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Abstract: Increased tissue activity of cathepsin A and cathepsin C can be observed in many pathological condi-
tions. It is associated with an enhanced degradation of glycosaminoglycans, proteoglycans, and glycoproteins,
and results in their decreased tissue content. Cathepsin C releases the glycosidases from complexes formed with
cathepsin A, and reinstates their activity. In this review a current state of knowledge is presented concerning the
regulation of selected glycosidases activity by cathepsin A (EC 3.4.16.1) and C (EC 3.4.14.1). (Folia Histochem-
ica et Cytobiologica 2012, Vol. 50, No. 1, 20–24)
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More than sixty lysosomal hydrolases digest macro-
molecular compounds: proteins, polysaccharides, lip-
ids, and nucleic acids at acidic pH. The lack or defi-
ciency of a certain lysosomal enzyme resulting from
genetic defect or inactivation can lead to the devel-
opment of a storage disease [1]. A disease can be clas-
sified as a lysosomal storage disorder if it fulfils the
following three criteria: 1) the lack or decreased ac-
tivity of at least one lysosomal enzyme, 2) the stored
substance is normally degraded in lysosomes, and 3)
it is stored inside the lysosomes [2].

Cathepsin A (EC 3.4.16.1) prevents the processes
involved in lysosomal storage. Cathepsin A forms
complexes with glycosidases, protecting them in this
way against proteolytic inactivation [3, 4]. Decreased
lysosomal content of cathepsin A leads to the inacti-
vation of several glycosidases and accumulation of
glycosaminoglycans. Cathepsin C (EC 3.4.14.1) is also

involved in glycosaminoglycan metabolism. Cathep-
sin C releases the glycosidases from complexes formed
with cathepsin A, and reinstates their activity [5].

Cathepsin A

Cathepsin A is multifunctional lysosomal protein that
acts as a carboxypeptidase and forms complexes with
glycosidases at pH between 4.5 and 5.5; it exhibits
amidase and esterase activity at pH 7.0 [5, 6]. One
molecule of cathepsin A is composed of 438 amino
acid residues assembled into two subunits — cortical
and apical one with molecular masses of 32 kDa
(Ala1-Arg284) and 20 kDa (Met285-Tyr438), respec-
tively (Figure 1). The subunits are held together with
disulfide bonds C60-C361 and form a monomer of
cathepsin A [7]. Its catalytic site is built of Ser150,
Asp356, and His415 amino acid residues. Cathepsin A
monomer has a molecular mass of 52 kDa and mea-
sures 60 × 50 × 70 Å [8].

Under acidic pH, 60–70% of cathepsin A exists as
homodimers with 104 kDa molecular mass [6]. The
remaining 30–40% is present in the form of a two-
component, enzymatically active complex with beta-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Via Medica Journals

https://core.ac.uk/display/268436451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


21Role of cathepsin A and cathepsin C in the regulation of glycosidase activity

©Polish Society for Histochemistry and Cytochemistry
Folia Histochem Cytobiol. 2012
10.5603/FHC.2012.0003

www.fhc.viamedica.pl

-galactosidase [7]. Its beta-galactosidase-binding con-
tact surface is formed of Gln76-Tyr84 and Val386-
-Glu391 sequences. Dimeric molecule of cathepsin A
binds to the monomer of beta-galactosidase (64 kDa)
forming a heterotrimer with 168 kDa molecular mass.
Four molecules of the heterotrimer form macrocom-
plex with 680 kDa molecular mass [6]. At pH 7.5, this
macrocomplex splits into 8 molecules of cathepsin A
and 4 molecules of beta-galactosidase [7, 9] (Figure 2).
Sodium dodecyl sulfate (SDS) dissociates this com-
plex into monomers that are further split into sub-

Figure 1. Amino acid sequence of cathepsin A: A1-R284 — 32 kDa subunit; M285-Y428 — 20kDa subunit; C — C
disulfide bond binding the subunits; S150-D356-H415 — catalytic triad; N17, N291 glycosylated rests; Q76-Y84,
V306-E401 — beta-galactosidase binding sequences [8]

Table 1. Amino acid composition of cathepsin A [44]

Amino acid* Cathepsin A Subunit

32 kDa 20 kDa

Ala (A) 23 14 9

Arg (R) 15 8 7

Asn (N) 33 22 11

Cys (C) 9 6 3

Phe (F) 20 14 6

Gln (Q) 26 15 11

Gly (G) 30 23 7

His (H) 8 6 2

Ile (I) 12 7 5

Asp (D) 22 15 7

Glu (E) 19 14 5

Leu (L) 51 35 16

Lys (K) 20 11 9

Met (M) 10 2 8

Pro (P) 25 16 9

Ser (S) 33 24 9

Thr (T) 21 11 10

Trp (W) 7 4 3

Tyr (Y) 27 18 9

Val (V) 27 19 8

Sum of amino acids 438 284 154

*Three-and one-letter code

Figure 2. Model of cathepsin A molecule monomer
[adopted from 9]. • – • – • — amino acids of catalytic triad
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Table 2. Glycosidases forming complexes with cathepsin A

Glycosidase Molecular mass Substrate Function Literature
kDa citation

Beta-D galactosidase (b-Gal) 64.0 Galactosaminoglycans Splits off galactose [30]
EC 3.2.1.23

Neuraminidase (Neu) 48.3 Sialoglycosaccharides Splits off neuraminic acid [13]
EC 3.2.1.18 (mucopolysaccharides)

6-N-galactosamine N-acetyl-6- 57.0 Glycosaminoglycans, keratan
-sulfate sulfatase (GALNS) sulfate, chondroitin 6-sulfate Splits off sulfate ion [43]
EC 3.1.6.4

units as a result of the addition of the reducing com-
pound. After reducing pH to 4.5, macrocomplex with
680 kDa molecular mass is formed again. The forma-
tion of this complex protects beta-galactosidase
against degradation and proteolytic inactivation [10,
11]. Complex of cathepsin A with beta-galactosidase
is isolated by means of affinity chromatography on
p-aminophenyl-beta-D-thiogalactopyranoside-agarose
[14]. Obtained complex of cathepsin A and beta-ga-
lactosidase is dissociated at pH 7.5 and fractioned into
its components by means of gel chromatography tech-
nique with Shim-pack Dial-3000 column. About 1%
of cathepsin A molecules is present as a polyenzy-
matic macrocomplex with beta-galactosidase,
N-acetyl-alpha-neuraminidase, and N-acetylgalac-
tosamine-6-sulfate sulfatase [12, 13]. This macrocom-
plex has a molecular mass of approximately 1280 kDa
[7, 14, 15]. Table 2 summarizes the characteristics of
glycosidases that are bound by cathepsin A.

Inherited deficiency or point mutations in the
amino acid sequence of cathepsin A (Q21R, S23Y,
W37R, S61L, V104M, L208P, Y221N, Y351C,
M365T, G389S, F398V) inhibit the formation of
dimeric forms and complexes with glycosidases [16–
–18]. Degradation and inactivation of beta-galactosi-
dase and neuraminidase are reflected by a second-
ary deficiency of those enzymes, leading to the ac-
cumulation of galactosaminoglycans and sialogly-
cosaccharides, and as a consequence to the storage
disease – mucopolysaccharidosis IV B and galacto-
sialidosis [19, 20]. Degradation of beta-galactosidase
is catalyzed by cysteine cathepsins [21]. Leupeptin,
an inhibitor of cathepsins, halts this process. De-
creased activity of cathepsin A can be observed in
the course of muscular dystrophy [22] and in multi-
ple sclerosis [23].

Cathepsin C

Cathepsin C also participates in the regulation of gly-
cosidase activity. It is a lysosomal cysteinyl peptidase
— an enzyme that cleaves off dipeptides from the
N-terminus of peptides and proteins [24, 25]. Moreover,

it hydrolyses dipeptide esters, amides, anilides, and
beta-naphtylamides [26]. Additionally, cathepsin C
shows the activity of transpeptidase [27]. It catalyzes
hydrolysis at pH 5.0–6.0 and transpeptidation at pH
6.8–7.0 [4]. Cathepsin C is activated by chloride an-
ions and sulfhydryl compounds [28].

One molecule of human cathepsin C is built of
206 amino acid residues, arranged in four polypep-
tide chains with a total molecular mass of approxi-
mately 200 kDa [29]. Its spatial model is presented in
Figure 4.

Figure 3. Macrocomplex of cathepsin A with beta-galactosi-
dase [according to 41]. At pH 7.5 the complex of cathepsin A
and beta-galactosidase (1) is dissociated into two cathepsin
homodimers (2) and beta-galactosidase 2a); sodium dodecyl
sulfate (SDS) dissociates homodimer of cathepsin A into
two monomers (3), while beta-mercaptoethanol /ß-Me/ splits
them further into 32 kDa (4) and 20 kDa subunits (5).
S-S — disulfide bonds binding subunits of the monomer;
= — hydrophobic bonds that bind the monomers
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The role of cathepsin C in the regulation of lysos-
omal enzymatic activity involves the release of beta-
-galactosidase and neuraminidase from complex with
cathepsin A (Figure 5). This process requires the pres-
ence of chloride anions (Cl–) and sulfhydryl com-
pounds [4, 30]. Released beta-galactosidase,
neuraminidase, and cathepsin A exhibit normal ac-
tivity. Genetic mutation and reduced activity of cathe-
psin C cause Papillon-Lefevre syndrome character-
ized by palmoplantar keratoderma, periodontitis, and
muscular dystrophy [3, 42].

Increased tissue activity of cathepsin A and cathe-
psin C can be observed in many pathological condi-
tions [24, 26, 31–34]. It is associated with an enhanced
degradation of glycosaminoglycans, proteoglycans,
and glycoproteins, and results in their decreased tis-
sue content [35–40].
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