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Abstract- Today optical systems are more and more 

important in data communications (optical fibers) and 

are also becoming important in data processing 

(optical and quantum computing) allowing for a fully 

optical communication  network where all signals will 

be processed and transmitted in the optical domain. 

This paper gives an overview of optical fiber 

communications and analyses some optical devices 

and applications such as optical computing, 

holographic memory and optical pattern recognition. 
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1 INTRODUCTION 

 
 
Optical technology is capable of providing the 

required capacity for the rapidly increasing demand in 

data transmission and processing. 
Optics is of greatest importance in 

telecommunications due to the high bandwidth and lower 
attenuation obtained in optical fibers. In addition it begins 
to be implemented in real information processing as 
pattern recognition using optical computing. 

In future is desirable that all processes involved in 

data networks, such as amplification, multiplexing, de-

multiplexing, switching and signal processing take place 

in the optical domain which can be more efficient than 

electrical signal processing and avoid bottlenecks of 

electrical to optical and optical to electrical conversions 

[1-5]. 
 

 

2 OPTICAL FIBER COMMUNICATIONS 

 
In figure 1 is shown a state of the art wavelength 

division multiplexing (WDM) optical fiber system used 

for long-distance, high-bandwidth telecommunication. In 

the present work, the performance and limitations of the 

different elements that are part of this system are 

analysed. 

 

 

 

2.1 Optical fiber characterisation and elements  

 

In this optical WDM fiber system the emitter consists of 

n independent optical beams coming from n laser sources 

with proper i wavelength individually modulated by n 

electrical signals. The external modulation employing 

electro-optic materials is much faster than direct 

modulation of laser output power. The different 

modulated i laser beams are coupled (Mixer Coupler) in 

the same optical fiber. In long distance fibers the optical 

amplifier allows signals to be regenerated without the use 

of electro-optical converters. Erbium-doped fiber 

amplifiers (EDFA) pumped usually by diode lasers are 

used. In WDM or dense wavelength division 

multiplexing (DWDM) systems fiber Bragg gratings are 

used to separate closely spaced wavelengths (< 0.8 nm). 
The elementary fiber Bragg grating comprises a short 

section of single-mode optical fiber in which the core 

refractive index is modulated periodically. For optical 

detection the most commonly used devices are the PIN or 

avalanche photodiodes (APD). 

 

 

2.2 Optical fiber limitations 
 

The most important limitations in single mode fibers 

are the attenuation due to material absorption, linear 

dispersion due to the variation of linear refractive index nl 

as a function of wavelength causing the pulses to broaden 

(limiting the overall bandwidth) and Rayleigh scattering 

(or elastic scattering) due to random fluctuations of the 

refractive index on a scale smaller than the optical 

wavelength. 

All previous processes described are linear or 

intensity-independent, but in single mode fibers with high 

light intensity, due to the small cross section inside the 

fiber, another type of intensity-dependent processes 

occur. These nonlinear effects are described by nonlinear 

optics (NLO). In optical fibers the NLO effects can be 

divided in nonlinear refractive processes and inelastic 

scattering phenomena. 
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Fig 1. Typical wavelength-division multiplexing-fiber optic communication system. 

 

 

 

Nonlinear refractive index change includes: Self-

phase modulation (SPM) related to changes of refractive 

index caused by variation in signal intensity and resulting 

in a temporarily varying phase change that leads to 

additional dispersion; Cross-phase modulation (CPM) 

related to change of refractive index of an optical beam 

produced by the intensity of that beam and the intensity 

of other beams co-propagating in the same optical fiber; 

Four-wave mixing (FWM) process originated from 3rd 

order susceptibility (3)) resulting in a fourth frequency 

4 related to 1, 2 and 3 frequencies which co-

propagate simultaneously inside a fiber by 4 = 1 ± 2 ± 

3. 

If the light intensity in the optical fiber exceeds a 

certain threshold value the inelastic scattering light grows 

exponentially. Contrary to elastic scattering, the 

frequency of scattered light is red-shifted during inelastic 

scattering and can induce stimulated effects such as 

stimulated Brillouin-scattering (SBS) and stimulated 

Raman-scattering (SRS). 

 

 

 
Fig 2. An input pulse of intensity I(z=0,t) and central angular frequency 0 travelling in the z direction in a linear 

anomalous dispersive, nonlinear (with nnl > 0) nondispersive and nonlinear dispersive medium,  respectively. When the 

input pulse travels a distance z in the three different transmission mediums the output pulse exhibits different shapes. At 

the top output pulse spreading can be observed with higher frequencies travelling faster than lower frequencies. In the 

middle the output pulse is chirped with the same shape and with a negative frequency shift in the leading half of the 

pulse, and a positive frequency shifted in the trailing half. At the bottom, the output pulse is identical to the input pulse 

(optical solitons), depending on the amplitude and sign of the linear dispersion and nonlinear effects. 
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All these linear and nonlinear processes in general 

result in degrading the overall performance of an optical 

fiber telecommunication system but in certain situations 

can interact positively. An example is the effects of linear 

and SPM dispersions that can be compensated mutually 

by proper choice of light pulse shape and amplitude as 

illustrated in figure 2.  

For a linear dispersion medium a chirp pulse with initial 

value C (see Appendix A12) at a distance z the chirp 

changes to: 

 

        𝐶(𝑧) = 𝐶 + (1 + 𝐶2)𝛽2𝑧/𝑇0
2   (1) 

 

The chirp value and sign depends of C and 2 values, 

but even for initial unchirped pulse (C=0) the pulse will 

be chirped as a function of z.  For a linear anomalous 

dispersion medium (which usually occurs in fiber optics 

for wavelengths in vacuum 0 > 1,312 m) the dispersion 

coefficient D is positive and 2 is negative the 

instantaneous frequency decreases linearly as function of 

z (Appendix A13). Even for an unchirped pulse (C=0) 

broadening is observed. Thus in a pulse the higher 

frequencies travel faster than the lower frequencies (see 

top output pulse in figure 2). 

During propagation the pulse width T1 is a function of 

z given by [3]: 

 

𝑇1

𝑇0
= [(1 +

𝑐𝛽2𝑧

𝑇0
2 )

2

+ (
𝛽2𝑧

𝑇0
2 )

2

]
1/2

 (2) 

 

The chirped pulse may broaden or compress 

depending on the sign of the product 2C. For 2C > 0 the 

chirped Gaussian pulse broadens monotonically. For 2C 

< 0, the pulse width initially decreases and becomes 

minimum at a distance zmin after which it increases 

monotonically. In figure 2 consider the top output pulse 

as 2C > 0. 

For a nonlinear medium the dispersion related to SPM 

may be understood by examining a pulse of intensity 

I(z,t) of carrier angular  frequency 0 traveling a distance 

z in a nonlinear medium with refractive index 𝑛𝑒𝑓𝑓 =

𝑛𝑙 + 𝑛𝑛𝑙𝐼 (see Appendix equation A9). For such pulse the 

argument of the electric field or instantaneous phase (see 

Appendix equation A2) is  

 

𝜑(𝑡) = 𝜔0𝑡 − 𝐾𝑧 = 𝜔0𝑡 − 𝑛𝑒𝑓𝑓𝐾0𝑧 = 

𝜔0𝑡 −
2𝜋

𝜆0
[𝑛𝑙 + 𝑛𝑛𝑙𝐼(𝑧, 𝑡)]𝑧 (3) 

 

so that the instantaneous angular frequency is 

 

    𝜔 =
𝑑𝜑

𝑑𝑡
= 𝜔0 −

2𝜋

𝜆0
𝑛𝑛𝑙

𝜕𝐼(𝑧,𝑡)

𝜕𝑡
𝑧 (4) 

 

If  𝑛𝑛𝑙  is positive, the frequency of the trailing half of 

the pulse (the right half) is increased since 
𝜕𝐼(𝑧,𝑡)

𝜕𝑡
< 0, 

whereas the frequency of the leading half (the left half) is 

reduced since  
𝜕𝐼(𝑧,𝑡)

𝜕𝑡
> 0  as illustrated in middle output 

pulse of figure 2. 

At a certain level of intensity and for certain pulse 

profiles, the effects of self-phase modulation and group-

velocity dispersion are balanced so that a stable pulse 

travels without spread, as illustrated in bottom output 

pulse of figure 2. In such situation the pulse would 

propagate undistorted and is called optical soliton, with 

applications in high bandwidth optical communication 

systems [6]. 

 

 

 

3 OPTICAL DATA PROCESSING 

 

We can divide optical computing in digital and analogue 

processes. Digital optical computing employs optical gates 

and switches. The main technical difficulty remains in the 

creation of large high-density arrays of fast optical gates. 

The principle of analogue optical computing [7-10] is 

based in the property of the lens which perform in their 

back focal plane the Fourier transform of a 2D image 

located in their front focal plane as illustrated in figure 3. 

An object consisting of a fine wire mesh is illuminated by a 

parallel coherent light beam. In the back focal plane of the 

imaging lens appears the Fourier spectrum of the periodic 

mesh. By placing a narrow horizontal slit in the focal plane 

to pass only a single row of spectral components (horizontal 

pass filter) vertical frequencies are blocked and horizontal 

frequencies are transmitted. The corresponding image, 

(seen in image plane of figure 3), contains only the vertical 

structure of the mesh. The suppression of the horizontal 

structures is quite complete. 
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Fig 3. Two dimensional optical frequency processor 

 

 

The inherent parallel processing is one of the key 

advantages of optical processing compared to electronic 

processing that is mostly serial. Optical analogue 

processing is useful when the information is optical and 

no electronics to optical transducers are needed. 

In a parallel optical computer, a parallel access 

optical memory is required as for example 3D optical 

holographic memories using different materials such as 

photorefractive crystals. 

To date the optical computers were not able to 

compete with the electronic computers essentially due to 

the lack of appropriate optical components, but in the 

future the employment of nanotechnologies can change 

this situation [11-14]. 
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APPENDIX 

 

For a nonlinear nondispersive dielectric medium 

the vector polarization P induced by electric dipoles 

satisfies the general nonlinear relation: 

 

𝑷 =  𝜀0𝜒
(1)𝑬  + 𝜀0𝜒

(2)𝑬2 + 𝜀0𝜒
(3)𝑬3  + ⋯      (A1) 

 

where 0 is the permittivity of vacuum and (i)  ( i = 

1, 2, ...) is ith order tensor susceptibility. 

For isotropic medium, as in optical fibers, we can 

use scalar notation instead of vector notations 

because the polarization vector P has the same 

direction of the electrical field E. For an electrical 

field associated to a plane wave propagated in z 

direction 

 

       𝐸 = 𝐸0cos (𝛽𝑧 − 𝜔𝑡), (A2) 

 

where  is the phase constant, the polarization P 

becomes 

 

𝑃 =
1

2
𝜀0𝜒

(2)𝐸0
2

+ 𝜀0𝐸0 [𝜒(1) +
3

4
𝜒(3)𝐸0

2] cos(𝛽𝑧 − 𝜔𝑡) 

 

     +
1

2
𝜀0𝜒

(2)𝐸0
2cos [2(𝛽𝑧 − 𝜔𝑡)] 

     +
1

4
𝜀0𝜒

(3)𝐸0
3cos [3(𝛽𝑧 − 𝜔𝑡)] 

     +⋯ (A3) 
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In the above equation the first term is constant and 

gives a constant field in the medium. The second 

third and fourth terms correspond to oscillating 

frequencies , 2 and 3 respectively known as 

fundamental, second, third harmonics of 

polarization. As silica used in optical fibers consists 

of symmetric molecules, (2) vanishes, and 

neglecting 3 term due to variation in refractive 

index of the fiber inducing a phase mismatch 

between frequencies  and 3 equation (A3) 

becomes 

  

    𝑃 = 𝜀𝑜𝜒
(1)𝐸0 cos(𝛽𝑧 − 𝜔𝑡) 

              +
3

4
𝜀𝑜𝜒

(3)𝐸0
3 cos(𝛽𝑧 − 𝜔𝑡) (A4) 

 

where (i) terms are neglected for i > 3. For a plane 

wave propagating in a dielectric linear isotropic and 

homogeneous the intensity (I) is 

 

𝐼 =  
1

2
𝑐𝜖0𝑛𝑙𝐸0

2 (A5) 

 

where c is velocity of light in vacuum and nl is the 

linear refractive index of the medium. Therefore, 

 

   𝑃 = 𝜀0 [𝜒(1) +
3

2

𝜒(3)

𝑐𝜀0𝑛𝑙
𝐼] 𝐸0cos (𝛽𝑧 − 𝜔𝑡) (A6) 

 

Defining the effective susceptibility (eff) of the 

medium as  

 

      𝜒𝑒𝑓𝑓 =
𝑃

𝜀0𝐸
= 𝜒(1) +

3

2

𝜒(3)

𝑐𝜀0𝑛𝑙
𝐼 . (A7) 

 

Hence, effective refractive index (neff) can be written 

as 

𝑛𝑒𝑓𝑓 = (1 + 𝜒𝑒𝑓𝑓)
1/2 = [1 + 𝜒(1) +

3

2

𝜒(3)

𝑐𝜀0𝑛𝑙
𝐼]

1/2

=

       𝑛𝑙 [1 +
3

2

𝜒(3)

𝑐𝜀0𝑛𝑙
3 𝐼]

1/2

, (A8) 

 

where  𝑛𝑙 = (1 + 𝜒(1))
1/2

  is the linear refractive 

index. 

In equation (A8) the last term in parenthesis is 

usually very small compared to unity, so neff  can be 

approximated by the first term of the Taylor’s series 

expansion as 

 

    𝑛𝑒𝑓𝑓 = 𝑛𝑙 +
3

4

𝜒(3)

𝑐𝜀0𝑛𝑙
2 𝐼 = 𝑛𝑙 + 𝑛𝑛𝑙𝐼, (A9) 

 

where 𝑛𝑛𝑙 =
3

4

𝜒(3)

𝑐𝜀0𝑛𝑙
2  is the nonlinear refractive 

index. 

 For a linear dispersive medium nl (for 

simplicity we replace nl by n) is a function of 

angular frequency . For pulses with spectral width 

 much smaller than the carrier frequency 0 ( 

<< 0) the propagation constant () = n()/c can 

be expanded in a Taylor series around the carrier 

frequency: 

 

   𝛽(𝜔) ≅  𝛽0 + 𝛽1(∆𝜔) +
𝛽2

2
(∆𝜔)2 (A10) 

 

In the above equation 

 

 

    ∆𝜔 = 𝜔 − 𝜔0       ,     𝛽1 = (
𝑑𝛽

𝑑𝜔
)

𝜔=𝜔0

=
1

𝑣𝑔
   , 

        𝛽2 = (
𝑑2𝛽

𝑑𝜔2)
𝜔=𝜔0

= −
𝐷𝜆0

2

2𝜋𝑐
   (A11) 

 

where vg is the group velocity and D is the 

dispersion parameter. 

Let us consider the propagation in z direction in 

a linear dispersive medium of a frequency 

modulated Gaussian pulse (chirped pulse) with an 

initial electric field (at z = 0) 

 

𝐸(0, 𝑡) = 𝐸0𝑒𝑥𝑝 [−
1

2
(

𝑡

𝑇0

)
2

] × 

       𝑒𝑥𝑝 [−𝑖
𝐶

2
(

𝑡

𝑇0
)

2

] 𝑒𝑥𝑝[−𝑖𝜔0𝑡] (A12) 

 

where E0 is the amplitude, T0 the half width at 1/e 

intensity point, C parameter that control the 

frequency chirp and 0 the carrier frequency. The 

instantaneous frequency is the derivative of the 

phase, 

 

     𝜔 =
𝑑

𝑑𝑡
(𝜔𝑜𝑡 +

𝐶

2𝑇0
2 𝑡2) = 𝜔0 +

𝐶

𝑇0
2 𝑡 (A13)

  

 
and is a linear function of time. 

 The electric field at z position E(z,t) is from 

[3] 

 

𝐸(𝑧, 𝑡) =
𝐸0

√𝑄(𝑧)
𝑒𝑥𝑝

[
 
 
 

−

(1 + 𝑖𝐶) (𝑡 −
𝑧

𝑣𝑔
)

2

2𝑇0
2𝑄(𝑧)

]
 
 
 

× 

                           𝑒𝑥𝑝[𝑖(𝛽0𝑧 − 𝜔0𝑡)] (A14) 

 

where   𝑄(𝑧) = 1 + (𝐶 − 𝑖)𝛽2𝑧/𝑇0
2. This equation 

shows that a Gaussian pulse remains Gaussian on 

propagation but its width, chirp, and amplitude 

changes continuously. 
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