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Fermentation predictability and wine quality are directly dependent on wine yeast attributes that assist in the rapid 

establishment of numerical dominance in the early phase of wine fermentation, and that determine the ability to 

conduct an even and efficient fermentation to obtain a desirable alcohol degree. It is therefore not surprising that 

the primary selection criteria applied to most wine yeast strain development programmes relate to the overall 
objective of achieving an efficient conversion of grape sugar to alcohol and carbon dioxide, at a controlled rate and 
without the development of off-flavours. Numerous factors influence the fermentation performance of wine yeast. 
Following a successful inoculation of grape must with an appropriate starter culture strain, the ability of a wine 
yeast to adapt to and cope with the hostile environment and stress conditions prevailing in grape juice fermenta­
tion are of vital importance to fermentation performance. There is a direct correlation between fermentation effi­
ciency and stress resistance, which refers to the ability of a yeast strain to adapt efficiently to a changing environ­
ment and unfavourable growth conditions. Successful yeast cellular adaptation to changes in extracellular para­

meters during wine fermentation requires the timely perception (sensing) of chemical or physical environmental 
parameters, followed by accurate transmission of the information to the relevant compartments of the cell. 
Chemical parameters perceived during wine fermentation include the availability/concentration of certain nutri­
ents (e.g., fermentable sugars, assimilable nitrogen, oxygen, vitamins, minerals, ergosterol and unsaturated fatty 

acids) and the presence of inhibitory substances (e.g., ethanol, acetic acid, fatty acids, sulfite, phenolic phytoalex­
ins, mycotoxins, bacterial toxins and agrochemical residues). Signals of a physical nature include temperature, pH, 
agitation and osmotic pressure. The sensing of these environmental signals is carried out by specific receptor pro­
teins, most of them situated on the cellular surface. Once perceived, the information is transmitted by a network of 
dedicated, interconnected signal transduction pathways to the relevant cellular compartments which implement the 
adaptive response, a process referred to as "stress response". Intensive research has focused on elucidating the mol­
ecular mechanisms involved in stress responses, which are evolutionarily well conserved. Besides furthering our 

understanding of the fundamental strategies for adaptation to hostile, industrial environments, and the biological 
resilience of Saccharomyces cerevisiae, the data are of key importance to the future improvement of wine yeast 
strains. This review describes the different types of stress experienced by wine yeast cells during their life cycles, 
summarises our current knowledge of some of the most important molecular processes required for the survival of 
the yeast cell, and highlights the potential benefits for future yeast strain development which can be derived from 
this research. 

INTRODUCTION 

Fermentation is broadly defined as the chemical transformation 

of food-stuff by microorganisms. Archeological evidence sug­

gests that several forms of fermentation have been used by 

humans for at least several thousand years, and alcoholic fermen­

tation in particular probably represent the oldest form of a 

biotechnological application of a microorganism (Samuel, 1996). 

Over the millennia, fermentation technology has been adapted to 

local conditions and for specific purposes. Alcoholic fermenta­

tion, the conversion of sugar, in particular hexoses, into alcohol 

and CO2, relies almost exclusively on yeast, and several species 

have been and are used for this purpose. The most commonly 

encountered species is Saccharomyces cerevisiae, different 

strains of which are known as baker's, brewer's or wine yeast. 

Industrial S. cerevisiae strains are highly specialised organisms, 

which have evolved to utilise to their full potential the different 

environments or ecological niches that have been provided by 

human activity. This selection process can be described as 

"domestication", analogous to the selection process of agricultur­

al plants and mammals, and the S. cerevisiae strains used today in 

bakeries, breweries, wine cellars and other processing facilities 

probably have little in common with the original yeast that many 

thousands of years ago started to transform sugar into alcohol 

inside human-made containers. 

Alcoholic fermentation is a dynamic process during which the 

human-provided "environment", mainly fruit juices or sugars 
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28 Yeast Stress Response and Fermentation 

extracted from cereals, undergoes continuous changes, which are 

due to external physical factors and the biological activity of the 

fermenting organisms. While the external environment is contin­

ually changing, organisms must maintain the intracellular physi­

cal and chemical parameters within specific limits in order to 

achieve optimal conditions for metabolic activity. As unicellular 

organisms, yeast are directly exposed to the environment, unlike 

cells in complex metazoans, which can maintain close-to-optimal 

conditions within the organism as a whole. Unicellular organisms 

therefore have evolved a number of mechanisms allowing them 

to perceive changes in the surrounding environment and to rapid­

ly adapt to those changes in order to maintain the integrity of the 

cell and its metabolic activity. Extreme conditions or the failure 

to adapt will lead either to cell death or to reduced growth, 

depending on the severity of the condition experienced. For 

example, the sudden exposure to heat (50°C) of an exponentially 

growing culture of S. cerevisiae will lead to cell death in a first 

order process, while exposure to less extreme conditions (37°C) 

will lead to a transient growth arrest, which is part of an adaptive 

response, followed by the resumption of growth (Piper, 1997). 

Besides the response to temperature, other parameters which 

require specific adaptations to ensure cellular growth and survival 

include the availability of nutrients, the osmotic pressure and the 

pH of the growth substrate, as well as the presence of high con­

centrations of growth-inhibiting or toxic compounds like ethanol 

and salts (Mager & Hohmann, 1997). 

A number of molecular pathways have evolved which ensure 

that the yeast cell can implement a specific response to changes 

occurring in those parameters. In a rather broad definition, all 

environmental changes that elicit such an adaptive response are 

qualified by the anthropocentric term of "stress". Consequently, 

the molecular and physiological response of an organism to 

changes in the environment is referred to as "stress response", 

while the ability to withstand unfavourable or changing external 

conditions is defined as "stress resistance" or "stress tolerance". 

Furthermore, observations of several organisms, including 

S. cerevisiae, have revealed that exposure to a mild stress results 

in improved resistance to subsequent exposures either to more 

extreme forms of the same stress or to other stresses, phenomena 

which have been defined as "acquired stress resistance" and 

"cross protection", respectively (Ruis & Schuller, 1995; Siderius 

& Mager, 1997). 

The inherent biological resilience and stress resistance of wine 

yeast strains are of especially high interest to winemakers since 

some of the most vexing problems of wine production, particu­

larly stuck or sluggish fermentation and the production of off­

flavours by the yeast, are usually associated with the inability of 

yeast strains to respond and adapt to unfavourable, stressful 

growth conditions (Attfield, 1997; Henschke, 1998; Bisson, 

1999). Data obtained from wine-related studies clearly show an 

inverse correlation between the inherent stress resistance of spe­

cific strains and the frequency with which stuck or sluggish fer­

mentation occurs (lvorra et al., 1999). As mentioned, stress con­

ditions lead to a reduction in growth speed and survival rate, and 

therefore always reduce fermentation efficiency. However, the 

better and faster a yeast strain is able to adapt to changes in the 

environment, the faster fermentation will be completed. 

Industrial yeast strains therefore should possess high stress resis-

tance; in other words, they must have a good ability to adapt to 

environmental changes in order to avoid fermentation problems 

(Attfield, 1997). The making of top quality wine is not only 

stressful to the winemaker, but is a challenge to the yeast strain as 

well. 

As a consequence, the development of new yeast strains has to 

take into account the ability of strains to withstand those stress 

conditions most frequently associated with grape must fermenta­

tion. Some of these conditions, as well as the cellular and molec­

ular response of the cell to these conditions, have been intensive­

ly studied in a fundamental, wine fermentation-unrelated research 

context. Most scientific research focuses on furthering our gener­

al understanding of cellular adaptation and stress resistance, and 

relatively little attention has been paid to the specific conditions 

prevailing during wine fermentation. Nevertheless, the funda­

mental studies have analysed situations which are also encoun­

tered by wine yeast during their life cycle, and the results of this 

research can therefore be applied to improve the understanding of 

wine fermentation and fermentation-associated problems. The 

best-studied stress responses include: (i) the temperature (heat or 

cold) shock stress response; (ii) the response to the limitation of 

essential nutrients; (iii) responses to changes in osmotic pressure 

(hyper- or hypoosmotic shock); and (iv) ethanol toxicity, all of 

which are of obvious importance during fermentation. 

This review summarises current understanding of the most rel­

evant aspects of the molecular mechanisms that allow yeast cells 

to adapt to changing environmental conditions, and in particular 

to those stress conditions that are commonly encountered during 

the winemaking process. The first section is a description of the 

types of stress to which wine yeast strains are exposed during 

their life cycle, and in particular during grape must fermentation. 

In a second section, the molecular mechanisms involved in per­

ceiving environmental changes and responsible for implementing 

the specific cellular adaptation to the changed conditions are dis­

cussed. The conclusion highlights how the data presented in this 

review can lead to scientifically sound strategies for the improve­

ment of wine yeast strains. 

THE LIFE CYCLE OF A WINE YEAST STRAIN - A STRESS­

FUL JOURNEY 

To ensure rapid and complete grape must fermentation, and to 

achieve a degree of reproducibility in the character of specific 

wines, most fermentations are conducted with selected, industri­

ally produced wine yeast strains that are inoculated into the must 

after pressing. Inoculated fermentation is differentiated from so­

called natural, spontaneous fermentation, which is carried out by 

yeast strains naturally present on the grapes or the winery equip­

ment. During both inoculated and spontaneous fermentation, a 

number of different non-Saccharomyces species, also referred to 

as "wild yeast", play an important role in the initial phases of the 

process (Boulton et al., 1995; Fugelsang, 1997). The most impor­

tant of these wild yeast are from the genera Brettanomyces, 

Candida, Debaryomyces, Hanseniaspora, Kloeckera, 

Kluyveromyces, Metschnikowia, Pichia, Schizosaccharomyces, 

Torulaspora and Zygosaccharomyces (Pretorius et al., 1999; 

Khan et al., 2000; Pretorius, 2000; Van der Westhuizen et al., 

2000a, b). Interestingly, these studies show that S. cerevisiae is 

found in very small numbers in vineyards and on grapes, and the 

debate on the real "natural habitat" of this yeast is still not closed. 
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The low numbers could suggest that the true ecological niche of 
S. cerevisiae in a natural environment is still to be identified 

(Pretorius et al., 1999). 

It is therefore not surprising that the initial stages of a sponta­

neous fermentation are usually dominated by the yeast species 

found in the highest numbers in the vineyard and on grape skins. 

Only once ethanol has reached concentrations which inhibit the 
growth of these yeast is S. cerevisiae able to out-compete these 
species and complete the fermentation (Boulton et al., 1995). 

This fact highlights one of the stress-related specific adaptations 
of S. cerevisiae strains during the winemaking process, the 

increasing tolerance to high ethanol concentration. 

must, and the high number of cells inoculated at the beginning of 

fermentation, usually around 106 - IO 7 cells per ml of must, in 

most cases ensures that this yeast will dominate the fermentation 

from beginning to end (Delteil & Aizac, 1989; Petering et al., 

1991; Fugelsang, 1997). The conditions encountered by the yeast 

during wine fermentation are listed in Table 1. 

On the other hand, industrial wine yeast strains have been pro­

duced for optimal fermentation ability and behaviour in wine 

There is, however, a second set of criteria to which industrial 

yeast must respond. The manufacturing process of yeast strains 

itself requires some specific adaptations, in particular the ability 

to efficiently produce biomass in aerobic conditions and to sur­

vive long periods of storage, either dried or frozen. The condi­

tions prevailing during the production process are also shown in 

Table 1. An efficient industrial yeast will have to be able to adapt 

to all the conditions listed. The table clearly shows that the con-

TABLE 1 

Comparison of growth conditions during wine fermentation and industrial production process. 

Wine fermentation 

Chemical parameters 

High sugar (200 g/1) 

Several essential nutrients potentially limiting 

Low to very low oxygen concentration 

Presence of SO2 

High ethanol 

High levels of CO2 

Potential presence of toxic metals (copper) 

Highly variable supply of nitrogen sources 

Biological parameters 

Presence of competing microorganisms 

Potential presence of toxins (mycotoxins or bacterial 
toxins) 

Xenobiotics 

Physical parameters 

High density environment (hyperosmotic pressure) 

Temperature changing, but mostly below optimal 

Low pH (3-3. 7) 

Not encountered 

Not encountered 

Growth conditions permanently changing with 
advancing fermentation ( availability of nutrients, 
ethanol, CO2) 

Yeast metabolic activity 

Efficient fermentative metabolism 

Efficient growth in suboptimal conditions 

Wanted end products 

High ethanol 

Low biomass 

Industrial production 

Low sugar(< 1 g/1 in fed-batch) 

Supplemented for all potentially limiting nutrients 

High oxygenation rate 

NoSO2 

No or very low ethanol 

Very low CO2 

Absence of toxic metals 

Constant supply 

Sterile environment 

Absence of toxins 

Absence ofxenobiotics 

Low density environment 

Temperature adjusted for efficient growth 

Optimal pH (around 5) 

Desiccation 

Freezing-thawing 

Growth conditions maintained constant 

Efficient respiratory metabolism 

Efficient growth in optimal conditions 

No ethanol 

High biomass 
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ditions encountered during the two processes differ fundamental­

ly: low sugar and high oxygen during yeast production vs. high 
sugar and low oxygen during wine fermentation. However, the 

table also shows a common denominator that can be used to 
describe most of the requirements that the yeast must fulfill in 

both conditions: stress resistance. 

The following section describes the conditions and stress fac­
tors encountered by an industrial S. cerevisiae wine yeast strain 

during its life cycle; first during production and maintenance, 

then during wine fermentation. We have not considered stresses 

that might be specifically encountered by S. cerevisiae strains 

that are found during spontaneous fermentation, since little is 

known about their natural habitat and therefore about the specif­

ic stress conditions that might be associated with this habitat. In 
any case, these stresses will not be of a fundamentally different 

nature from the ones encountered by industrial yeast. 

Stresses during wine yeast production and maintenance 

To be kept alive over long periods between production runs, a 
typical industrial wine yeast strain is stored frozen at -80°C as a 

stock sample. This is necessary to guarantee that the cells inocu­

lated into a starter culture before large scale production are iden­
tical to all the previous batches of the same strain. Maintaining a 

strain in conditions appropriate for growth can lead to the slow 

accumulation of mutations, the so-called genetic drift (Mortimer 
et al., 1994; Pretorius, 2000), potentially resulting in the modifi­

cation of some of the characteristics for which the strain was ini­

tially selected. Inoculation from the same frozen stock therefore 

ensures that the same strain is produced time and time again. 

Freezing, however, is an extreme stress condition, and several 

yeast strains are unable to sustain the process, making them 

unsuitable for industrial production (Park et al., 1997). Yeast nor­

mally respond to a sudden decrease in temperature ( cold shock) 

by accumulating trehalose, which has a protective effect and 
increases cryoresistance (Kim et al., 1996; Van Dijck et al., 1995; 

Diniz-Mendes et al., 1999), and by inducing a specific set of 
genes (Kondo & Inouye, 1991; Tanghe et al., 2000). 

To improve the survival rate during storage, the cells are frozen 

in a solution with high glycerol content, usually between 15 and 
40%. Glycerol is naturally synthesised by yeast and other organ­

isms as a by-product of the glycolytic pathway, and fulfills a 

major stress-protection role as an osmoprotectant compatible 

solute during hyperosmotic shock (see section on osmotic stress 

later in this review) and acts as a freeze protectant (Hohmann, 

1997; Scanes et al., 1998). Even when glycerol is added to the 

freeze culture, the viability of yeast after long term storage at 

-80°C varies according to the strain and the conditions prevailing 

during the freezing process, in particular the growth phase. As for 

all stress conditions, cells that have entered stationary phase after 
nutrient deprivation are more resistant than exponentially grow­

ing cells (Fuge & Werner-Washburn, 1997; Park et al., 1997), 

which may be explained at least in part by the high trehalose con­

tent of stationary phase cells. After thawing, the strains are plat­

ed onto a rich growth medium, and grown under optimal growth 
conditions at 30°C. During this time of fast growth, stress resis­

tance is low, and even mild shocks can have major consequences 

on growth speed and viability. The inverse correlation between 

growth and proliferation on the one hand and stress-resistance on 

the other is one of the recurrent themes of research into stress 

resistance (Fuge & Werner-Washburn, 1997; Mager & Hohmann, 

1997; Thevelein & De Winde, 1999). 

After verification of the absence of contamination and the pos­

itive identification of the strain (karyotyping), the cells are inoc­

ulated into a preculture of a small volume, typically 250 ml, from 

which they are reinoculated after 24 to 48 hours into a large batch 

fermentation tank. While media composition throughout this 

process always favours optimal growth, each inoculation into a 

new medium exposes the strain to a number of stress conditions: 

a new culture medium results in a change in osmotic pressure, 

perhaps a change in temperature and also in a new nutrient bal­

ance. These stresses are usually considered mild, but will never­

theless require a period of adaptation. The time required for this 

adaptation results in the so-called lag-phase, characterised by the 

absence of cellular growth. The lag-phase, which is typical for all 

newly inoculated cultures, is therefore another manifestation of a 

stress-induced adaptation period. Industrial yeast strains in gen­

eral should be able to adapt quickly to new media and growth 

conditions to accelerate the production process. 

The production process itself finally takes place in large fer­

mentation tanks using so-called fed-batch conditions. These con­

ditions are optimised for the production of biomass, or, to put it 

differently, for the optimal conversion of the energy contained in 

nutrients into yeast growth, and are similar to the methods used 

for baker's yeast production. In a typical fed-batch culture, the 

medium contains abundant nutrients but low concentration of 

glucose, which is continuously added to the growth media, usu­

ally in the form of diluted molasses (Kraus et al., 1983, 1984). At 

the same time, oxygen concentrations are kept high, resulting in 

respiratory metabolism with high biomass formation and low or 

no ethanol production. The high oxygen levels also result in the 

production of unsaturated fatty acids, an important factor for effi­

cient fermentation because of their effect on ethanol tolerance 

(Boulton et al., 1995). The stress resistance of yeast cells during 

this production phase is low, again highlighting the inverse cor­

relation between stress-resistance and growth and proliferation. 

Toward the end of the yeast manufacturing process when the 

biomass has reached the desired level, the yeast is briefly 

deprived of oxygen and carbon source to induce some of the 

stress response mechanisms which will result in particular in an 

increase in the cellular trehalose content and the accumulation of 

stress protection proteins. This step is of particular importance, 

since the induced stress responses will protect the cells during the 

particularly stressful subsequent steps in the production process 

and guarantee their survival. Following the production run, the 

yeast is concentrated through centrifugation, then washed and 

dried to be sold as active dried yeast. Both washing and drying 

create intense stresses, which require the protective presence of 

trehalose, stress-related proteins and specific membrane con­

stituents (Van Dijck et al., 1995; Sales et al., 2000). Washing with 

water results in a hypoosmotic stress, creating high turgor pres­

sure within the cell because of water influx and necessitating the 

quick release of compatible solutes (Hohmann, 1997). Yeast 

strains also show highly variable sensitivity to desiccation, and 

some data indicate that trehalose may play a role in protecting 
cells against the effects of the drying process (Eleutherio et al., 

1995). Other researchers, however, have found no direct correla­

tion between trehalose content and desiccation resistance 
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(Krallish et al., 1997). In any case, a high survival rate is of cru­

cial importance at this stage, since a high viable cell count is the 

most important parameter when inoculating a S. cerevisiae strain 

into the must. A significant drop in survival rates during desicca­

tion and rehydration could therefore have disastrous conse­

quences for the winemaking process. 

After desiccation, the yeast is vacuum packed under nitrogen 

and sold as active dried yeast to winemakers. In this dried state, 

yeast cells will stay viable for extended periods in the absence of 

all metabolic activity. 

Stresses during wine fermentation 

Rehydration and inoculation - osmotic stress and some other 

minor problems: Both rehydration and inoculation result in sev­

eral stresses, the most significant of which is probably a hyperos­

motic shock experienced during inoculation. 

The yeast sold as active dried yeast is not directly inoculated 

into the must, but is first added to a small volume of warm (35-

400C) water. This rehydration process is required to reestablish 

functional membranes and metabolic activity, since water activi­

ty in the dried yeast is too low to maintain any of these process­

es (Boulton et al., 1995). Little data are available regarding 

stress-related responses during the period of rehydration, but 

common sense would suggest that several types of stress will be 

experienced by the yeast. These should probably include heat 

stress and hypoosmotic shock when inoculated into warm water. 

The situation is difficult to analyse, since the cells emerge from a 

metabolically inactive state and may not be able to properly per­

ceive and respond to stress conditions. In addition, no detailed 

studies have been carried out to analyse the cellular response dur­

ing this process, but it has been shown that survival depends on 

the physiological condition of the cells before the beginning of 

the drying process (Eleutherio et al., 1995; Krallish et al., 1997) 

and on the temperature and the kinetics of rehydration (Poirier et 

al., 1999). This again emphasises the importance of the induction 

of stress response mechanisms at the end of the production run, 

which will largely determine the ability of the yeast to withstand 

these challenges. 

The inoculation into the must presents the yeast with a number 

of new challenges. Grape must presents far from optimal growth 

conditions for any organism. The must is a high density substrate, 

and contains a high concentration of osmotically active sub­

stances, in particular glucose and fructose. After inoculation, the 

yeast experiences hypertonic conditions, which leads to an efflux 

of water from the cell, diminished turgor pressure, and reduced 

water availability. Yeast cells respond to such a hyperosmotic 

shock through a number of mechanisms, including the modifica­

tion of the cell wall and the cytoskeleton (Slaninova et al., 2000), 

and the synthesis of a compatible compound, glycerol, to reestab­

lish an osmotic equilibrium (Hohmann, 1997; Scanes et al., 

1998). A compatible compound is defined as an osmolyte that 

does not negatively affect the cellular metabolism or structure 

and can be accumulated at high concentration. Different organ­

isms use different compatible compounds, including potassium 

ions, amino acids like praline, sugars and alcohols (Hohmann, 

1997), as well as different strategies of compound accumulation. 

Accumulation can occur either through active uptake from the 

environment or through biosynthesis. In S. cerevisiae, glycerol 

appears to be the sole compatible osmolyte accumulated in 

response to osmotic stress, and is produced through biosynthesis 

(Hohmann, 1997; Scanes et al., 1998). This synthesis is regulat­

ed by the high osmolarity glycerol (HOG) signal transduction 

pathway (Albertyn et al., 1994), a mechanism that is reviewed in 

more detail later. 

Fermentation-induced stress conditions: When the cell has 

adapted to the new environment, grape juice, fermentation 

begins. The biological activity of the yeast during fermentation 

leads to a number of stress conditions, some mild, some poten­

tially severe. The most important factors are nutrient limitation 

and starvation, ethanol toxicity and temperature variations. 

Nutrient limitation and depletion: During wine fermentation, 

several types of nutrients may become limited or exhausted at dif­

ferent stages of the fermentation, which leads to reductions in 

growth rate and fermentation efficiency or even a complete arrest 

of fermentation. Nutrient limitation and starvation are stress­

inducing phenomena and result in a number of stress-associated 

responses, including the synthesis of trehalose and the induction 

of heat shock proteins (De Winde & Thevelein, 1997). At inocu­

lation, the initial nutrient content of an average grape must meets 

most or all of the theoretical requirements of S. cerevisiae. 

Several nutrient availability-related problems nevertheless can 

occur while fermentation progresses. 

First, both the nutritional requirements of S. cerevisiae and the 

composition of grape must are highly variable, and each fermen­

tation will follow a different path. The nutritional requirements of 

S. cerevisiae are strain and growth condition dependent, and each 

fermentation presents a slightly different nutrient-utilisation pat­

tern. In addition to intrinsic differences among yeast strains, 

growth condition dependent variables include the presence of 

other organisms in the must ( which might consume some of the 

nutrients), as well as a wide range of enological practices which 

influence yeast growth. The nutritional content of grape must also 

varies widely and depends on factors such as the grape variety, 

the soil type, viticultural practices like soil fertilisation (particu­

larly with nitrogen compounds) and the maturity of the grapes at 

harvest. As a consequence of the variability of these parameters, 

the requirements of specific yeast strains may not be met by the 

nutritional composition of a specific must (Fleet, 1993; Boulton 

et al., 1995; Fugelsang, 1997). 

Second, during the course of fermentation, an imbalance can 

occur between the quantity of hexoses (glucose and fructose) that 

must be fermented to achieve dryness and the assimilable nitro­

gen. The reasons for this imbalance are not related to the total 

amount of theoretically available nitrogen in the must, but is 

rather a consequence of the inability of S. cerevisiae to assimilate 

all of these sources efficiently. The major nitrogen compounds in 

grape must include several free amino acids, particularly (in order 

of decreasing concentration in an average grape must) praline, 

arginine, alanine, glutamate, glutamine, serine and threonine, as 

well as ammonium ions and y-aminobutyrate (Boulton et al., 

1995). The concentration of most of these compounds varies sig­

nificantly according to the grape variety and other parameters. 

S. cerevisiae, however, cannot use all of these compounds with 

similar efficiency (Cooper, 1982a, b). While ammonium and 

some amino acids like glutamate are favourite sources of 

metabolisable nitrogen, other amino acids can only be used inef-
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ficiently (e.g., praline), or not at all (e.g., lysine). A further com­

plicating factor is that amino acids can either be used directly, i.e. 

as such, for macromolecular biosynthesis, or be enzymatically 

modified. In the second case, they can either be transformed into 

a related compound or be catabolised in order to release ammo­

nium ions and bound nitrogen for general biosynthetic purposes 

(Cooper, 1982a, b; Boulton et al., 1995). 

The utilisation of nitrogen-containing compounds by S. cere­

visiae follows a complex, relatively well-established pattern dur­

ing wine fermentation (Boulton et al., 1995). In a first phase after 

inoculation, the yeast takes up all the nitrogenous compounds that 

can be used directly as building blocks for the biosynthesis of 

macromolecules. This leads to a rapid depletion of those amino 

acids that are present in low concentrations. In order for yeast 

cells to grow, these amino acids must then be neo-synthesised 

from precursor molecules, requiring the uptake of compounds 

that can serve as a general source of metabolically usable nitro­

gen. In controlled laboratory conditions, a specific order of pref­

erence has been established for those compounds ( Cooper, 1982a, 

b). Favourite sources, corresponding to those compounds that are 

efficiently metabolised, include aspartate, glutamate, glutamine 

and ammonium ions, and are taken up preferentially, while their 

presence in the media represses the uptake of other, less efficient 

nitrogen sources, an effect known as n.itrogen _catabolite [epres­

sion (NCR). Once these sources have been depleted, other nitro­

gen compounds like praline and other amino acids will be utilised 

(Cooper, 1982a). Studies on nitrogen uptake and utilisation in 

grape must show a more complex, sometimes contradictory pic­

ture (Monteiro & Bisson, 1991a, b; 1992a, b; Ough et al. 1991), 

since most amino acids, and particularly those present in limited 

amounts, appear to be taken up rapidly before growth begins. 

Some of the factors responsible for the difficulties in correlating 

data from laboratory experiments with those observed in grape 

must include (i) the variability of nitrogen sources in grape must; 

(ii) the ability of yeast to store significant amounts of nitrogen, 

particularly amino acids, in the vacuole; (iii) the difficulty expe­

rienced by S. cerevisiae cells to transport amino acids when 

ethanol levels reach a threshold (around 4% v/v); and (iv) the 

absence of oxygen, which precludes the utilisation of praline. The 

reasons for the effect of ethanol on amino acid uptake is dis­

cussed in the section dealing with ethanol-related stresses. 

The data presented above indicate that S. cerevisiae cells may 

have to switch their nitrogen source several times during a single 

fermentation. The switching from a preferred compound to a less 

preferred compound is experienced as a mild stress by the yeast 

cells, and, in laboratory conditions, results in a transient reduction 

in growth rate. Nitrogen starvation, on the other hand, only 

becomes a problem in later stages of the fermentation process, 

and is in most cases due to the inhibition of uptake by ethanol 

(Boulton et al., 1995). 

A third nutrient-related problem of wine fermentation is the 

near absence of oxygen. Oxygen is required as a structural com­

ponent in numerous organic molecules, and fermentation is 

impossible in the complete absence of molecular oxygen (Visser 

et al., 1990; Ribereau-Gayon et al., 1972). Efficient growth, even 

under fermentative conditions where the organism does not rely 

on oxygen for energy production, requires a significant amount of 

free oxygen, and the addition of oxygen during specific phases of 

the fermentation was shown to have beneficial effects on fermen­

tation kinetics (Fleet, 1993; Ribereau-Gayon et al., 2000). The 

oxygen requirement is further increased by the high levels of 

ethanol accumulating during fermentation. Ethanol resistance 

indeed requires membranes containing high percentages of unsat­

urated fatty acids and ergosterol, synthesis of which relies on the 

availability of oxygen (Alexandre et al., 1994 ). Problems due to 

other limiting nutrients in wine fermentation have been described 

and include, for example, phosphate limitation (Boulton et al., 

1995). 

During wine fermentation, the yeast is therefore potentially 

exposed to several nutrient-related stress conditions. In some 

cases, as in nitrogen, the problem does in most cases not reside in 

the absence of nitrogen-containing compounds, but either in the 

necessity to switch from a favourite source to a less favourite one, 

or in the inability to take up nitrogen-containing compounds from 

the must because of the high ethanol content. In other cases, for 

example phosphate, the problem is the complete absence of an 

essential compound. In all cases, the switching from one source 

to another, as well as the disappearance of essential compounds, 

results in stress-related adaptation leading to reduced fermenta­

tion efficiency. 

Ethanol toxicity: While fermentation proceeds and nutrients are 

depleted, ethanol accumulates. Ethanol is toxic to most organisms 

at relatively low concentrations, sometimes as low as 2% (v/v), 

which gives an indication of its ability to efficiently disrupt bio­

logical processes and of the necessity of protective mechanisms 

to sustain high ethanol concentrations. The inhibitory effect of 

ethanol on specific growth rates of S. cerevisiae is well estab­

lished, and has been modeled mathematically (Beavan et al., 

1982; Pamment, 1989). The biological effect of ethanol on cellu­

lar growth rates and fermentation efficiency is largely a result of 

changes in the properties of cellular membranes, in particular an 

increase in membrane permeability and changes in membrane 

fluidity (Alexandre et al., 1994; Sales et al., 2000). The increased 

permeability has numerous physiological consequences, not least 

of which is the dissipation of the proton motor force which allows 

the active transport of numerous compounds, in particular amino 

acids, through proton symport. The cell maintains the intracellu­

lar pH through the stress-regulated enzyme H+ -ATPase, which 

pumps H+ ions out of the cytoplasm into the surrounding sub­

strate in an energy (ATP) dependent mechanism (Serrano, 1993; 

Braley & Piper, 1997; Ambesi et al., 2000). The ion gradient cre­

ated by this mechanism is used by numerous transport systems, 

which use the electrochemical energy created by the gradient to 

actively transport substances against their concentration gradient 

into the cell by cotransporting a proton together with the specific 

metabolite (proton symport). Increased permeability of the mem­

brane to H+ results in intracellular acidification, particularly in 

the case of a substrate with a low pH, as is the case with grape 

must (Boulton et al., 1995). In addition, ethanol appears to have 

an inhibiting effect on H+-ATPase specific activity, contributing 

to the dissipation of the proton motor force. As a consequence, 

both the intracellular metabolic activity and the proton gradient 

dependent transport processes are reduced (Alexandre et al., 

1994). 

Ethanol has numerous broad additional effects on cell physiol­

ogy, and appears to affect most cellular processes. This general 
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effect has been related to reduced water activity, a measure of 

water availability. All biological processes are dependent on the 

presence of water, and reduced water availability affects all com­

partments of the cell. Affected processes include enzymatic activ­

ities, protein folding and membrane structure (Hallsworth, 1998). 

The cellular response to high ethanol content is strikingly similar 

to the heat stress dependent response, and both responses may be 

designed to reduce the effects of water stress (Piper, 1995; 

Hallsworth, 1998). As in the case of other stresses, the cellular 

response includes the synthesis of trehalose and the induction of 

stress protection or heat shock proteins (Piper, 1997). In addition, 

the membrane composition is changed fundamentally, with 

increases in the percentage of unsaturated fatty acids and changes 

in sterol content (Ameborg et al., 1995). 

Temperature: During fermentation the cells release a significant 

amount of energy in the form of heat, and every change in tem­

perature is perceived as a stress by the cell (Piper, 1997). Wine 

yeast are particularly sensitive to changes in temperature because 

of the suboptimal composition of the growth substrate, particu­

larly in the latter stages of fermentation, when ethanol levels are 

high. The effects of ethanol and high temperature stresses are 

very similar and mutually amplify cellular sensitivity (Piper, 

1995). Today, most wine fermentations are conducted under tem­

perature-controlled conditions, with white wine fermentation 

being conducted at cooler temperatures (10-15°C), and red wine 

fermentation at higher temperatures (l 8-25°C). However, 

increases in temperature of as little as 2-3°C have been shown to 

have a negative influence on fermentation efficiency (Henschke, 

1998), and such small variations cannot always be avoided in the 

large fermentation tanks that are used in the industry. Thus, heat 

stress can still have significant consequences, even in a tempera­

ture-controlled fermentation. 

Other stress factors during fermentation: Several other factors 

are perceived as stresses by S. cerevisiae during some wine fer­

mentations. These include the presence of high levels of so2, 
particularly at the beginning of the fermentation process, and of 

high levels of CO2, particularly in sparkling wine fermentation. 

The presence of competing microorganisms as well as of toxins, 

either mycotoxins or bacterial toxins, that might be produced by 

these organisms, constitutes another potential challenge. These 

stresses, however, are not inherently part of alcoholic fermenta­

tion, but rather depend on winemaking practices and cellar oper­

ations, or are only encountered in some specific winemaking con­

ditions (sparkling wine). Considering the incredibly large amount 

of data that has accumulated over the last years with regard to 

stress-response mechanisms, their inclusion would expand this 

review beyond reasonable length. The following section therefore 

focuses on some selected and relatively well-established aspects 

of the molecular mechanisms required to protect S. cerevisiae 

against the deleterious effects of those stress conditions that are 

an inherent part of wine fermentations. They include the response 

to temperature stress, osmotic shock, nutrient availability and 

ethanol toxicity. 

MOLECULAR AND CELLULAR RESPONSES TO STRESS 

CONDITIONS 

A short introduction to the molecular aspects of stress 

response mechanisms in S. cerevisiae 

The first molecular stress response to be studied in some detail, 

not only in S. cerevisiae but in a large number of organisms, was 

the induction of so-called f1eat-J:hock 12.roteinJ: (Hsps), a set of 

proteins whose synthesis is strongly increased when organisms 

are exposed to sudden increases in temperature (Mager & De 

Kruijff, 1995; Piper, 1997; Morano et al., 1998). This research 

showed that several families of Hsps are well-conserved through­

out evolution, displaying a high degree of sequence conservation 

in all organisms, from bacteria to higher eukaryotes, and suggest­

ing a central role in cellular metabolism for these proteins. For 

example, the Hsp70p (DnaK) protein of Escherichia coli shows 

about 50% amino acid sequence identity with human Hsp70p 

(Lindquist & Craig, 1988). 

Most Hsps are induced in response to a number of or all inves­

tigated stress conditions, suggesting that Hsps can be classified as 

general stress-protection proteins (Ruis & Schuller, 1995; Piper, 

1997). However, the data show that this "general" response is 

complemented by molecular adaptations which are specific to 

each type of stress (Mager & De Kruijff, 1995; Ruis & Schuller, 

1995). Specific induction patterns are observed for all stress­

response mechanisms, including for example heat stress, hyper­

osmotic and hypoosmotic stress, and nutrient limitation. A num­

ber of these specific adaptations were studied extensively, and 

include the synthesis of glycerol in response to hyperosmotic 

stress, the synthesis of storage carbohydrates like glycogen in the 

case of nutritional (especially carbon-source) deprivation, or the 

synthesis of trehalose in response to a number of stresses. 

These molecular mechanisms, induction of Hsps, glycerol and 

glycogen synthesis, all correspond to the final implementation of 

general or specific stress protection programmes. Before these 

molecular programmes can be implemented by an organism or a 

cell, the stress condition itself must first be perceived, and the 

information must be transmitted to the relevant genes and 

enzymes responsible for the implementation. More recently, the 

focus of research has shifted to the study of the mechanisms 

allowing the perception of environmental changes and to the mol­

ecular pathways required to transmit the perceived signal to the 

relevant compartments of the cell, a process referred to as "signal 

transduction". 

This research has yielded a large amount of data suggesting the 

existence of a complex network of signal transduction pathways 

which rely on a limited number of signal transduction modules. 

These modules include stress signal receptors, receptor-associat­

ed GTP-binding proteins (G-proteins), and intermediate modules 

consisting mainly of a large number of kinases, which are either 

regulated by small molecules called second messengers like 

cyclic AMP ( cAMP) or arrayed in cascades which are referred to 

as m.itogen activated 12.rotein kinase (MAPK) cascades. In this 

model, the last kinase in a signaling pathway phosphorylates spe­

cific target proteins, which may include transcription factors, 

metabolic enzymes and structural proteins of the cytoskeleton. 

Phosphorylation modulates the activity of these proteins, either 

inducing or suppressing their activity. As a consequence, tran-
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scription factors transcribe - or stop to transcribe - their specific 
target genes, and the cellular structure and metabolism adjust to 
the changed environmental conditions. A schematic representa­
tion of a general model of a stress condition induced signal trans­
duction cascade is represented in Fig. 1. 

condition subsequently results in increased stress resistance not 
only to the specific stress experienced, but to a number of other 
stress conditions. This phenomenon of cross protection or cross 
resistance was also demonstrated in S. cerevisiae, where exposure 
to a mild heat stress not only increases resistance and survival to 
more severe heat exposure, but also increases protection against 
osmotic or oxidative stress (Mager & De Kruijff, 1995; Ruis & 
Schi.iller, 1995). Several families of Hsps are induced in most, if 
not all, stress conditions, and are therefore considered to be part 
of this general stress response. Stress conditions which induce 

The heat shock proteins: general protection and recovery 

from stress-induced structural damage 

The existence of a "general" stress response was suggested by 
data showing that the exposure of an organism to a specific stress 
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sets of Hsps include the disappearance of nutrients from the 

growth substrate, the shift from a favourite source of a specific 

nutrient to a less favourite source, changes in temperature, pH, 

osmotic pressure, and the presence of high ethanol concentra­

tions, toxic substances and reactive oxygen species like H2O2 
(De Winde & Thevelein, 1997; Mager & Hohmann, 1997; Piper, 

1997). In general, the more favourable the growth conditions, the 

faster the growth speed, the lower the concentration of Hsp pro­

teins within a cell, and the lower the cell's intrinsic stress resis­

tance. These correlations suggest a direct connection between 

stress and growth control as well as an important role for Hsps in 

stress protection. 

Hsp families are grouped according to sequence homologies 

and are named according to the average apparent molecular 

weight of their members. In S. cerevisiae, Hsps and Hsp families 
include Hsp104p (member of the HsplO0p family), Hsp83p 

(member of the Hsp90p family), Hsp70p, of which there are at 

least 10 members in S. cerevisiae, Hsp60p and several small 

Hsps, including Hsp30p, Hsp26p and Hsp12p (Mager & De 

K.ruijff, 1995; Piper et al., 1997; Morano et al., 1998). Several 

genes displaying extensive sequence homologies with 

stress-induced Hsps are also found within the yeast genome, but 

are not induced upon stress. These genes frequently are constitu­

tively expressed or may, in some cases, be regulated in response 

to other factors. The existence of these homologous genes indi­

cates that some of the molecular functions of Hsps are required 

during normal growth. The expression levels and the degree of 

responsiveness to stress conditions of different HSP genes also 

vary within and among Hsp families (Piper et al., 1994; Piper, 

1997; Morano et al., 1998). 

Role of Hsp in cellular metabolism: For a relatively long period 

in the 1980's, little data were available regarding the role of Hsps 

in cellular metabolism. Lewis & Pelham (1985) first suggested 

that Hsp70p might interact with denatured proteins to assist pro­

tein solubilisation, folding or repair in an ATP-dependent manner. 

Since then, numerous studies have confirmed that most stress­

induced Hsps are indeed involved in the protection, rescue, solu­

bilisation and repair of denatured and aggregated proteins (Piper, 

1997; Morano et al., 1998). On the other hand, the main role of 

the constitutively expressed or only weakly induced members of 

Hsp families appears to be maintaining the non-folded state of 

newly synthesised proteins for incorporation into protein com­

plexes or in creating a translocation-competent conformation for 

transfer from the cytoplasm into another cellular compartment 

(Jensen & Johnson, 1999). All these functions, broadly described 

as chaperone activity, were confirmed for a number of proteins, 

including Hsp40p, Hsp70p, Hsp90p, and Hsp104p (Piper, 1997; 

Morano et al., 1998). 

Examples of the wide range of specific activities of Hsps and 

Hsp homologs include: 

(i) the maintenance of proteins in a non-folded or conforma­

tional immature state by members of the Hsp70p family to 

facilitate their translocation across the membranes of the 

endoplasmic reticulum and the mitochondria (Chirico et 

al., 1988; Deshaies et al., 1988; Jensen & Johnson, 1999); 

(ii) the role of mitochondrial Hsp70p, encoded by the gene 
SSC2, in the maturation of the mitochondrial protein Yfhlp 

(Knight et al., 1998); 

(iii)the control of signal transduction pathways by Hsps; Ssal p, 

a Hsp70p homologue, regulates the cAMP-dependent sig­
nal transduction pathway by associating with and downreg­

ulating Cdc25p, one of the regulatory proteins of this path­

way (Geymonat et al., 1998); 

(iv)the rescue of previously aggregated and denatured cyto­
plasmic proteins by a complex including Hsp104p, Hsp70p 

and Hsp40p (Glover & Lindquist, 1998); 

(v) the repair by Hsp104p and Hsp70p of proteins in the endo­

plasmic reticulum denatured by excessive heat (Hanninen 

et al., 1999); 

(vi)the association between members of the Hsp70p family 

with ubiquitine-like proteins which direct denatured pro­
teins to the ubiquitine-dependent protein degradation path­

way (Kaye et al., 2000). Some polyubiquitine genes like 

UB/4 are themselves regulated in a stress-dependent man­
ner (Simon et al., 1999); 

(vii) the acceleration of the reactivation of heat-damaged pro­

teins by Hsp90p (Nathan et al., 1997). 

A surprising aspect of the early studies of Hsp function is that 

while the chaperone activity of Hsps was unraveled, little data 

indicated that specific Hsp proteins had an effect on stress resis­

tance. Indeed, gene disruption experiments in S. cerevisiae indi­
cated that most HSP genes could be deleted without changing the 

ability of cells to respond to and survive stress conditions, chal­

lenging the generally accepted theory that these proteins would 

protect cells against stress (Lindquist & Craig, 1988; Praekelt & 
Meacock, 1990). However, Sanchez & Lindquist (1990) showed 

that Hsp104p has a direct role in heat-stress protection. Cells of a 
strain deleted for HSP 104 no longer acquire increased thermotol­

erance when pre-exposed to a mild heat-shock treatment. The 

same research group also showed that Hsp 104p is required for 

tolerance to several other forms of stress, including high ethanol 

concentration, sodium arsenite and long-term storage in the cold 

(Sanchez et al., 1992). Interestingly, it appears that Hsp104p is 

sufficient for the acquisition of thermotolerance by S. cerevisiae, 

since high expression levels of the protein can protect the cells 

from thermal shock in the absence of a pretreatment, i.e. in the 
absence of any other inducible factor (Lindquist & Kim, 1996). 

Similar to other heat-induced Hsps, the molecular function of 

Hsp 104p is to promote the resolubilisation and reactivation of 

heat-damaged proteins. For example, Hsp104p contributes to the 

resolubilisation of heat-inactivated luciferase, a heterologous pro­

tein expressed in S. cerevisiae for experimental purposes, from 

insoluble aggregates (Parsell et al., 1994) and, together with 
Hsp70p and Hsp40p, it was shown to directly reactivate dena­

tured and aggregated proteins (Glover & Lindquist, 1998). As 

with all Hsps, the protein sequence and function is evolutionarily 
well conserved, and soybean HsplOlp, the plant equivalent to 

yeast Hsp 104p, was shown to restore acquired thermotolerance to 

a S. cerevisiae strain deleted for the native HSP 104 gene (Lee et 

al., 1994). 

Other Hsps are also required for the survival of temperature 

shocks. For example, the mitochondrial member of the Hsp70p 

family, Ssc 1 p, is required for recovery from severe heat stress at 

52°C (Nwaka et al., 1996). Morano et al. (1999) demonstrated 
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that several elements of the Hsp90p complex, in particular 

Hsp82p, are able to efficiently suppress temperature sensitivity of 

a heat shock transcription factor (Hsflp) mutant deleted for its C­

terminal region. The mutated factor is unable to induce HSP 

genes in response to heat stress, and the data therefore suggest 

that the Hsp90p chaperone complex is essential for heat protec­

tion in the absence of other heat activated proteins. 

The transcriptional control of HSP and other stress induced 

genes: Despite the considerable amount of data that has been 

published over the last decades on HSP genes and other genes 

that are induced during stress conditions, the full picture of their 

regulation has yet to be completed. Fig. 2 summarises the relation 
between some of the major environmental stresses and specific 

transcription factors which are discussed in more detail in the fol­

lowing section. 

The heat shock factor H sf]: The first transcription factor specif­

ically required for the activation of HSP genes was isolated in 

S. cerevisiae by Sorger & Pelham (1987), and the HSF 1 gene was 

cloned by Wiederrecht et al. (1988) and by Sorger & Pelham 

( 1988). The gene is essential and encodes a protein, Hsfl p, of 833 

amino acids. The protein binds as a homotrimer to a specific 

DNA sequence, the fleat-�hock glement (HSE), which is present 

in the promoter of most HSP genes (Sorger & Nelson, 1989). 

Besides a DNA binding and trimerisation domain, Hsfl p has two 

transactivation domains, situated on both the N- and C-terminal 

end of the peptide. Interestingly, the two domains appear to ful­

fill different functions; the N-terminal domain is responsible for 

constitutive activation of HSP genes, while the C-terminal 

domain plays a significant role during heat stress induction 

(Nieto-Sotelo et al., 1990; Sorger, 1990). Accordingly, cells car­

rying a mutated version of the HSF 1 gene, encoding a Hsfl p 

without a C-terminal domain, Hsf(l-583), are able to grow nor­

mally at 25 or 30°C, but are unable to sustain severe heat stress 

or to grow at 37°C. Hsflp is evolutionary well conserved and the 

genes encoding human or tomato Hsf are able to functionally sub� 

stitute for the S. cerevisiae protein (Boscheinen et al., 1997; Liu 
et al. 1997). In higher eukaryotes, the control of binding of Hsf to 

its specific DNA sequence plays a major role in the transcription­

al regulation of HSP genes (Sorger et al., 1987). This control of 

the binding activity occurs largely via the regulation of the 

trimerisation of the factor, which is a prerequisite to DNA bind­

ing (Rabindran et al., 1993). In S. cerevisiae, on the other hand, 

Hsfl p is permanently in a trimeric state and binds constitutively 

to the promoter of HSP genes (Jakobsen & Pelham, 1988). The 

factor is required for the basal, constitutive expression of Hsps, 

which are necessary for normal cellular growth, while also main­

taining a basal capacity to respond to minor stress conditions. 

Hsfl p is also required for the heat stress-dependent induction of 

several, but not all of the genes encoding Hsps. However, it is still 

not fully understood how the heat-generated signal is transmitted 

to the transcription factor. Genetic evidence exists showing that 

both Hsp70p and Hsp90p associate with the factor and may neg­

atively regulate its activity in the absence of stress (Boorstein & 

Craig, 1990; Duina et al., 1998). Hsp90p has been shown to 

directly associate with Hsfl p (Duina et al., 1998). In this case, the 

signal could be the accumulation of denatured or inadequately 

folded proteins, which would recruit the inhibiting Hsps and free 
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the activating region of Hsflp. In addition, phosphorylation may 

play a role in activating the factor, since the protein is hyper­

phosphorylated after an increase in temperature (Sorger, 1990). It 

has also been suggested that Hsfl p may be able to sense heat 

stress directly by undergoing conformational changes during 

increases in temperature. Recently, Hardy et al. (2000) presented 

evidence that small mutational changes which slightly alter 

Hsfl p conformation can lead to significantly increased Hsfl p­

dependent transcriptional activity, suggesting that this mecha­

nism may play an important part in the induction of HSP genes. 

However, Hsfl p is not the only factor involved in the induction 

of HSP genes. Current data suggest that the role of Hsfl p is main­

ly to maintain basal transcription levels of those HSP genes that 

are required during normal cellular growth, while its role in stress 

dependent induction of a wide set of HSP genes seems to be lim­

ited to heat stress. 

Msn2p!Msn4p, a transcription factor required for the induction 

of the multistress response: Since Hsflp appears to respond to 

heat stress, other factors must be responsible for the observed 

induction of Hsps to other types of environmental and metabolic 

stresses. Schmitt & McEntee (1996) and Martinez-Pastor et al. 

( 1996) presented evidence that a large proportion of the genes 

induced by stress conditions was regulated by the two zinc finger­

containing proteins Msn2p and Msn4p. The two proteins were 

shown to bind as a heterodirner to a specific nucleotide sequence 

(CCCCT) which had previously been identified as being required 

for stress-dependent activation of numerous genes, including the 

catalase-encoding CIT] gene and the DNA damage-induced 

DDR2 gene (Kobayashi & McEntee, 1990; Wieser et al., 1991). 

Kobayashi & McEntee (1993) and Marchler et al. ( 1993) showed 

that the same sequence, named STRE for wess responsive gle­

ment, mediated induction of genes in response to several stress 

conditions, including temperature changes, osmotic variations 

and nutrient exhaustion. Functional STRE sequences were also 

identified in several HSP gene promoters, including the promot­

ers of HSP104, HSP70 and HSP26, the promoters of trehalose 

synthesis genes, TPSJ and TPS2, and the neutral trehalase gene 

NTH] (Winderickx et al., 1996; Moskvina et al., 1998; Thevelein 

& De Wintle, 1999; Zahringer et al., 2000). 

Disruption of either MSN2 or MSN4 results in a significant 

reduction of the transcriptional activation of STRE-regulated 

genes, suggesting that the two proteins are required for most of 

the induction observed during stress responses. Data also indicate 

that Msn2p/Msn4p may play a central role in coordinating cellu­

lar growth and stress resistance. Several research groups have 

established a link between the activity of the cAMP-dependent 

kinase (PKA), thought to be a major component of growth-regu­

lating mechanisms, and the general stress response regulated by 

Msn2p/Msn4p (Boy-Marcotte et al., 1998; Gomer et al., 1998; 

Smith et al., 1998; Thevelein & De Wintle, 1999). The activity of 

Msn2p/Msn4p is repressed when PKA activity is high, and the 

intracellular localisation of Msn2p/Msn4p is strongly affected by 

PKA activity. During stress, Msn2p/Msn4p is translocated from 

the cytoplasm into the nucleus, and high PKA activity was shown 

to block this transfer and therefore the Msn2p/Msn4p-dependent 

induction of genes (Gomer et al., 1998). Boy-Marcotte et al. 

(1998) showed that Msn2p/Msn4p are responsible for the induc-

tion of numerous genes during the diauxic transition, when yeast 

cells adapt to growth on ethanol after having exhausted all the 

available fermentable carbon sources, and that the induced genes 

are all repressed by cyclic AMP. 

While Msn2p and Msn4p appear to regulate the bulk of the 

STRE-dependent transcriptional activation occuring during stres.s 

responses, and are thought to be responsible for the cross-protec­
tive effect of stress-response mechanisms, a more complex pic­

ture has recently emerged. Disruption of MSN2 or MSN4 does not 

lead to the complete abolition of the stress response related induc­

tion of genes, indicating that other factors are contributing to the 

transcriptional control of STRE-regulated genes (Martinez-Pastor 

et al., 1996; Schmitt & McEntee, 1996). The data suggest that 

Msn2p and Msn4p require specific combinations of transcription 

factors to regulate specific subsets of genes in response to specif­

ic stress conditions. In response to heat stress, Msn2p/Msn4p and 

the heat shock transcription factor Hsfl p were shown to activate 

different subsets of HSP genes, and only a few genes appear to be 

regulated by both factors (Boy-Marcotte et al., 1999). Rep et al. 

(1999, 2000) showed that Msn2p and Msn4p require at least two 

additional transcriptional regulators, Hotlp and Msnlp, to prop­

erly control the induction of genes during hyperosmotic stress. 

Each of these two factors, Hotlp and Msnlp, appears to favour a 

particular set of genes. During hyperosmotic stress, these factors 

regulate in particular the transcription of genes encoding proteins 

involved in glycerol biosynthesis, GPDJ and GPD2, to produce 

sufficient concentrations of this compatible solute to reduce the 

efflux of water and to reestablish sufficient turgor pressure 

(Hohmann, 1997; Scanes et al., 1998). 

Other pathways regulating Hsp expression: Evidence is also 

mounting pointing to additional, as yet unknown, pathways 

which regulate specific HSP genes and other stress-induced 

genes. Seymour & Piper (1999) have shown that HSP30, a gene 

encoding a plasma membrane Hsp, is not regulated by either 

Hsfl p or Msn2p/Msn4p, while HSP 12 was shown to be repressed 

by very low concentrations of glucose in a Msn2p/Msn4p-inde­

pendent manner (De Groot et al., 2000). 

Other stress responsive transcription factors acting independent­

ly of Msn2p!Msn4p: While STRE-dependent regulation plays a 

central role in most stress responses, other transcription factors 

appear to act independently of this system in some specific stress 

response mechanisms. The response to oxidative stress, for exam­

ple, is regulated by several transcription factors, including Yaplp, 

Yap2p and Skn7p. Yaplp and Yap2p, which are members of the 

AP-1 family of eukaryotic transcription factors, were found to 

confer resistance to oxidative stress when overexpressed 

(Moradas-Ferreira et al., 1996), while disruption of the YAP 1 and 

YAP2 genes results in sensitivity to hydrogen peroxide and other 

oxidising agents (Stephen et al., 1995). Disruptions of SKN7, a 

gene which had been implicated in the regulation of both cell­

wall biosynthesis and the cell cycle (Brown et al., 1993; Morgan 

et al., 1995), also results in increased sensitivity to oxidative 

stress (Krems et al., 1996). Yaplp was shown to directly bind to 

a specific DNA sequence within the promoter of genes encoding 

products required for oxidative stress resistance. These include 

genes encoding thioredoxin (TRX2) (Kuge & Jones, 1994) and 

thioredoxin reductase (TRRJ) (Morgan et al., 1997), involved in 

the reduction of protein disulfides. They also include the genes 
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encoding the enzymes required for glutathione metabolism, 

including glutamylcysteine synthetase (GSHJ), glutathione syn­
thetase (GSH2) and glutathione reductase (GLR]) (Sugiyama et 

al., 2000). In addition, Yaplp is also required for the induction of 
genes involved in the resistance to toxic compounds like cadmi­

um, and induces genes specifically required for detoxification, for 

example the yeast cadmium-factor-encoding gene (YCF 1), which 
specifies a glutathione S-conjugate pump (Wemmie et al., 1994). 

The induction of TRX2 and TRRJ was shown to require a coop­
eration between Skn7p and Yap 1 p, with both proteins binding 

directly to the promoter of TRX2 (Morgan et al., 1997), while the 
induction of cadmium resistance genes does not require Skn7p 

(Lee et al., 1999). The data suggest that the cooperation between 

Yaplp and Skn7p is responsible for the control of a specific sub­
set of genes induced during oxidative stress. The involvement of 

Skn7p in cell cycle regulation and cell wall biosynthesis also sug­

gests that these processes are partially coregulated. Interestingly, 
Yaplp has also been shown to activate the two glutathione 
biosynthesis genes GSHJ and GSH2 in response to temperature 

stress, indicating again the close association between different 
stress-responsive pathways (Sugiyama et al., 2000). This effect 

might however be indirect, since temperature increases enhance 
oxygen respiration and lead to increased generation of reactive 

oxygen species. 

The perception of specific stress conditions and the transmis­

sion of the signal 

While a number of transcription factors activated in response to 

stress conditions have been identified, these factors (with the pos­
sible exception of Hsfl p) are themselves not able to directly per­

ceive stress conditions, and must be activated by dedicated path­

ways. The following section describes several of these pathways 
and their specific outcomes. The scope of this review does not 
allow consideration of all the relevant molecular events taking 

place during these stress responses, and focuses only on those 
most relevant to winemaking. 

Perception and signal transduction during hyperosmotic stress: 

As described in the previous sections, the first serious stress con­
dition experienced by S. cerevisiae during and after inoculation 

into grape must is probably a hyperosmotic shock, due to the high 
sugar content of must. The hyperosmotic pressure results in water 
efflux from the cell and subsequently diminished turgor pressure, 

which leads to rapid cell shrinkage (Hohmann, 1997). As in the 

case of heat shock, sudden exposure of an actively growing cul­
ture of S. cerevisiae to hyperosmotic conditions, for example 

through addition of salt to the final concentration of 6%, leads to 

rapid death of up to 90% of the cells in a variety of strains tested. 

The survival rate in these conditions is, as for other stresses, 

growth phase dependent, with non-growing stationary phase cells 

showing much higher resistance than actively growing cultures 

(Blomberg & Adler, 1992; Fuge & Werner-Washburn, 1997). 
However, the sensitivity of strains to sudden changes in osmotic 

pressure is not correlated with their ability to grow in a high 

osmolarity substrate, since the same strains are well able to grow 

in media containing 10% NaCl. This suggests that two distinct 
molecular mechanisms are responsible for survival during sudden 

changes and for the long term adaptation to a high osmolarity 
substrate (Blomberg & Adler, 1992; Hohmann, 1997). The abili­

ty to immediately respond to and survive sudden changes, which 

involves the so-called acute or immediate response, has received 
relatively little attention, and little information is available about 

specific mechanisms involved. Not surprisingly, data show that 

mutations resulting in defects in a number of cellular structures, 
including the cytoskeleton (Novick & Botstein, 1985), the vac­

uole (Latterich & Watson, 1993) and the cell wall result in 
osmosensitive strains, but little is known regarding specific fac­

tors involved. An example of a protein required for the acute 

response was recently described by Nass & Rao (1999), who 

show that the endosomal/prevacuolar Na+/H+ exchanger, Nhxlp, 

can confer osmotolerance following sudden hypertonic shock. 

On the other hand, the long term adaptive response to hyperos­

motic conditions has been intensively studied, and some of the 

major results of these studies are reviewed in the following sec­
tion. The long term adaptive response is also of more relevance 

to the winemaking process. Yeast cells inoculated into grape must 
are not actively growing and have been preadapted to stress at the 
end of the production process. They therefore possess a high 

intrinsic resistance to sudden hyperosmotic shock. However, in 

order to grow, the cells have to adapt to the high osmotic pressure 

of the must. This long term adaptation requires the coordination 
of all major cellular processes and involves most cellular struc­

tures, including the cytoskeleton, the cellular membrane, the cell 

wall and the nucleus. The most prominent and studied response 

to hypertonic shock, however, is the induction of glycerol syn­
thesis, a compatible solute which accumulates inside the cell in 
order to equilibrate osmotic pressure. The following section 

therefore focuses mainly on the processes required to increase 

intracellular glycerol concentration. Fig. 3 summarises schemati­

cally the interactions between the most important elements 

involved in this process. 

The sensing of hyperosmotic stress: Hyperosmotic stress is per­
ceived independently by at least two membrane-based sensing 

mechanisms, which both feed the signal into the same signaling 
pathway, the so-called high osmolarity glycerol (HOG) pathway 
(Fig. 3). The first element of the osmosensing machinery to be 

identified in S. cerevisiae was Slnlp, a protein with strong 

homology to bacterial two-component phosphorelay systems 

(Ota & Varshavsky, 1993). Numerous phosphorelay systems have 
been described in prokaryotic organisms, where they act as sen­
sors of the extracellular environment. However, the S. cerevisiae 

Slnlp was the first such sensor identified in eukaryotes. SLNJ 

encodes an autophosphorylating histidine kinase, and is part of a 

four-step phosphorelay system, involving two additional pro­

teins, Ypdlp and Ssklp (Posas et al., 1996). The relay is initiated 

by the autophosphorylation of Slnlp on a histidine residue, fol­

lowed by the transfer of the phosphate group to an aspartate 
residue on Slnl p, further transfers to a histidine residue in Ypdl p, 

and finally to an aspartate residue in Ssklp. Ssklp acts as a mol­
ecular switch or response regulator, which controls the down­

stream effects of the two-component system (Posas & Saito, 

1998). 

The second osmosensing mechanism was identified by Maeda 

et al. (1995). It consists of the transmembrane protein Sholp, 

which associates directly with the downstream signal transduc­
tion module, consisting of a MAPK cascade. The exact mecha­

nism through which Sholp activates this module is not yet under­

stood. 
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Schematic representation of the HOG signal transduction cascade. The two osmosensors, Sholp and the two-component 

phosphorelay system Slnlp/Ypdlp/Sknlp, activate the same MAP kinase cascade via two different MAPKKK, Stellp and 

Ssk2p/Ssk22p, respectively. The MAPKK, Pbs2p, acts as a scaffold protein for the Shol p/Stel 1 p sensing and signal trans­

duction elements. After sequential phosphorylation within the cascade, the phosphorylated MAPK, Hoglp, is transferred 

into the nucleus, where it will phosphorylate as yet unknown target proteins. 

The nature of the environmental signal which is perceived by 

the sensors during hyperosmotic stress has also not yet been 

identified. Several cellular, physical or chemical parameters are 

affected by hyperosmotic stress, and each of these, or a combi­

nation thereof, might be sensed by the cell. Potentially sensed 

parameters include in particular turgor pressure, water activity or 

waterflux across the membrane. Recent data by Tamas et al. 

(2000) suggest that the most relevant of these parameters is the 

change in turgor pressure. 

Transduction - the HOG MAPK connection: Both high osmolar­

ity sensors described above activate the same intermediate signal 

transduction module, the high osmolarity glycerol (HOG) 

MAPK cascade. MAPK cascades, also referred to as gxtracellu­

lar signal z:egulated kinases (ERK), are well conserved signal 

transduction modules found in all eukaryotic organisms. In 

S. cerevisiae, five such cascades have been identified, and all are 

required for the transmission of specific extracellular signals to 

the relevant compartments in the cell (Levin & Errede, 1995; 

Banuett, 1998; Gustin et al., 1998; Garrington & Johnson, 1999). 

These cascades are made up of three sequentially acting protein 

kinases, MAPKKK, MAPKK and MAPK. The complexity creat­

ed through three sequential phosphorylation steps is thought to 

provide the cell with possibilities for signal amplification, multi­

ple sites of signal integration and multiple sites for signal output. 

In the case of hyperosmotic shock, the situation is complicated by 

the fact that three kinases, Ssk2p, Ssk22p and Stellp, act as 

MAPKKK. These three MAPKKK all activate the same 

MAPKK, encoded by the PBS2 gene, and finally the MAPK, 

encoded by the HOG] gene. The cascade therefore results in the 

final phosphorylation of Hoglp, which activates or inactivates 

specific target proteins involved in the hyperosmotic stress 

response. However, no direct target for Hoglp-dependent phos­

phorylation has yet been identified. Ferrigno et al. (1998) and 

Reiser et al. ( 1999) have shown that Hog 1 p is transported into the 

nucleus as a consequence of hyperosmotic stress, suggesting that 

most targets are localised in the nucleus. In addition, Reiser et al. 

(1999) showed that the presence of Hoglp in the nucleus is sig­

nificantly shortened in the absence of either Msn2p or Msn4p, 

two of the transcription factors required for the induction of 

hyperosmotic stress induced genes. The two factors therefore 

appear to mediate, at least in part, Hog 1 p-dependent transcrip­

tional activation. 

Mutations resulting in permanently phosphorylated Hoglp are 

lethal, and Hoglp phosphorylation is controlled by two protein 
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phosphatases, encoded by the PTP2 and PTP 3 genes. A deletion 
of both phosphatase genes results in hyperactivated Hog 1 p 
(Maeda et al., 1994; Wurgler-Murphy et al., 1997). 

Activation of the MAPK cascade by the two-component 
osmosensor is a result of the inhibition of the autophosphoryla­
tion of Slnlp by hyperosmotic pressure, which leads to the 
dephosphorylation of the other elements of the phosphorelay sys­
tem. The unphosphorylated regulator element of the two-compo­
nent osmosensor Ssklp physically interacts with Ssk2p, inducing 
conformational changes which leads to the autophosphorylation 
and subsequent activation of this MAPKKK, followed by activa­
tion of the MAPKK and MAPK (Posas & Saito, 1998). Ssk22p is 
thought to be activated by the same mechanism. 

The second osmosensor, Sho 1 p, activates the MAPK cascade 
via a different MAPKKK, Stellp (Posas & Saito, 1997). 
Interestingly, the MAPKK Pbs2p appears to act as a scaffold pro­
tein for this cascade, since it physically interacts with both Sho 1 p 
and Stellp as well as Hoglp. The molecular details of the acti­
vation of Stellp by Sholp are, however, not yet understood. 

Molecular consequences of Hoglp activation: Several genes 
have been shown to be regulated in Hoglp-dependent mecha­
nisms, including HSP 12 encoding a small heat shock protein 
(Varela et al., 1995), the CTTJ catalase-encoding gene (Schuller 
et al., 1994), the GLOJ glyoxalase-encoding gene (Inoue et al., 

1998) and GPDJ, which encodes a protein required for the syn­
thesis of glycerol, the main compatible solute synthesised by 
S. cerevisiae (Albertyn et al., 1994). The Hoglp-dependent regu­
lation of most of these genes occurs at least in parts via the STRE 
elements found within the promoters of these genes, and is 
dependent upon Msn2p and Msn4p, as well as Hotlp and Msnlp 
(Rep et al., 1999, 2000). The induction of glycerol biosynthesis 
genes results in the accumulation of glycerol inside the cell which 
acts as a compatible solute and allows the equilibration of the 
osmotic pressure between the intracellular and extracellular envi­
ronment, leading to the reestablishment of turgor pressure 
(Hohmann, 1997; Scanes et al., 1998). The accumulation of glyc­
erol during hyperosmotic stress is of importance to the winemak­
ing process, since this compound is quantitatively the most 
important byproduct of alcoholic fermentation, and is considered 
to have a beneficial impact on wine quality. It contributes in par­
ticular to the sweetness and fullness of the wine (Eustace & 
Thornton, 1987; Ribereau-Gayon et al., 2000). The regulation of 
glycerol biosynthesis therefore constitutes one of the targets of 
current yeast strain improvement strategies (Michnick et al., 

1997; Scanes et al., 1998; Remize et al., 1999). However, these 
strategies, particularly attempts to increase glycerol production, 
have encountered problems due to the complex metabolic inter­
actions between glycerol metabolism and other metabolic path­
ways, in particular with regard to the redox balance of the cell. A 
full understanding of all the relevant regulatory systems of glyc­
erol metabolism should overcome these problems. 

Other molecular responses: Not all molecular responses to 
hyperosmotic stress are the consequence of Hog 1 p-dependent 
signal transduction. An example of a Hoglp-independent 
response to osmotic stress is the inactivation or activation of 
Fps 1 p, a membrane channel protein which facilitates glycerol 
uptake and efflux (Luyten et al., 1995). The inactivation of the 
glycerol channel under hyperosmotic stress is required for effi-

cient intracellular glycerol accumulation, and strains carrying 
mutated versioris of Fps 1 p which still form channels but cannot 
be inactivated, are sensitive to hyperosmotic shock (Tamas et al., 

1999). Fpslp is also required for the response to hypoosmotic 
shock, when glycerol must be released to maintain osmotic sta­
bility, and fps] deletion mutants are sensitive to hypoosmotic 
shock (Tamas et al., 1999). 

Response to changes in nutrient availability and nutrient limi­

tation: After having adapted to the hyperosmotic environment of 
grape must, yeast cells start to ferment and grow, which requires 
the consumption of extracellular nutrients. Of all the environ­
mental factors regulating cell growth and viability, the availabili­
ty of nutrients has the most direct influence on cell physiology 
and long term survival. Unicellular organisms possess a limited 
internal nutritional storage capacity, and directly depend on the 
nutrients present in the surrounding environment. While the pres­
ence of an abundance of nutrients results in fast growth and the 
repression of stress-response pathways, the exhaustion of nutri­
ents is perceived as a stress which requires specific adaptation to 
ensure survival (De Wintle et al., 1997). 

S. cerevisiae has developed a number of strategies to respond 
to the availability of specific nutrients and to adapt to and survive 
various types of nutrient limitation or starvation. Indeed, fermen­
tative growth itself constitutes an obvious adaptation to the avail­
ability of a specific nutrient, glucose. Glucose has many profound 
effects on general yeast physiology, and directly or indirectly reg­
ulates all major metabolic pathways, some of which influence 
stress-response mechanisms. High levels of glucose result in fer­
mentative growth which, on a molecular level, is characterised by 
the strong induction of genes encoding glycolytic enzymes 
(Muller et al., 1995) and hexose transporters (()zcan & Johnston, 
1995) through a process referred to as glucose induction 
(Johnston, 1999). Concomitantly, other metabolic pathways, in 
particular respiratory metabolism, are repressed through £:arbon 
£:atabolite repression (CCR) (Gancedo, 1998; Carlson, 1999). 
CCR acts mainly on the level of gene transcription, and repress­
es genes involved in respiration and other mitochondrial func­
tions, as well as genes required for the utilisation of other carbon 
sources. The molecular identity of some of the main factors 
involved in the process of CCR is by now well established, and 
include transcription-repressor proteins and their regulators. 
Miglp, a zinc finger protein that binds directly to the promoter of 
glucose-repressed genes and recruits the general repressor pro­
teins Tup 1 p and Ssn6p, is the central factor responsible for the 
bulk of glucose-dependent repression (Ostling et al., 1996), and 
is controlled through phosphorylation by the kinase Snflp 
(Carlson, 1999). 

The induction of glycolytic genes and concomittant repression 
of respiratory metabolism results in the rapid utilisation of glu­
cose and the accumulation of alcohol, and is thought to give 
S. cerevisiae, a relatively ethanol-resistant species, a selective 
advantage over other microorganisms in glucose-rich natural 
habitats. While fermentative growth can therefore be considered 
a specific adaptation to an evolutionary niche, other responses to 
nutrient availability are shared between several nutrients or, at the 
least, are using shared signaling components. This includes the 
responses to nitrogen and carbon-source limitation. The mecha­
nisms involved in these processes are of obvious relevance for 
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winemaking, since nitrogen limitation in particular is frequently 
responsible for stuck fermentations. 

Fig. 4 presents a summary of the different adaptive responses 
to nutrient limitation and exhaustion. The complete depletion of 
one or more essential elements results in a coordinated growth 
arrest and entry into stationary phase (Fuge & Werner-Washburn, 
1997). Cells arrest their cell cycle during the non-budding GI 
phase of the cycle and implement a number of molecular pro­
grammes to ensure survival. Adaptations include a general reduc­
tion in metabolic activity, the accumulation of reserve and stress 
protective carbohydrates like glycogen and trehalose, respective­
ly, the induction of Hsps and the strengthening of the cell wall. 
This description applies to the stationary phase as observed under 
typical laboratory conditions, and it should be remembered that it 
differs fundamentally from the stationary phase occuring during 
wine fermentations. Growth arrest in the latter case is usually not 
a consequence of nutrient limitation, but rather of high levels of 
ethanol, and does not lead to a general shut-down of metabolic 

activity, since the glycolytic activity does not cease at this stage 
(Boulton et al., 1995). Nevertheless, Riou et al. (1997) and Puig 
& Perez-Ortin (2000) have shown that several stress-regulated 
genes are also induced during growth arrest in the case of wine 
fermentations. It has also been suggested that the stationary phase 
during wine fermentation might be the result of a perceived nutri­
ent limitation, created by the inabilty of the cells to take up 
nitrogenous compounds in a substrate containing high levels of 
ethanol. If this were the case, the two types of stationary phase 
might indeed be due to similar causes and share some of the sig­
naling components involved. 

Depending on the type of limitation and the specific circum­
stances, yeast cells may choose two other strategies to ensure sur­
vival. In the case of the complete exhaustion of both nitrogen and 
fermentable carbon sources, diploid and most polyploid cells are 
able to undergo meiosis, resulting in the formation of four spores 
within a protective envelope called an ascus (Mitchell, 1994). 
Spores are probably the most stress-resistant cell type of S. cere-
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visiae, and can lie dormant for prolonged periods until nutrition­
al conditions have improved. A further nutrient-induced adapta­
tion is the pseudohyphal growth response. This response is imple­
mented when nutrients are limited, but not completely exhausted. 
In this case, the cells change their appearance from round or 
ovoid to thin and elongated, and will stay attached to each other 
after budding. The budding pattern also shifts from bipolar to 
unipolar, resulting in the formation of a hyphae-like structure 
called "pseudohypha". Pseudohyphae grow beyond the perimeter 
of the colony and are thought to be an adaptation allowing cells 
to search for nutrients (Gimeno et al., 1992; Vivier et al., 1997). 

The choice of any of these specific developmental pathways 
depends on the specific environmental conditions and the genet­
ic background of the strain. The different molecular steps, from 
the perception of the signal to the implementation of a molecular 
response, is discussed in the following section. 

Sensing of glucose: Nutrient sensing in yeast and other organ­
isms has frequently been associated with nutrient specific trans­
porters, permeases, or homologues thereof (Kruckeberg et al., 

1998). Until recently, however, little was known about the mole­
cular mechanisms involved in the sensing of nutrient availability. 
In the last few years, several genes encoding receptor proteins 
that sense specific nutrients have been identified using genetic 
approaches. The best studied examples include receptors for glu­
cose and ammonium ions. 

The data show that extracellular glucose concentrations are 
monitored by at least three receptors, while additional internal 
sensors control the flux of glucose through the glycolytic path­
way (Johnston, 1999; Thevelein & De Winde, 1999). The exis­
tence of more than one sensor can probably be explained by the 
importance of glucose in the life cycle of S. cerevisiae, which 
requires that the cells not only be able to sense the presence, but 
also the precise amount of glucose present in the environment, 
necessitating sensors of various affinities. The three known glu­
cose-sensing proteins are encoded by the RGT2, SNF3 and GPRJ 

genes. Both Rgt2p and Snf3p display strong homologies to hex­
ose transport proteins, which are encoded by HXT (h_ex_ose 1:rans­
porter) genes, indicating a close evolutionary relationship 
between transporters and sensors (Johnston, 1999). However, 
both appear unable to transport glucose. These sensors are 
thought to specifically bind the monitored substance and to sig­
nal the concentration available according to the percentage of the 
receptor which is occupied. Snf3p is required for the induction of 
the high-affinity HXT genes at low levels of glucose, while Rgt2p 
induces the low affinity transporters at high levels of extracellu­
lar glucose. Accordingly, Snf3p is supposed to represent a high 
affinity receptor, while Rgt2p would represent the low affinity 
variant. The signal appears to be transmitted through a long cyto­
plasmic C-terminal extension of the proteins, which is not nor­
mally found in HXT-encoded proteins (Ozcan et al., 1998). This 
domain has recently been shown to interact with Stdlp and 
Mthlp, two proteins required for the signaling process (Schmidt 
et al., 1999; Lafuente et al., 2000). It is, however, still unclear 
how the signal is transmitted to the nuclear components responsi­
ble for the induction of specific target genes. The signal created 
by Snf3p and Rgt2p results in efficient growth on glucose and has 
not been directly linked to any stress response related mecha­
nisms. 

A more direct connection between glucose sensing and stress 
response has been established for the third receptor, Gprl p (Yun 
et al., 1997; Colombo et al., 1998; Xue et al., 1998; Kraakman et 

al., 1999). This protein shows homology to a group of well­
known G-protein-coupled receptors, which act as sensors in a 
number of well established signal transduction pathways in all 
eukaryotes. In S. cerevisiae, a much studied example of such a 
receptor is found in the mating pathway. This receptor, encoded 
by either the STE2 or STE3 genes according to cell type, binds the 
pheromone of the opposite mating type and activates a MAPK 
cascade via a heterotrimeric, receptor-coupled G-protein (Kurjan, 
1993). While genetic and physiological evidence suggests that 
Gprlp is able to perceive glucose, and may function as a direct 
receptor of this compound (Colombo et al., 1998; Kraakman et 

al., 1999), the exact molecular nature of this perception is not yet 
understood. Gprl p, however, clearly is the first G-protein associ­
ated receptor involved in the sensing of nutrients (Thevelein & 
De Winde, 1999; Lorenz et al., 2000). 

GPRJ was cloned in a two-hybrid screen by Yun et al. (1997) 
and Xue et al. (1998) using the a-subunit of a receptor-coupled 
heterotrimeric G-protein, Gpa2p, as a bait. Heterotrimeric G-pro­
teins are central elements in numerous signal transduction cas­
cades and consist of three subunits, a, �' and y. Upon activation 
of the membrane-bound receptor, the a-subunit of these proteins 
binds GTP which induces conformational changes resulting in the 
dissociation of the � and y subunits and the transmission of the 
signal (Neer, 1995; Bolker, 1998). Before being associated with 
Gpr 1 p, Gpa2p had been implicated in a number of events related 
to the control of intracellular cAMP levels (Nakafuku et al., 1988; 
Papasavvas et al., 1992; Kiibler et al., 1997; Lorenz & Heitman, 
1997; Colombo et al., 1998). Genetic data indeed suggest a close 
interaction of Gpa2p with the Ras proteins, small GTP-binding 
proteins with strong homology to the mammalian Ras oncogenes, 
whose main role in S. cerevisiae appears to be the control of 
adenylate cyclase, the enzyme synthesising cAMP (Broach, 
1991 ). Genetic interactions include the ability of overexpressed 
GPA2 to suppress the growth defects of temperature sensitive ras 

mutants, and the non-viability of a strain carrying deletions of 
both RAS2 and GPA2 (Nakafuku et al., 1988; Papasavvas et al., 

1992). 

The transmission of the glucose-generated signal: Data suggest 
that Gpa2p is able to directly regulate the activity of the adeny­
late cyclase Cyrlp (Colombo et al., 1998; Xue et al., 1998). The 
cyclase had previously been thought to be mainly, or even 
uniquely, regulated by the two Ras proteins, since genetic and 
biochemical evidence suggested that most cAMP-dependent sig­
nals, including nutrient-dependent regulations, are Rasp-depen­
dent. While genetic evidence still supports a role for Rasp in 
some nutrient-related signaling events, its precise regulation and 
function remain unclear. It is possible that the functions include 
the maintenance of basal cAMP levels in the cell, the response to 
intracellular acidification and the coordination or switching 
between signal transduction cascades during pseudohyphal dif­
ferentiation (Thevelein & De Winde, 1999; Lorenz et al., 2000). 
Indeed, basal cAMP levels are required for growth, and a strain 
deleted for either the CYR] gene, encoding the cyclase, or for 
both RAS genes is inviable. 

The only known cellular role of cAMP is to control the activi-
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ty of the cAMP-dependent kinase (PKA), an enzyme which con­

sists of a regulatory and a catalytic subunit. The regulatory sub­

unit, encoded by BCYJ (Toda et al., 1987a), binds cAMP, which 

results in the dissociation of the regulatory and the catalytic sub­

units and activation of PKA. Three genes, TPKJ-3, encode large­

ly homologous versions of the catalytic subunit, and act redun­

dantly in most processes (Toda et al., 1987b). However, recent 

data suggest that the three Tpkps have specific signaling func­

tions during pseudohyphal growth and differentially regulate iron 

up-take as well as respiratory growth (Robertson & Fink, 1998; 

Robertson et al., 2000). The mechanisms which impart this speci­

ficity are however not yet understood. 

PKA activity is essential in S. cerevisiae, and high PKA activi­

ty favours glycolysis, growth and proliferation. However, mutant 

strains with a hyperactivated kinase activity, resulting for exam­

ple from a mutation in BCY I or a hyperactive allele of RAS2, dis­

play hypersensitivity to stress conditions, failure to induce HSP 

genes upon heat shock, and failure to enter stationary phase prop-

erly or to induce the synthesis of glycogen and trehalose in 

response to nutrient depletion. Mutants with reduced PKA activ­

ity display the inverse phenotypes, in particular slow growth, 

increased stress resistance and higher levels of glycogen and tre- · 

halose. The level of PKA activity was also shown to strongly 

affect the oxidative stress response mediated by Skn7p 

(Charizanis et al., 1999), the level of osmo-tolerance and 

osmo-dependent gene expression (Norbeck & Blomberg, 2000), 

as well as post-diauxic shift and nutrient limitation-dependent 

transcription (Tadi et al., 1999; Pedruzzi et al., 2000). The cAMP 

pathway therefore represents one of the central control systems 

balancing the need for efficient growth with the necessity of pro­

tecting the cells against the deleterious effects of various stresses. 

The general model of cAMP-dependent signal transduction is 

represented in Fig. 5. 

As discussed in the section on the transcriptional induction of 

Hsps and other stress induced proteins, the failure of strains with 

hyperactivated PKA to properly respond to stress conditions or to 
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accumulate trehalose is a result of the inhibition of the 

Msn2p/Msn4p-dependent induction of STRE-controlled genes 

(Thevelein & De Winde, 1999). The link between the 

Gpr 1 p/Gpa2p-sensing system with cAMP/PKA and the transcrip­

tional regulators Msn2p/Msn4p therefore provides an integrated 

model for nutrient sensing, growth control and stress resistance, 

providing an insight into the coordination between these two fun­

damental processes. 

The sensing of a preferred nitrogen source, ammonium: 

Ammonium is one of the preferred nitrogen sources of S. cere­

visiae, and is present in grape must at variable concentrations. It 

also plays a central role in the regulation of nitrogen metabolism, 

since it is the main intermediate between catabolic and anabolic 

pathways (Ter Schure et al., 2000). It is therefore one of the first 

nitrogen sources to disappear from the substrate during cellular 

growth, which requires the cells to switch to a less preferred 

nitrogen source. Data by Lorenz and Heitman (1998b) show that 

the ammonium transporter Mep2p is required for the sensing of 

ammonium, and does not play any role in the sensing of other 

nitrogen sources. Three ammonium permeases with significant 

sequence homologies, Meplp, Mep2p and Mep3p, have been 

identified in S. cerevisiae (Marini et al., 1997). Of the three, 

Mep2p presents the highest affinity (KM=l-2 µM) for ammoni­

um. A deletion of the MEP2 gene results in cells incapable of fil­

amentous growth in ammonium-limited medium. The l!,mep2 

strain, however, is perfectly able to form filaments in response to 

limitations in other nitrogen sources like glutamine, asparagine or 

proline. The deletion does not result in any growth defects on 

media containing ammonium, showing that the two additional 

ammonium permeases Mep 1 p and Mep3p are efficient trans­

porters, but play a less prominent role in signaling of ammonium 

availability. 

The data suggest that yeast cells probably require specific sen­

sors for each essential nutrient, including a variety of nitrogen 

and carbon sources. Several other permeases can be expected to 

play a similar role and to specifically signal the presence or lim­

ited availability of their substrates. However, only indirect evi­

dence has been provided so far (Lorenz & Heitman, 1998b). 

Current knowledge strongly favours the hypothesis that 

Mep2p, similar to Gprlp, transmits the signal via Gpa2p. 

However, no direct interaction of Gpa2p with Mep2p has so far 

been demonstrated. Genetic evidence nevertheless suggests that 

Mep2p requires Gpa2p for signaling (Lorenz & Heitman, 

1998a, b ), suggesting that both carbon source and nitrogen­

source-dependent signals are transmitted at least in part by the 

same signaling elements, in particular the cAMP-dependent 

kinase. 

Other nitrogen sources have recently been shown to be sensed 

by permease-like sensors. For example, the GRRJ encoded pro­

tein presents homologies to permeases and acts as a sensor of 

extracellular amino acids (lraqui et al., 1999). 

Other nutrient dependent signalling systems, like the Tori p and 

Tor2p kinases-dependent activation of cell growth in response to 

nutrient availability exist. This system sequesters transcription 

factors that are required for the induction of stress responses, 

including Msn2p/Msn4p, in the cytoplasm when sufficient nutri­

ents are available, and therefore directly contributes to the 

decreased stress resistance observed in rich growth media (Beck 

& Hall, 1999). 

Responses to the accumulation of ethanol: After having sur­

vived hyperosmotic stress, variations in temperature and nutrient 

availability, and other detrimental conditions, the yeast is con­

fronted with an additional hurdle: its own metabolic activity has 

resulted in the accumulation of a highly toxic substance, ethanol. 

The sensing or perception of ethanol per se has not been eluci­

dated. The existence, however, of ethanol-specific sensors similar 

in nature to the ones described for glucose or ammonium is 

improbable. Ethanol-dependent stress responses are probably 

indirectly induced by the perception of damage or water avail­

ability rather than through a specific sensing system (Hallsworth, 

1998). Besides having a general effect on yeast physiology by 

inhibiting growth (Thomas & Rose, 1979) and affecting mem­

brane fluidity (Thomas et al., 1978), several specific molecular 

consequences of high ethanol concentrations have been 

described. They include, for example, an alteration of vacuolar 

morphology and endocytosis (Meaden et al., 1999), a change in 

membrane lipid composition (Thomas et al., 1978; Alexandre et 

al., 1994; Arneborg et al., 1995), the induction of HSP genes 

(Piper et al., 1994) and an inhibition of some enzymatic activities 

(Lopes et al., 1999). 

Most research has focused on the changes in lipid composition 

and the protective effects of some of the membrane components 

against ethanol stress. Thomas et al. (1978) showed that the 

enrichment of the plasma membrane with the double unsaturated 

C18 fatty acid linoleyl resulted in higher resistance to ethanol 

than enrichment with the mono-unsaturated C18 fatty acid oleyl. 

They also showed that enrichments with combinations of ergos­

terol, the only sterol naturally produced by S. cerevisiae, and spe­
cific fatty acids had similarily beneficial effects. The same group 

likewise demonstrated that ethanol concentrations lowered the 

rate of solute accumulation of glucose and amino acids like lysine 
and arginine (Thomas & Rose, 1979). Recent data suggest that 

lipid composition has an important influence on stress tolerance 

in general, and that resistance levels are probably determined by 

the ratio of different lipid components rather than by a simple, 

linear correlation between the amount of specific lipids and stress 

tolerance. 

Alexandre et al. (1994) presented data suggesting that increas­

es in the proportion of ergosterol and in unsaturated fatty acids 

levels are responsible for ethanol tolerance. This link between the 

desaturation of fatty acids and ethanol resistance was further 

strengthened through data by Kajiwara et al. (1996), who showed 

that a strain of S. cerevisiae transformed with a �-12 fatty acid 

desaturase gene from Arabidopsis thaliana, which does not natu­

rally occur in the yeast, contains a high level of polyunsaturated 

fatty acids in the membrane, and that this increase is accompa­

nied by an increased resistance to ethanol. Sajbidor et al. (1995) 

also showed that ethanol induces the synthesis of ergosterol and 

leads to an increase in the ratio of unsaturated fatty acids, in par­

ticular palmitoleate and oleate, over their saturated counterparts, 

palmitate and stearate. Finally, research by Chi & Arneborg 

(1999) showed that the more ethanol-tolerant of two strains of 

S. cerevisiae contained a higher ergosterol/phospholipid ratio, a 

higher incorporation of long chain fatty acids and a slightly high­

er proportion of unsaturated fatty acids. However, data by Swan 
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& Watson (1997) seem to suggest that there is no obvious rela­

tionship between membrane fluidity, fatty acyl composition and 

stress tolerance, and that the enrichment of membranes with oleic 

acid ( 18: 1) results in higher stress resistance than enrichment 

with linoleic acid (18:2), at least in a Li-9 desaturase deficient 

strain (Swan & Watson, 1999). Nevertheless, the data suggest a 

consistent role for membrane lipid composition in stress resis­

tance, and show a stronger correlation of stress resistance with 

membrane lipid composition than with either the accumulation of 

Hsps or trehalose. 

Besides the increase in ergosterol, fatty acid chain length and 

the level of desaturation, two Hsps, Hsp30p, an integral mem­

brane protein, and Hsp12p, associated with membranes, have 

been shown to play specific roles during ethanol stress. Hsp12p 

appears to protect membrane integrity during both dessication 

and ethanol stress through a mechanism that is not yet understood 

(Sales et al., 2000), whereas Hsp30p regulates the plasma mem­

brane H+-ATPase. This ATPase consumes a large part of the ATP 

produced by the cell, pumping H+ ions out of the cytoplasm to 

maintain intracellular pH and the proton gradient across the plas­

ma membrane. The importance of the mechanism for the mainte­

nance of transport, in particular of nitrogenous compounds, has 

been described in a previous section. While the amount of ATPase 

in the plasma membrane diminishes after ethanol and other 

stresses, the remaining proteins are strongly activated, resulting 

in a net increase of ATP consumed. Hsp30p has been shown to 

control and reduce ATPase activity (Braley & Piper, 1997), and 

the authors suggest an energy conserving role for the protein. 

Overall, the molecular response to ethanol stress is very simi­

lar to the response observed during heat shock. A similar set of 

Hsps is induced, which, in addition to the above-mentioned 

HSP 30 and HSP 12 genes, includes HSP 104, the product of which 

has been shown to contribute to both heat shock and ethanol tol­

erance. The general effects of high temperature and high ethanol 

on the plasma membrane appear identical, and both can lead to 

problems in protein folding or protein denaturation (Piper, 1995). 

Both also require the induction of anti-oxidant enzymes, since 

increased temperature and high ethanol lead to the accumulation 

of some reactive oxygen species. The similarities suggest that 

both processes are perceived by similar mechanisms, and the 

observations on the perception of heat shock and the transcrip­

tional activation of heat shock proteins therefore should apply to 

ethanol stress responses as well. 

CONCLUSIONS 

Fermentation predictability and wine quality are directly depen­

dent on wine yeast attributes that assist in the rapid establishment 

of numerical dominance in the early phase of wine fermentation, 

and that determine the ability to conduct an even and efficient 
fermentation with a desirable residual sugar level. It is therefore 

not surprising that the primary selection criteria applied to most 

wine yeast strain development programmes relate to the overall 

objective of achieving an efficient conversion of grape sugar to 

alcohol and carbon dioxide, at a controlled rate and without the 

development of off-flavours. Both the genetic and physiological 

stability of stock cultures of seed yeast and wine yeast starter cul­

tures are essential to optimal fermentation performance. The 

physiological stability and "fitness" of active dried wine yeast 

cultures relate to the maintenance of cell viability (the relative 

proportion of living cells within an active dried starter culture) 

and vitality (the measure of metabolic activity, relating to the 

vigour of an active dried starter culture) during the process of 

yeast manufacturing (including desiccation and storage), as well 

as biological resilience during wine fermentation. Fermentation 

efficiency of an active dried wine yeast starter culture is also 

directly correlated with the strain's ablity to withstand sudden 

environmental change and unfavourable growth conditions. A 

direct link between stress resistance (the ability of a strain to 

adapt efficiently to a changing environment) and the ability to 

bring grape must fermentation to a rapid and successful end has 

been clearly demonstrated. 

This review provides only a glimpse of the vast amount of data 

that has been accumulated in the last decades regarding the con­

trol of stress response mechanisms and their importance for the 

industrial application of yeast. The molecular pathways described 

were chosen for their relevance to the winemaking process as 

well as for their functions as representatives of the mechanisms 

of stress responses and signal transduction, not only in yeast but 

all eukaryotic organisms, providing a broad idea of our current 

knowledge in these important areas of biological investigation. 

Sev·eral other relevant pathways, including the so-called cell 

integrity pathway which responds to hypoosmotic shock 

(Hohmann, 1997), the fermentable growth media (FGM) induced 

pathway (Thevelein & De Wintle, 1999) and the oxidative stress­

response pathway (Jamieson, 1998) are not discussed due to 

space limitations. Furthermore, the toxic effects of heavy metals, 

in particular copper (Avery et al., 1996; Howlett & Avery, 1997), 

have only been briefly mentioned. However, all of these path­

ways rely on molecular modules and cellular adaptations that are 

very similar to the ones described in this review. The cell integri­

ty pathway, for example, relies on a MAPK cascade to transmit 

the signal to downstream transcription factors, the FGM pathway 

is largely controlled by cAMP, and heavy metal resistance is 

dependent on changes in the cellular membrane similar to those 

observed during ethanol stress. 

The main aim of the study of stress responses in the yeast 

S. cerevisiae has been to increase our knowledge of fundamental 

biological processes. S. cerevisiae has proven to be an excellent 

and versatile model organism, permitting, due to its relative bio­

logical simplicity and the availability of a unique set of molecu­

lar tools, study of the complex interactions which govern the rela­

tionship between an organism and its environment. The research 

has led to several important breakthroughs, and has given insights 

into cellular processes which are of major importance, particular­

ly in the medical field. For example, it is largely due to the 

insights provided by research conducted on S. cerevisiae that we 

are beginning to understand the complex interaction between sig­

nal receptors, signaling pathways and effector proteins, a field of 

major importance for human health, since many of these path­

ways are involved in processes which result in diseases. These 

include in particular most aspects of oncogenesis as well as 

genetic metabolic disorders, and numerous drugs specifically 

affect targets within these pathways. 

While the reasons to pursue this research are obvious in the 

medical field, biotechnological advances based on these data 

have yet to make an impact. The potential for targeted improve­

ments of stress resistance and other linked aspects of industrial 
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strains, be it wine yeast strains, brewing strains or baking strains, 

has not yet been fully realised. As pointed out in this review, 

stress resistance is of major industrial importance, and a small 

improvement in, for example, ethanol tolerance could result in 

major industrial improvements. A general improvement in stress 
resistance would also help to address several problems plaguing 

the wine industry, in particular by reducing the incidence of stuck 

or sluggish fermentation. Some approaches, based on the already 
accumulated knowledge in the molecular network underlying 

stress resistance, have shown promising results, and genetically 
engineered strains with improved stress resistance have been 

obtained. Kim et al. (1996) presented data showing that a strain 

deleted for the gene encoding a trehalose hydrolysing enzyme, 
acid trehalase (ATHI), contained higher levels of trehalose and 

showed better survival after dehydration, freezing and ethanol 

shock, while Shima et al. (1999) presented a similar approach 

based on trehalase mutants. However, other attempts to increase 
stress resistance through increased trehalose production have 

failed, and the link between trehalose content and stress resis­
tance does not appear to be linear. As stated by Randez-Gil et al. 

(1999) in a review on baker's yeast, there is room for improve­

ment for the engineering of industrial yeast. 

There is fundamentally only one reason for the relatively slow 

progress and the absence of important and visible improvements 

in the field, and this reason lies in the intrinsic complexity of the 
mechanisms of stress resistance. Indeed, as this review has tried 

to highlight, stress resistance is governed by an interwoven, com­

plex network of pathways, with numerous levels of control by 

feed-back systems, cross-talks and apparent redundancies. This 

system of checks and balances is required to balance the partial­

ly contradictory requirements of all life forms, to ensure the sur­

vival of the individual while maintaining efficient growth and a 

fast reproduction rate. 

Truly improved stress resistance, based on a sound and target­

ed scientific approach, will only become achievable when this 

network is fully understood. Without a full understanding of all 

molecular interactions, most attempts in the field will remain akin 

to shots in the dark. However, there is light at the end of the tun­

nel. The goal of a full understanding of these pathways has been 

brought into reach by the progress in research methodology over 

the last years. Particularly since the publication of the entire 

genome of S. cerevisiae, several systematic methodologies have 
become available, and have by now matured sufficiently to be 

used on a wide scale in research laboratories throughout the 

world. These methodologies, which include microarray and DNA 
chip technology, allowing genome-wide transcription analysis 

(Cox et al., 1999), have created an entirely new scientific field, 

"genomics", which is quickly followed by "proteomics", the sys­

tematic analysis of protein-protein interaction. They allow, with 
the help of powerful software programs, the analysis of the mol­

ecular consequences of specific genetic defects or specific envi­

ronmental conditions, providing a picture of all the genetic and 

physical interactions at a given moment as well as their evolution 

over time. 

These technologies are now being applied to wine yeast strains 

and to the precise conditions found during wine fermentations. 

The first data based on such systematic approaches have been 

published (Puig & Perez-Ortin, 2000; Rachidi et al., 2000; 

Tanghe et al., 2000). More of these data will become available in 

the near future, and will result in endless opportunities to exploit 

newly discovered connections and interactions, and finally in 

new yeast strains tailor-made for specific purposes. 

Developments of this nature are not welcomed by everyone. 

There are some deep-seated fears and worries about the possible 

consequences, both in ethical and environmental terms, of these 

powerful new approaches. While these fears appear largely limit­

ed to the agronomic biotechnology sector, and do not seem to 

touch the medical sector, which uses the same technology, they 

are nevertheless real and have to be addressed in a responsible, 

scientifically sound way. In the long term, there is little doubt that 

the potential benefits of the technology far outweigh the per­

ceived risks. Living organisms, as this review has also tried to 

highlight, are not static entities, but permanently evolving and 

changing. DNA transfer, within and between species, is happen­

ing every day, all the time in nature. The changes that biotech­

nologists intend to introduce are all designed to improve specific 

characteristics of certain organisms for a specific industrial pur­

pose. These changes could be achieved over a much longer time 

through different strategies, including traditional methods based 

on breeding and selection. Humans have, unconsciously, already 

bred over several millenniums the yeast species we are using 

today, which are so incredibly efficient in converting grape sug­

ars into alcohol. However, all studies show that these industrial 
yeast strains have had a very limited, non-measurable impact on 

the surrounding environment. Even where released in largest 

numbers, for example at winery waste sites, very few of these 

yeast are found in the vineyard the following year (Khan et al., 

2000; Van der Westhuizen et al., 2000a, b). While this does not 

imply that biotechnological advances are without dangers, it 

clearly demonstrates that properly monitored, targeteted 

improvement of yeast strains through genetic engineering is a 

promising route for the future (Pretorius, 2000). 
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