo-
wing inhalation and intratracheal instillations of cad-
mium [99–103]. In lungs of Lewis rats pretreated with 
low dose of cadmium, increased MT-1/2 expression 
was found, which was associated with increased tole-
rance of the animals challenged with cadmium [101].  
On the other hand, the cadmium adaptation of lung 
cells besides its protective effect for the lung was shown 
also to be a damaging factor for the lung cells [100].  
A significant hyperplasia and hypertrophy of the 
alveolar epithelium in the lungs of cadmium-exposed 

animals was observed [100]. Cadmium adaptation may 
also stimulate alveolar epithelial cells to proliferate and 
in this way contribute to the carcinogenic process [100].  
Moreover, cultured cadmium-adapted alveolar 
epithelial cells were shown to possess reduced ability 
of DNA repair and were more resistant to apoptotic 
stimuli [100, 102]. To some extent in cadmium-pre-
treated alveolar cells, increased levels of MT-1/2 
may sequester cadmium ions diminishing the cyto-
toxic effects of reactive oxygen species (ROS) [102]. 
However, at the same time these cells have reduced 
ability to repair the oxidative DNA damage once it 
occurred [102]. Recently conducted studies showed 
that epithelial lung cells (HPL-1D) chronically incu-
bated with cadmium presented decrease in E-cadherin 
expression, a feature typical for cancer cells [105, 106]. 

According to Klaassen, intracellular MT-1/2 could 
diminish toxic effects of chronic cadmium-induced 
lung cells lesions such as pulmonary edema, hemor-
rhages, fibrotic changes and cancer [107]. 

On the other hand, in experimentally induced hy-
peroxia, MT-1/2 knock-out mice were characterized 
by decreased lung injury, such as reduced inflamma-
tion, interstitial edema and necrosis of airway epithe-
lial cells, as compared with wild type controls [108].  
Presumably, in the state of hyperoxia the lack of  
MT-1/2 is associated with observed increase of zinc 
ions level in the lung followed by compensatory incre-
ase in activity of antioxidant enzyme zinc-dependent 
superoxide dismutase (SOD) [108]. This may be  
a protective mechanism of airway epithelial cells 
against oxygen free radicals.

Metallothioneins’ expression  
in lung cancer cell lines 

Generally, the role of MTs in carcinogenesis has not 
been so far clearly defined, however, is seems that the-
se proteins may exert only to some extent protective 
effects against heavy metal intoxication or ROS, impli-
cated in the pathogenesis of some cancer types [109].  
Once the protective potential of MTs has been 
reduced and neoplastic transformation took place, 
MTs may contribute strongly to tumor progression 
[6, 109]. The data provided in the preceding chapter 
clearly suggest that MTs are crucial in the adaptation 
of normal airway epithelial cells to inhaled cadmium 
and other toxic metal ions. However, the insufficient 
adaptative response could lead to malignant transfor-
mation of epithelial cells as has been schematically 
shown in Figure 2.

Recently, the human lung cancer cell lines A549 
and H441 were shown to respond to higher levels 
of cadmium and zinc by increasing expression of 
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isoform MT-2A mRNA [110]. Moreover, in A549 
cells an increase of another isoform, MT-1B, in re-
sponse to nanosilver intoxication was observed [111]. 
Similarly, an increased level of MT-1/2 protein was 
also observed in A549 cells challenged with copper 
ions [112]. Concluding, these studies demonstrated 
that similarly to normal ones, also lung cancer cells 
respond to the increased level of metal ions by the 
upregulation of MTs expression. Most of the in vitro 
investigations were focused on determining the role 
of MT-1/2 in lung cancer cells’ chemoresistance; how- 
ever, they failed to establish any link between the 
MT-1/2 expression and resistance towards cisplatin 
and adriamycin [113, 114].

Role of metallothioneins’ expression  
in lung cancer 

Until now, only few studies analyzed the expression 
of MTs in lung cancer tumors in relation to clinicopa-
thological data. Consistently across all studies, MT-1/2 
levels were shown to be elevated in non-small cell 
lung cancer (NSCLC) cells as compared with normal 
epithelial airway cells [19, 115]. Moreover, the analysis 
of MT-1/2 proteins expression in lung cancer cases 
revealed their presence only in both types of NSCLC, 
squamous cell carcinoma (SCC) and adenocarcinoma 
(AC), and absence of MT-1/2 proteins in small cell 
lung cancer (SCLC) [115]. In addition, MT-1/2 expres-
sion was noted in the tumor cells as well as in the stro-
ma of the NSCLC. The higher levels of MT-1/2 were 
observed in the SCC in comparison to AC type, but 
MT-1/2 levels did not correlate with the grade of the 

tumors and lymph node metastases [115]. However,  
a study of Werynska et al. performed on high number 
of cases demonstrated the most pronounced expres-
sion of MT-1/2 in large cell carcinoma (LCC) as com-
pared with AC [46]. Similarly to the observations of 
Theocharis et al., SCC presented significantly higher 
MT-1/2 levels as compared with AC cases. MT-1/2 
immunoreactivity in cancer cells did not correlate with 
tumor malignancy grade, primary size, lymph node 
involvement or presence of necrosis [46]. To note, an 
increase of MT-1/2 immunoreactivity paralleling the 
increase of AC malignancy grade was observed [46]. 
However, the authors found a positive correlation 
of MT-1/2 expression with markers of proliferation 
(Ki-67 antigen and minichromosome maintenance 
protein 2 — MCM2) in cancer cells, concordantly to 
some previous studies [19, 66]. Despite the associa-
tion of MT-1/2 expression with cellular proliferation 
markers, its immunoreactivity demonstrated no signi-
ficant correlations with patient’s survival and cancer 
prognosis [19, 46]. 

However, the molecular study of particular MTs 
isoforms in NSCLC and normal lung tissue revealed 
increased mRNA levels of MT-1B, MT-1F, MT-1G,  
MT-1H, MT-1X and MT-3 genes, decreased MT-1E 
expression and no expression of MT-4 isoform in 
NSCLC as compared with the normal lung tissue [20]. 
The high mRNA levels of MT-1A and MT-1F were 
associated with higher primary tumor size and highest 
malignancy grade [20]. Although MT-1/2 immunoreac-
tivity had not have impact on NSCLC patients survival, 
cases with increased expression of MT-1F and MT-2A 
mRNA were characterized by poor outcome [20].

Figure 2. Possible action of MT-1/2 in normal airway epithelial cells and lung cancer cells. In response to noxious agents, 
an adaptive increase of MT-1/2 expression takes place in normal airway epithelial cells. The insufficient adaptive response 
could cause a malignant transformation of epithelial cells. Elevated MT1/2 expression in lung tumor cells is associated 
with increased cell proliferation and may have impact on invasion, migration, angiogenesis and chemoresistance  
of cancer cells
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The potential role of MT-1/2 in the progression of 
SCLC is still poorly documented. It was demonstrated 
that high nuclear MT-1/2 immunoreactivity in this 
type of cancer cells was an independent predictive 
factor of patients’ poor outcome [116]. 

A detailed analysis of immunohistochemical 
expression of MT-3 protein as well as expression of 
MT-3 mRNA was also performed in NSCLC [15]. The 
presence of MT-3 protein was observed both in the 
cytoplasm and nuclei of cancer cells. A significantly 
lower nuclear MT-3 immunoreactivity was observed 
in cancer cells of the most undifferentiated NSCLC 
cases while the SCC cases were characterized by high 
nuclear MT-3 expression [15]. In this study, the SCC 
cases presented favorable prognosis. In all analyzed 
NSCLC cases low cytoplasmic MT-3 expression was 
noted in cases with higher primary tumor size. In 
contrast to MT-1/2, nuclear as well as cytoplasmic 
MT-3 expression seems not to affect cancer cells 
proliferation, as no correlation with the expression 
of the Ki-67 antigen was observed [15]. Interestingly, 
lower MT-3 mRNA and cytoplasmic MT-3 expression 
were associated with poor patient outcome, but this 
finding was not confirmed in relation to MT-3 immu-
noreactivity in larger patients cohort [15]. 

The presented data suggest that the MT-1/2 and 
MT-3 expression in NSCLC seems to bear low pro-
gnostic and predictive role value, but may affect some 
processes during progression of this cancer, such as 
cancer cell proliferation. Further studies are needed 
to systemize and clarify the role of the MT family 
members in lung cancer. 
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