
GSK-3 protein and the 
heart: friend or foe?

argue strongly that its inhibition may also become an important 

future drug target in this field. 

A centrAl role for GSK-3 in inSulin                   

SiGnAllinG

Whole-body glucose homeostasis is a continuous process and a 

function of the production of glucose by the liver and the peri-

pheral disposal of glucose, primarily by skeletal muscle. These two 

processes are regulated by several endocrine factors, the most 

important of which are insulin and glucagon, produced by the 

pancreatic β− and α−cells respectively.   

Hepatic glucose production is mediated by both glycogenolysis  

and gluconeogenesis.  When there is increased glucose demand by 

peripheral tissue, e.g. muscle contraction during exercise, the liver 

must produce glucose accordingly to prevent development of 
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GSK-3 PROTEIN 
AND THE HEART

GSK-3 inhibition AS future druG tArGet          

Glycogen synthase kinase-3 (GSK-3) was identified in the early 

1980s as an enzyme involved in the control of glycogen meta-

bolism, and extensively researched, especially in the context of the 

metabolic actions of insulin.(1) Currently, interest in this kinase has 

flared because of the development of new generations of inhibitors 

with specific clinical implications, especially in the potential of these 

inhibitors to treat diseases that currently have significant limitations 

in therapeutic treatments, e.g. type 2 diabetes, Alzheimer’s disease, 

stroke and bipolar- and mood disorders.(2)  The prototype of a  

GSK-3 inhibitor is lithium, although the mechanism of this inhibition 

is not understood.(69)  There is no clinical data available at present 

on the inhibition of GSK-3, but preclinical data supports an 

important future role. Scant preclinical data is available in the field 

of heart research, but, as this review has tried to summarise, the 

available evidence, as well as the multiplicity of actions of this kinase, 

Metabolic syndrome manifesting as obesity, insulin resist-

ance and type 2 diabetes mellitus is currently pandemic.  

each of these, in its own right, is strongly related to the 

development of cardiovascular disease. the cardiomyo- 

pathy associated with these disorders is characterised by 

curtailed glucose uptake and utilisation, elevated risk of 

damage after ischaemia and contractile dysfunction.  current 

research have indicated that the serine/threonine kinase, 

glycogen synthase kinase 3 (GSK-3), may play a central role 

in the development of all these dysfunctions. the develop-

ment of new generations of inhibitors of this kinase, has 

renewed interest in its utilisation as therapeutic target.  

this review has therefore focused on the role of GSK-3 in  

the development of the obesity-related cardiomyopathy and 

has highlighted and discussed the detrimental as well as 

beneficial effects of the GSK-3 inhibitors that are currently 

available. We have discussed the different roleplayers such as 

the insulin signalling pathway, modulation of apoptosis and 

mitochondrial function, SercA2 expression and regulation 

of the development of hypertrophy in the context of GSK-3 

activity.  SAHeart 2010; 7:48-57
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hypoglycemia. These processes are governed by a decrease in insu-

lin secretion and an increase in glucagon secretion, as well as by 

changes in adrenalin and cortisol secretion. 

As a continuously contracting muscle, the heart uses between 3.5 

and 5 kg of ATP per day.   To produce this, glucose, fatty acids, amino 

acids and ketones are readily used as fuel substrates(3). Muscle 

glucose utilisation is acutely regulated by insulin (Figure 1).  This is 

accomplished through a series of events initiated by binding of 

insulin to the α-subunit of the insulin receptor, leading to auto-

phosphorylation of the membrane-spanning β-subunit. The acti-

vated insulin receptor, a proto-type tyrosine kinase enzyme,  leads 

to the sequential activation of a kinase cascade involving insulin 

receptor subtstrate proteins (IRSs), PI-3-Kinase (phosphatidylino-

sitol-3-kinase) and protein kinase B/Akt.  Activation of PKB/Akt is  

a prerequisite for the translocation of the insulin regulated glucose 

transporter, glut 4, from intracellular storage vesicles to the cell 

membrane to facilitate glucose uptake.(4) Glut 4 is the major 

transporter responsible for uptake of glucose into heart muscle 

after stimulation with insulin or after anoxia or ischaemia of the 

muscle.  Glut 1, previously taken to be responsible for basal glucose 

uptake, is apparently more concentrated in the endothelial cells  

of the microvasculature of the heart and does not respond to 

insulin with translocation from one compartment to another.(5) 

On cell entry, glucose can either be shunted into glycolytic path-

ways and metabolised to pyruvate or converted to glycogen via 

activation of the enzyme glycogen synthase (GS). Stimulation of 

muscle cells with insulin activates pathways that enhance glycogen 

formation. PKB/Akt was initially described as the kinase leading to 

activation of GS after insulin stimulation via phosphorylation of 

glycogen synthase kinase-3.(6)   

The mammalian heart expresses 2 isoforms of glycogen synthase 

kinase-3 (GSK-3). GSK-3α and GSK-3β exhibit a high degree of 

sequence similarity and have molecular masses of 51 and 47 kDa 

fiGure 1:  A general schematic representation of the signal transduction pathways involved in GSK-3 activity. 

IR: insulin receptor, IRS-1: insulin receptor substrate-1, PI-3-Kinase: phosphatidyl inositol-3-kinase, PKB/Akt: protein kinase B, GSK-3: glycogen synthase kinase-3, GS: glycogen synthase, NFAT: nuclear 
factor of activated T-cell, GATA4: Zink finger transcription factor, VDAC: voltage dependent anion channel, MPTM: mitochondrial permeability transition pore. 
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respectively.  PKB/Akt phosphorylates both isoforms of GSK-3 on 

Ser21 and Ser9 respectively. GSK-3 is constitutively active in resting 

cells and its activity is negatively regulated by this phosphorylation.(7)   

As reviewed by Sugden et al.,(8) this negative regulation can also  

be accomplished by other kinases such as ribosomal S6 kinase, 

(S6K), p90-ribosomal S6 kinase (RSK), the mitogen and stress 

activated protein kinases (MSK’s), serum and glucocorticoid-

regulated kinase (SGK’s) as well as cAMP-dependent protein  

kinase, PKA. All of these signalling pathways are highly relevant in 

cardiovascular physiology and pathophysiology. In vivo, inhibition  

of GSK-3 and activation of GS by insulin, is mainly regulated by  

the pathway involving PI-3-Kinase and PKB/Akt.(9) Besides glycogen 

synthesis, the expression and activation of GSK-3 protein impacts 

on diverse cellular processes such as glucose transport, gene 

transcription, cell differentiation, cell survival or –death (apoptosis), 

as well as muscle contractility.(10)

inSulin reSiStAnce                                                     

The pre-dominant role of insulin is the maintenance of whole  

body glucose homeostasis. Although this has been known for  

many years, it was not until 1949 that the ability of insulin to 

stimulate glucose uptake was experimentally demonstrated.(11)  

PKB/Akt, as mediator of the metabolic effects of insulin, promotes 

glucose uptake in vascular-, skeletal muscle and adipose tissue.(12)  

It is well-established that insulin stimulates glucose uptake also in 

heart muscle. Using 2-deoxy-D-3[H] - glucose (2DG) uptake in 

primary neonatal(13) or adult(14) rat cardiomyocytes as a readout  

of insulin response, it was demonstrated that insulin stimulation 

leads to increased 2DG uptake. Cardiac glucose uptake is depend-

ent on the transmembrane glucose gradient as well the content  

of sarcolemmal glucose transporters, glut 1 and glut 4,(15,16) with glut 

4 considered to be the principal contributor to the regulation of 

glucose uptake by insulin.(17)  Insulin via PKB/Akt activation induces 

the translocation of glut 4 from the intracellular storage vesicles to 

the sarcolemmal membrane to facilitate glucose entry.(17,18) 

Metabolic syndrome is a cluster of metabolic disturbances that 

together define a progressive condition associated with develop-

ment of type 2 diabetes mellitus and cardiovascular disease.(19-21)   

It is estimated that metabolic syndrome affects approximately one 

quarter of the population in developed countries.(22) The National 

Cholesterol Education Programme’s Adult Treatment Panel III 

(NCEP: ATP III) and the European Group for the Study of Insulin 

Resistance, identified central–abdominal obesity, atherogenic dys-

lipidaemia (hypertriglyceridaemia and reduced high-density lipo-

protein-cholesterol), raised blood pressure, insulin resistance and 

glucose intolerance as components for metabolic syndrome.(23,24) 

Furthermore, it has been reported that each component of the 

syndrome may be considered as independent risk factors for 

cardiovascular disease.(24) Over the past two decades, the number 

of people with metabolic syndrome has increased at an alarming 

rate. This increase is associated with the global epidemic of both 

obesity and diabetes.(25)

The inability of cells to respond appropriately to a certain level of 

insulin, is termed insulin resistance.(26) This is a defect associated 

with a variety of disorders including metabolic syndrome, athero-

sclerosis, hypertension, dyslipidaemia, type 2 diabetes and heart 

failure.  Increased cardiovascular risk is central to all these disorders 

and has been ascribed by some to the elevated plasma insulin levels 

that accompany insulin resistance.(27) However, the United Kingdom 

Prospective Diabetes Study could not detect a correlation between 

higher cardiovascular risk and elevated insulin levels.(28) Alternatively, 

obesity, with the accompanying elevated plasma free fatty acid 

levels, has been identified as probable cause of myocardial insulin 

resistance and is recognised as an independent risk factor of 

cardiovascular disease.(29,30) 

The insulin resistant state is characterised by impaired signalling via 

the IRS-1/PI-3-Kinase/PKB/Akt-pathway. Reduced insulin receptor- 

and IRS-1 tyrosine phosphorylation(31,32) and IRS-1 associated PI-3-

Kinase activity(31) have been reported in adipocytes while lower 

PKB/Akt activity(14) was found in the rat heart. In animal models of 

obesity and type 2 diabetes(13) as well as in humans,(33,34) attenuated 

muscle glucose transport has been documented, coupled to 

ineffective attenuation of hepatic glucose production. In addition, 

several studies have drawn negative correlations between GSK-3 

activity, glucose uptake and muscle glycogen content.(35,36)  Cur- 

rently, there is no evidence for genetic mutations in either one of 

GSK-3 PROTEIN AND THE HEART
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the two GSK-3 genes associated with the development of type 2 

diabetes mellitus(37) but there are studies demonstrating upregu-

lation of expression and higher activity of GSK-3 protein in skeletal 

muscle of type 2 diabetic patients and in adipose tissues of  

obese diabetic rodent models.(38,39) In addition, it was shown that 

inhibition of GSK-3 improves insulin action in skeletal muscle of 

obese, insulin resistant rodents.(40,41) The potential benefits of  

GSK-3 inhibition for the treatment of insulin resistance and type 2 

diabetes, as demonstrated in different animal models, is elegantly 

reviewed by Wagman et al.(42) In view of the vast amount of 

literature on this subject, this review will focus mainly on the 

cardiovascular effects of GSK-3 inhibition with special reference to 

insulin resistance.

the heArt in obeSity And inSulin                          

reSiStAnce

Studies have suggested that several agents are able to induce 

myocardial insulin resistance by activation of serine/threonine 

kinases that phosphorylate IRS-1 and inhibit its function.(43) These 

agents include tumor necrosis factor α (TNFα),(44) free fatty  

acids,(33) cellular stress,(43) angiotensin II(45) and hyperinsulinemia.(46)  

Insulin itself may also stimulate serine kinases that promote phos-

phorylation of IRS-1.(47)  According to Gual et al., the inhibition of 

IRS-1 function may represent the unifying mechanistic link be- 

tween all factors involved in insulin resistance. GSK-3 protein, in  

its active state, also has the ability to phosphorylate IRS-1 on 2 

serine residues (Ser307 and 332).(43)  This phosphorylation by GSK-

3 is associated with downregulation of signalling via IRS-1(48) and 

may potentially exacerbate insulin resistance and compromise 

glucose uptake as it is associated with impaired tyrosine phos-

phorylation of IRS-1 and decreased PI-3-Kinase activation.(49) The 

importance of this observation is underscored by the work of  

Rao et al.(50) showing enhanced myocardial glucose uptake when 

GSK-3 is inhibited in high-fat-fed mice and a correction of dia- 

betes in mice with a genetic deficiency of GSK-3β.(51) The latter 

study indicated that some of the effects of GSK-3 may also lie in  

the preservation of beta cell mass, therefore insulin secretory 

abilities.

These effects of GSK-3β therefore argue for a loop of reactions 

that, once set in motion, will exacerbate insulin resistance. Thus, 

insulin resistance causes inhibition of the inhibitory phosphoryla-

tion of GSK-3β by PKB/Akt, allowing GSK-3β to phosphorylate  

IRS-1 on serine residues which will further inhibit its activation 

leading to attenuated glut 4 translocation and  glucose uptake.  

Enhanced activity of GSK-3β will also phosphorylate GS thereby 

inhibiting glycogen formation with resultant elevation of glucose 

levels (Figure 1).

GSK-3 And MyocArdiAl contrActility                

The diabetic heart is characterised by reduced contractility 

independent of vascular disease. One of the role players in the 

changes in contractile function in diabetes, is the calcium pump 

(SERCA2) of the sarcoplasmic reticulum.  Total SERCA2 expres-

sion is decreased in hearts from diabetic mice,(52) while myo- 

cardial contractility in diabetic mice can be improved by cardiac-

specific over expression of SERCA2.(52,53) It has been reported  

that GSK-3β protein is a critical regulator of calcium handling in  

the heart.(54)  Using genetically manipulated mice that over express 

myocardial GSK-3β, Michael and co-workers showed that GSK-3β 

acts directly on the SERCA2 promoter to downregulate its 

expression, leading to systolic and diastolic dysfunction.(54) In 

addition, they reported impaired fractional shortening and re- 

duced +dP/dt values measured by echocardiographic methods.  

Cytosolic calcium was significantly elevated in diastole. This was 

coupled to lower mRNA levels and lower expression of SERCA2a 

protein.  In addition, the non-specific GSK-3 inhibitor LiCl, com-

pletely reversed the inhibition of SERCA2 mRNA expression. To 

underscore these results, King et al.,(55) using the protein phos-

phatase-1/inhibitor-2 complex to regulate the phosphorylation 

state of GSK-3, demonstrated increased SERCA2 expression.  

GSK-3 protein, by regulating SERCA2 expression, if elevated, may 

therefore be intimately involved in the contractile abnormalities  

of the diabetic heart.

GSK-3 And developMent of cArdiAc                      

hypertrophy

Diabetes is associated with left ventricular hypertrophy and dias-

tolic dysfunction which may eventually lead to clinical heart  
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failure.(56) Pre-clinical abnormalities of cardiac structure and func-

tion have been reported in diabetes of short duration(57) while 

echocardiographic studies pointed out the evidence of left ven-

tricular remodeling and demonstrated the existence of a discreet 

diabetic cardiomyopathy. (56)  

Cardiac hypertrophy can be either physiological or pathological.  

Pathological hypertrophy is associated with activation of neuro-

humoral pathways (endothelin I, angiotensin II, catecholamines) 

eventually leading to release of calcium from intracellular stores 

(mainly the sarcoplasmic reticulum).  This, in turn, will activate the 

calcium dependent phosphatase calcineurin, which regulates 

changes in gene expression associated with hypertrophy.(58) One  

of the more prominent transcription factors regulated by calcineu-

rin is nuclear factor of T-cells (NFAT).(59) These authors showed  

that cardiac hypertrophy is induced by calcineurin, which dephos-

phorylates NFAT-3, enabling it to translocate to the nucleus.   NFAT-

3 interacts with the cardiac zinc finger transcription factor GATA4, 

resulting in activation of gene transcription. GSK-3β can counter- 

act the activity of calcineurin by phosphorylating NFAT. Studies 

done with models of myocardial overexpression of GSK-3β have 

shown that GSK-3β is one of the most powerful antihypertrophic 

entities described thus far.(60,61)  Using LiCl, a non-specific inhibitor 

of GSK-3, Haq et al.(60) demonstrated that inhibition of GSK-3 

activity leads to features of cardiac hypertrophy.  This observation  

is underscored by the finding that deletion of GSK-3β in mice 

resulted in hypertrophic cardiomyopathy.(62) No live GSK-3β-/- pups 

were recovered in this study. The embryos had cardiac develop-

mental defects caused by cardiomyocyte hyperproliferation asso-

ciated with increased expression and nuclear translocation of 3 

regulators of proliferation – GATA4, cyclin D1 and c-Myc. It is  

also interesting to note that many hypertrophic stimuli inhibit  

GSK-3β, thereby removing its negative constraints on the 

development of hypertrophy. 

Besides the abovementioned inactivation of GSK-3β through phos-

phorylation on Ser9, it can also be inactivated by activation of the 

Wnt/frizzled pathway (Figure 2). This inactivation is apparently 

GSK-3 PROTEIN AND THE HEART

fiGure 2:  A schematic representation of  Wnt signalling in the context of GSK-3 involvement.

Wnt: ligand of the frizzled receptor, Dvl: disheveled is an intermediate protein relaying the signal from the receptor to a target protein,  GSK-3β: glycogen synthase kinase-3 beta, NFAT: nuclear  
factor of activated T-cells, GATA4: transcription factor. 
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because of sequestration of the kinase rather than phosphoryla-

tion thereof. Blankestein and co-workers(58) reviewed the role of  

the Wnt/frizzled pathway in the inhibition of GSK-3β, arguing for  

a therapeutic anti-hypertrophic strategy by inhibiting Wnt/ 

frizzled signalling. 

It is generally accepted that there is re-expression of the fetal gene 

programme in the hypertrophic heart,(63) therefore, according to 

Blankestein, Wnt/frizzled signalling may be reactivated in the 

hypertrophic heart. They could show upregulation of frizzled-2 

expression in pressure overload hypertrophy in the rat(64) and 

demonstrated a causal relationship between this expression and 

the development of hypertrophy.(65) 

But, as highlighted by the result of Kerkela et al.,(62) inhibition of 

GSK-3 remains a 2-faced Janus.  The Wnt glycoproteins are essential 

for proper embryonic development due to their role in the 

regulation of cellular proliferation, differentiation, motility and 

polarity.(66-68) Already in 1995, Klein & Melton put forward a 

hypothesis that the effects of lithium on development of diverse 

organisms, was because of the inhibition of Wnt signalling by GSK-

3β.(69) Wnts act as ligands for the frizzled family of receptors. It 

elicits a response via the stabilisation of β−catenin, resulting in 

accumulation of the latter in the cytosol and nucleus where it  

results in activation of transcription of Wnt target genes.(66)  GSK-3β 

phosphorylates β−catenin, targeting it for ubiquitination and pro-

teasomal degradation.(68) Mutations in β−catenin at the residues 

that can be phosphorylated by GSK-3β is associated with develop-

ment of numerous types of cancer.(70)

GSK-3 And MyocArdiAl cell deAth or cell   

SurvivAl

It is well-recognised that, clinically, diabetes results in increased 

mortality and enhanced left ventricular dysfunction following myo-

cardial infarction after ischaemia/reperfusion.(71,72) Recently, Sena  

et al.(73) used cardiomyocyte-restricted insulin receptor knock out 

(CIRKO) mice to investigate possible mechanisms responsible for 

this. In a model of proximal coronary artery ligation to induce 

infarction, they followed changes in the heart over a 14 day period.  

Notably, they demonstrated enhanced left ventricular dysfunction 

coupled to accelerated mitochondrial dysfunction as well as 

attenuated expression of several proteins involved in glucose and 

fatty acid oxidation. In addition, SERCA2 expression was down 

regulated in the CIRKO mice.  

In the context of ischaemic heart disease, the concept of ischae- 

mic and pharmacological preconditioning has been intensively 

researched in the last decade. Ischaemic preconditioning refers to 

the phenomena whereby a series of short periods of myocardial 

ischaemia interspersed with reperfusion, has the ability to protect 

the heart against a successive longer period of ischaemia.(74)   

Because ischaemic preconditioning is still the most powerful 

endogenous protective mechanism that can be elicited in the  

heart, research centered on elucidating the mechanism thereof 

with the aim of duplicating it via pharmacological means. This was 

no easy matter as research demonstrated that different stimuli  

have the ability to mimic ischaemic preconditioning, leading to the 

search for a common denominator or end-effector. Since the 

balance between cell death and cell survival is central to ischaemic 

damage to the heart, research centered on signalling pathways  

that influence mitochondrial function and integrity. Some of these 

pathways implicated in preconditioning, are endogenous ligands 

released during ischaemia which would activate G-protein coupled 

receptors (adenosine, bradykinin, isoproterenol or opioids) that,  

in turn, activated a cascade of protein kinases (e.g. PKB, PKC, PKA, 

ERK, p38MAPK) that could influence mitochondrial integrity.(75-79)  

Following on the observation of Tong et al.(80) that preconditioning 

resulted in phosphorylation and inactivation of GSK-3β via a PI-

3Kinase mediated pathway, the work of Juhaszova et al.(81) took  

this one step further and demonstrated that the upstream effector 

that could integrate all the diverse signalling effects implicated in 

preconditioning, was GSK-3β. Using two of the new-generation 

GSK-3 inhibitors, Das and colleagues(82) demonstrated that pre-

treatment of hearts before ischaemia, with these inhibitors, was  

as protective as preconditioning. They furthermore confirmed  

the mitochondria as end-target of this protection. According to 

their results, GSK inhibition decreased mitochondrial membrane 

potential with less calcium loading and less oxygen radical pro-

duction, thereby conferring protection. In addition, mitochondrial 
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affinity for the anti-apoptotic protein Bcl-2 increased, with more 

Bcl-2 associated with mitochondria in the presence of GSK-3 

inhibition, inferring a pro-apoptotic role for GSK-3. This conclusion 

is substantiated by the work of Hirotani et al.,(83) using a transgenic 

mouse with cardiac-specific expression of a dominant negative 

form of GSK-3β, who demonstrated accumulation of the anti-

apoptotic molecule MCL-1 in these animals. This, as well as the 

anti-apoptotic effects of GSK-3 inhibition, could be abolished by 

knock down of MCL-1 with small inhibitory RNA molecules. All 

these effects could therefore contribute to the observed car-

dioprotective effect of the GSK inhibitors. It must be kept in mind 

that a pro-apoptotic role for GSK-3 would also argue for an 

inhibition of hypertrophy, as discussed previously.

As mentioned before, there are studies demonstrating upregula-

tion of expression and higher activity (therefore more of the  

less phosphorylated form) of GSK-3 protein in skeletal muscle of 

type 2 diabetic patients and in adipose tissues of obese diabetic 

mice.(38,39) Investigating the protection afforded by post-condi-

tioning (where, in contrast to pre-conditioning, the short, repe- 

titive episodes of ischaemia/reperfusion are implemented imme-

diately at the onset of reperfusion to elicit protection)(84) Wagner  

et al. (2008) could not elicit post-conditioning in a rat model with  

metabolic syndrome.(85) This was accompanied by a failure of  

post-conditioning to result in phosphorylation and inhibition of 

GSK-3β.

On the other hand, Nishino et al.,(86) using a mouse line lacking  

the critical N-terminal serine within myocardial GSK-3β (Ser9) as 

well as Ser21 in GSK-3β, still found protection via preconditioning 

in the isolated, perfused heart subjected to ischaemia, excluding  

a role for inhibition of GSK-3 in this phenomenon in the mouse 

heart as opposed to the findings of Juhaszova in the rat heart.(81) 

GSK-3 inhibition in the heArt –                            

A tuG-of-WAr?

At this stage, it would therefore seem as if the vote on inhibition  

of GSK-3 as a therapeutic intervention, especially with regards to 

the heart, is too close to call.

As mentioned, the kinase GSK-3, is involved in not only the 

regulation of glycogen synthesis and the development of insulin 

resistance and type 2 diabetes, but is implicated in an array of 

biological processes including cell death and survival and deve-

lopmental patterning. It is also associated with the development of 

various neurodegenerative abnormalities e.g. Alzheimers disease, 

schizophrenia and possibly Huntington’s disease. It is further- 

more implicated in the development of different forms of cancer,  

to name but a few.(87) From this it can be deduced that the inhibi-

tion of GSK-3 has a very high therapeutic potential in a number of 

different human diseases.  

As is indicated by the preceding discussion, in the field of cardi-

ology, the list of “positives” of GSK-3 inhibition will probably 

outweigh that of the “negatives”. Inhibition of GSK-3 signalling  

will inhibit apoptosis, and therefore reduce the damage caused  

by myocardial ischaemia. It is protective in heart failure. It im- 

proves insulin sensitivity not only by enhancing hepatic glycogen 

synthesis and reducing hepatic glucose output, but also improves 

whole body glucose tolerance by the enhancement of glut 4 pro-

tein levels in the cell membranes of skeletal muscle cells. Inhibi- 

tion of GSK-3 should improve contractile function in states of  

insulin resistance via upregulation of SERCA2 expression and it 

should also have anti-inflammatory effects via inhibition of activa-

tion of NF-κB.(87) The latter speculation is substantiated by one 

report showing that the GSK-3 inhibitor TDZD-8, when given to  

ex vivo perfused rat hearts at the start of reperfusion after ischae-

mia, presented with reduced NF-κB activation coupled to smaller 

infarct size and reduced apoptosis.(88) In addition, the work of  

Sato et al. (2004) demonstrated that a specific inhibitor of GSK-3 

has the ability to maintain self-renewal and pluripotency in human 

and mouse embryonic stem cells.(89) This was probably because  

of increased β-catenin activity from activation of the Wnt signalling 

pathway.  Following on this, Tseng et al. (2006) published results  

to show that inhibition of GSK-3 was also able to raise β-catenin 

activity in neonatal rat cardiomyocytes.(90) GSK-3 inhibition in  

these cells induced cell cycle entry at the S-phase and resulted in 

cell division. They tested whether this would hold true in adult  

rat cardiomyocytes and showed that GSK-3 inhibition also induced 

adult rat and mammalian cardiomyocytes to dedifferentiate and 

GSK-3 PROTEIN AND THE HEART
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undergo mitosis.  In the heart, with its lack of proliferative potential 

and formation of scar tissue after infarction, treatment able to in-

duce proliferation and regeneration, will have enormous potential. 

On the down side of inhibition of GSK-3 lies the fact that these 

inhibitors are mostly non-specific, that their use may lead to 

development of cardiac hypertrophy because of a lift on the 

inhibition of calcineurin and furthermore, that GSK-3 inhibition  

may be teratogenic.  In other tissue, inhibition of GSK-3 may in- 

duce different forms of cancer e.g. colorectal cancers have defects 

in elements of the Wnt pathway that lead to accumulation of  

β-catenin(91) that will be exacerbated by GSK-3 inhibition.  How-

ever, available data do not show enhanced incidence of cancer in 

patients after long-term treatment with lithium.(92) Furthermore, 

under some circumstances, GSK-3 inhibitors might be useful in 

treating  specific cancers.(93) 

Currently, more than 30 different GSK-3 inhibitors have been 

described.(2,94) As summarised by these reviews, they have a diver-

sity of structure and size but most of them are small in order to 

reach GSK-3 where it is embedded in protein complexes, and  

most of them act by competing with ATP in the ATP-binding site  

of the kinase. Unfortunately, even the inhibitors described as  

more selective,(10) will also inhibit other protein kinases.(94) All of  

the available GSK-3 inhibitors will lead to elevated β-catenin 

levels.(68)  Despite this, no deleterious effects have yet been  

reported in rodent studies.  However, it seems that there is an 

absence of long-term studies with GSK-3 inhibitor treatment in 

rodent models of disease. Most of the negative effects have been 

reported using genetically modified animals.  At the moment,  

the bottom line is still that, in the words of Sugden et al. (2008):   

“we just do not know whether to inhibit or activate GSK-3, or 

simply not to interfere!”(8)
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