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Grapevine growing and wine making have been a part of human 
agricultural activity for thousands of years. Today, grapes are the 
most planted fruit crop in the world, and the global wine industry 
has become a multi-billion dollar business. Yet, the process of 
vine growing and wine making continues to present tremendous 
challenges. The traditional wine sciences of viticulture and 
oenology are challenged by the complexity of the process, 
and many studies, while reporting on the effects of individual 
parameters, all too frequently fail to establish causality. The input 
variables in the vineyard involve a large number of factors that 
influence the growth of the grapevine and the composition of 
the grape berries, and in particular include many environmental 
factors such as soil, aspect, slope, and climate. These factors 
interact with and impact on the genetic potential of individual 
grapevine cultivars or rather individual plants. From a wine 
making perspective, the relevant end result of these processes 
is defined by the chemical composition of the grape, otherwise 
known as the grape metabolome (Driesel et al., 2003; Da Silva et 
al., 2005; Cramer et al., 2007). Traditional research on grapevine 
biology (physiological, genetic and molecular approaches) 
has helped to establish broad correlations between specific 
environmental factors and aspects of the final grape and must 
composition. On the whole though, our current understanding of 
grapevine biology is curtailed by an incomplete molecular map 
and limited knowledge regarding the genetic regulation of this 
complex woody perennial.

On the oenological side many factors will contribute to transform 
and give expression to the grape metabolome, and will impact on 
the character and quality of the final product. Such factors include 
the treatment of the grapes and of the must before fermentation, the 
physical parameters prevalent during fermentation, and the impact 

thereof on dynamic microbial ecosystem that will continuously 
adapt and change while alcoholic fermentation proceeds. This 
wine fermentation ecosystem usually includes numerous strains 
of lactic and acetic acid bacteria, as well as a large spectrum of 
yeast species and other fungi. From an oenological perspective, 
the most relevant of these organisms is the scientifically well 
studied yeast Saccharomyces cerevisiae. This yeast appears best 
adapted to the harsh environmental conditions prevalent during 
wine fermentation, such as high osmotic pressure, low pH and, 
in particular, the increasing levels of ethanol (Attfield, 1997). As 
a consequence, commercial wine yeast strains indeed are almost 
exclusively of this species, and spontaneously fermenting musts 
also usually end up with one or more S. cerevisiae strains as the 
dominant yeast (Frezier & Dubourdieu, 1992). For this reason 
most research on alcoholic fermentation has centered on this 
organism.

However, our current knowledge of grapevine and microbial 
biology and of the chemical processes that result in a specific 
wine remains limited. This lack of knowledge and understanding 
significantly limits our ability to improve wine quality and 
consistency. In particular, modern biotechnological approaches 
are knowledge-based, and we are only able to change or 
manipulate a biological system to the extent that we understand 
its functioning. While the amount of data describing biological 
systems has been increasing rapidly, this increase has been largely 
built on approaches that can be qualified as reductionism. Such 
approaches focus on individual components, such as a single 
gene or protein within a biological system, and have contributed 
tremendously to our understanding of biological systems, in 
particular by mapping genetic and metabolic pathways and 
fluxes. However, they are inherently incapable of elucidating the 
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nature of the complex biological networks that characterize living 
organisms. Ultimately, complex systems can only be interpreted 
by complex, high-level analyses.

With the recent development of new technologies in the 
biological and chemical sciences, as well as improvements in 
statistical and interpretation tools, such high level analyses have 
become a feasible option, and a unique opportunity exists to 
approach the analysis of biological systems in a holistic manner. 
These approaches have been loosely integrated under the term 
“systems biology” which is referring to the large number of novel 
approach to investigate biological processes on a whole cell or 
whole organism level.

Conveniently, S. cerevisiae also happens to be the traditional 
model organism of choice for molecular and cellular biologists. 
For this reason, S. cerevisiae will be the main focus of the 
following sections in this paper and will serve to highlight the 
role of ‘omic’-applications in wine science and research.

Yeast biotechnology in the food and beverage industry
Indigenous fermented foods such as bread, cheese and wine 
have been prepared and consumed for thousands of years, and 
it is estimated that fermented foods contribute to about one-third 
of the diet worldwide. Biotechnology in the food and beverage 
sector targets the selection and improvement of yeast strains with 
the objectives of improving process control, yields and efficiency 
as well as the quality, safety and consistency of the end-product 
(Chapman, 1991).

Wine and beer represent the two most popular products of 
alcoholic fermentation processes. The commercial yeast strains 
that are used in these processes have been primarily selected for 
their fermentation efficiency. However, besides the conversion 
of sugars to alcohol and CO2, yeast metabolism results in the 
production of a diversity of metabolites, including vitamins, 
antimicrobial compounds, amino acids, organic acids (e.g. 
citric acid, lactic acid) and flavour compounds (e.g. esters and 
aldehydes). These metabolites make an important contribution to 
the character and quality of the final product, in particular with 
regard to aroma, flavour, and microbiological stability (Lambrechts 
& Pretorius, 2000). A considerable volume of current research 
both in academia and industry therefore targets the application 
of yeast biotechnology to improve fermentation efficiency and 
the production, quality and yields of metabolites (Cereghino & 
Cregg, 1999; Stephanopoulos et al., 2004).

Traditional methods of genetic improvement such as classical 
mutagenesis and hybridization have been used in the improvement 
of yeast strains which are widely used industrially in baking, 
brewing and wine making (Pretorius & Bauer, 2002). Recombinant 
DNA approaches have also been used for genetic modification 
of yeast strains to promote the expression of desirable genes, 
to hinder the expression of others, to alter specific genes or to 
inactivate genes so as to block specific pathways. In the field of 
wine science specifically, genetic modification of wine yeast for 
improved secretion of oenologically relevant enzymes (Malherbe 
et al., 2003; Louw et al., 2006), production of aroma compounds 
(Lilly et al., 2006 a,b), glycerol production (Cambon et al., 2006), 
malate degradation (Volschenk et al., 1997 a,b) and decreased 
ethanol production (Heux et al., 2006) has proven to be a feasible 
endeavour.

Several genetically modified yeasts appropriate for brewing, 
baking and wine making have been approved for use, although, 
as far as can be ascertained, none of these strains have been 
widely used commercially in the past. The possibilities for 
further engineering improved yeast strains are however clearly 
enormous.

Systems biology background
Metabolic engineering is the rational alteration of the genetic 
architecture of an organism to achieve a specific phenotype 
(Bailey, 1991). Classic ‘bottleneck engineering’ targeting the so-
called rate-limiting steps in a pathway has only met with partial 
success. This is because cells are comprised of a complex network 
of regulatory mechanisms that counteract genetic modifications 
such as those derived from mutations by employing alternative 
pathways for continued robust performance (Farmer & Liao, 
2000). Control of metabolic processes is in part hierarchical, 
with information transfer occurring from the genome to the 
transcriptional level, moving on to translation and finally enzyme 
activity. However, feed-back loops among the different levels are 
numerous. ‘Omics’ technologies today can analyze and monitor 
entire classes of biological macromolecules, such as DNA, RNA 
and proteins, as well as metabolites on a whole cell, whole tissue, 
whole organism or whole population level (Brown & Botstein, 
1999; Bruggeman & Westerhoff, 2007). Such omics-based 
technologies have led to the establishment of fields of expertise 
referred to as transcriptomics, proteomics and metabolomics, 
depending on the specific layer of biological information that 
is being monitored. Ideally, in a systems analysis approach, all 
biochemical components that are involved in the process of 
interest should be monitored. While most of these analyses have 
thus far been focusing on quantification, other technologies aim to 
determine the interactions between components (interactomics) 
and the genetic or metabolic flux (fluxomics) within the system.

Taken together, such data can allow the reconstruction of in silico 
biological networks (Goryanin et al., 1999). The properties of the 
reconstructed network are in principle amenable to mathematical 
modeling, allowing incorporation into computer models that can 
be interrogated systematically to predict biological functions and 
system responses to specific perturbations (Palsson, 2000; Price 
et al., 2003).

The large volumes of data generated by these approaches 
necessitates concomitant development in fields known as 
bioinformatics and multivariate data analysis (Palsson, 2002; Ge 
et al., 2003; Larsson et al., 2006; Lavine & Workman, 2006). 
Fortunately for the wine sciences, S. cerevisiae retains its title as 
one of the preferred model organism in the field of systems biology 
and bioinformatics as well. This has meant that many cutting edge 
‘omics’ technologies and supporting statistical analysis modules 
are routinely available for research on wine yeast strains, as will 
be discussed in the following sections.

1-Genomics
The general starting point of any system-wide analysis is usually 
at the genome level, as phenotypic features and changes therein 
are due to changes in the primary genome sequence of a particular 
organism. Whole genome sequencing is the process whereby the 
complete DNA sequence of an organism’s genome is determined 
at a single time. This entails sequencing all of an organism’s 
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chromosomal DNA as well as DNA contained in the mitochondria. 
Whole genome sequencing has changed in the most profound way 
the manner in which scientists plan and perform research as gene 
sequences have provided enabling information and resources for 
a wide variety of scientific applications.

S. cerevisiae was one of the first organisms to have its genome 
completely sequenced, more than 10 years ago (Goffeau et al., 
1996). This breakthrough in yeast research opened the door 
for yeast biologists to gain insight into yeast physiology on a 
molecular level. One of the main goals of genome sequencing is to 
identify all the genes in an organism: Computational methods for 
protein-coding gene identification are reasonably well developed, 
especially for compact genomes such as that of S. cerevisiae, 
which has a coding density of around 75% (Goffeau et al., 1996). 
The genome of the original S288c laboratory strain is thus well 
annotated, with clearly delineated coding regions and regulatory 
elements, and is easily accessible to interested researchers.

In the case of wine yeast strains, however, increased complexity 
becomes an important factor: These yeasts exhibit great variation in 
chromosome size and number in comparison to laboratory strains, 
and are also aneuploid (Bakalinsky & Snow, 1990). Chromosomal 
changes include gain or loss of whole chromosomes and large-scale 
deletions and/or duplications (Adams et al., 1992; Rachidi et al., 
1999). Unfortunately very few DNA sequences of wine yeasts have 
been published or are publicly accessible in databases (Masneuf 
et al., 1998). Overall though, the sequence homology between the 
laboratory strain S288c and wine yeasts is approximated at around 

99% (Masneuf et al., 1998), which means that sequence information 
from the S288c strain can be used for general systematic analysis of 
wine yeast strains (Puig et al., 1998, 2000).

Recently a major milestone in wine yeast genomics was reached 
when the Australian Wine Research Institute completed the genome 
sequencing of the commercial yeast AWRI1631 (Borneman et al., 
2008). Interestingly, about 0.6% of this sequence information 
differed from that of the laboratory strain S288c, and extra DNA 
sequences (enough to carry at least 27 genes) were discovered in 
the wine yeast. Most of the sequences of these putative genes do 
not resemble anything found in other species of Saccharomyces, 
but appear to be similar to genes found in distant fungal relatives. 
Some of these wine yeast-specific genes seem to encode proteins 
that are associated with the cell wall, and could thus account 
for the ability of wine yeasts to survive the harsh prevailing 
conditions in winemaking environments. Other functionalities 
include genes coding for proteins involved in amino acid uptake, 
which potentially holds implications for wine aroma and flavour 
development due to the association of amino acid metabolism 
with volatile aroma compound production.

Three decades have passed since the invention of electrophoretic 
methods for DNA sequencing, and advancements in the efficiency 
and cost-effectiveness of sequencing has made rapid sequencing of 
small genomes financially and practically feasible. Various novel 
sequencing technologies are being developed, as well as software 
tools for automated genome annotation, together aspiring to reduce 
costs and time frames for genome analysis. This means that many 

FIGURE 1
Representation of the different biological information layers that impact on the wine making process from grape to must to wine. The grape metabolome is the result of the 
interaction of the various layers of the biological information transfer system and will define the composition of the must. The grape must is transformed through the action 
of various microorganisms to obtain the final product, wine. This biological system represents the entire wine making process and can be holistically investigated through 

the use of omics tools that monitor the totality of – or as many as possible – components representative of each layer. 
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more wine yeast genomes will be sequenced and become publicly 
available in the near future. Comparative genomics will thus 
become a major tool for the insightful interpretation of genomic 
data within the wine-making context.
2-Transcriptomics
As mentioned, system-wide endeavours tend to start at the 
genomic level, since phenotypic changes are due to perturbations 
of gene sequence and transcriptional levels. In the decade 
following the sequencing of the S. cerevisiae genome a whole 
suite of analysis tools were developed based on gene sequence 
knowledge and functional annotation of 90% of the coding 
sequences in the yeast genome. The challenge of large-scale 
functional genomics followed as the next key step in the pursuit 
of complete understanding of yeast physiology and metabolism. 
Functional genomics, a relatively new area of research, aims 
to determine patterns of gene expression and interaction in the 
genome. It can provide an understanding of how yeast responds to 
environmental influences at the genetic level, and should therefore 
allow adaptation of conditions to improve technological processes. 
As previously mentioned, there is considerable variation in the 
fermentation performance of different wine yeast strains in terms 
of the secretion of oenologically relevant enzymes, the tendency 
to result in ‘stuck’ or ‘sluggish’ fermentations, the production of 
aroma compounds and the production of off-flavours. In short, 
the strains differ drastically in terms of the quality of wine that 
they produce. These variations across strains of S. cerevisiae are 
inheritable, and thus genetically determined. Functional genomics 
holds the potential to shed light on genetic differences allowing 
some strains to perform better than others with regard to certain 
desirable processes. It also holds great promise for defining and 
modifying elusive metabolic mechanisms used by yeast to adapt 
to different environmental conditions.

The technology of transcriptomics is a result of the convergence 
of several technologies, such as DNA sequencing and amplification, 
synthesis of oligonucleotides, fluorescence biochemistry, and 
computational statistics. It basically confers the ability to measure 
mRNA abundance (Lander, 1999), which reveals the effects of 
the global physiological and metabolic control machinery on 
transcription by identifying differentially expressed genes. 
It is thus possible to observe the expression of many, if not all 
genes simultaneously, including those with unknown biological 
functions, as they are switched on and off during normal growth, or 
while the yeast attempts to cope with ever-changing environmental 
conditions such as those encountered during fermentation. By 
identifying similarities in the transcriptional profile, the role of 
many previously uncharacterized genes was predicted, based on 
the assumption that coexpressed genes are functionally related. 
An early example of such studies was the identification of genes 
that were differentially expressed in Saccharomyces cerevisiae in 
response to a metabolic shift from growth on glucose to diauxic 
growth on glucose and ethanol (DeRisi et al., 1997).

Numerous yeast transcriptomics studies have also been 
conducted in chemostat cultures, which revealed, among others, 
that growth-limiting nutrients have a profound impact on genome-
wide transcriptional responses of yeast to process perturbations 
and/ or molecular genetic interventions (Boer et al., 2003; Usaite 
et al., 2006). Transcriptomic profiling of yeast exposed to various 
stress conditions has likewise provided insights into the effects 

of those stresses on the cell at the transcriptional level (Gasch 
et al., 2000; Kuhn et al., 2001; Gasch & Werner-Washburne, 
2002). These examples of iterative perturbations and systematic 
phenotype characterization (on a gene expression level) have 
yielded a plethora of system insights that have revolutionized 
microbial biology.

Several transcriptomic studies have also been published for 
research conducted with wine yeast strains (Erasmus et al., 2003; 
Rossignol et al., 2003; Varela et al., 2005; Mendes-Ferreira et 
al., 2007; Marks et al., 2008; Pizarro et al., 2008; Rossouw & 
Bauer, 2008). These studies have illuminated the intrinsic genetic 
and regulatory mechanisms involved in fermentation, and have 
greatly increased our understanding of this important process. For 
instance, Pizarro et al. (2008) showed how growth temperature 
and nitrogen limitation affects differential physiological and 
transcriptional responses in both laboratory and wine strains of S. 
cerevisiae. Nitrogen metabolism was found to be deregulated in 
the wine yeast (allowing simultaneous uptake of different nitrogen 
sources), which explains the competitive advantage of wine yeast 
strains in real wine fermentations. This accounted for the ability 
of wine yeast cells to proliferate and produce comparatively 
higher biomass yields at low temperatures with the same amount 
of nitrogen compared to laboratory yeasts.
3-Proteomics
Moving from the gene to the protein level brings us to proteomics, 
an approach aiming to identify and characterize complete sets 
of proteins, and protein-protein interactions in a given species 
(Hartwell et al., 1999; Ideker et al., 2001). An increased transcript 
level cannot be interpreted as evidence for a contribution of 
the encoded protein to the cellular response in the immediate 
experimental context. But even though gene expression might 
not relate directly to protein expression (Ideker et al., 2001), the 
protein products of genes that are coexpressed under different 
conditions are often functionally related with one another as part 
of the same pathway or complex (Grigoriev, 2001; Ge et al., 
2001). Considering, however, that transcript levels are not directly 
correlated to protein levels and in vivo fluxes (Griffin et al., 2002; 
Washburn et al., 2003; Daran-Lapujade et al., 2004), large-scale 
transcriptomic datasets need to be combined with other data 
subsets such that the overlapping set of interactions provides more 
insightful and meaningful information on the system in question 
(Tong et al., 2002). Combining many layers of systematic cell and 
molecular biology such as protein levels and transcript expression 
data enables the construction of an accurate information matrix 
and a complete cellular map (Walhout et al., 2002).

Genome-scale protein quantification is not yet feasible, but 
methods for determining relative levels of protein between 
samples have been developed (Smolka et al., 2002). Conventional 
quantitative proteome analysis utilizes two-dimensional (2D) gel 
electrophoresis (O’Farrell, 1975) to separate complex protein 
mixtures followed by in-gel tryptic digestion and mass spectrometry 
for the identification of protein. More than 1500 soluble proteins of 
yeast are detectable and well separated of two-dimensional gels. 
This technique offers the opportunity to detect alterations in protein 
synthesis, protein modifications, and protein degradation occurring 
in response to environmental or genetic changes. However, the two-
dimensional gel approach suffers from the low number of proteins 
which are identified on the yeast protein map, as well as poor gel-
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to-gel reproducibility, the under-representation of low-abundant 
and hydrophobic proteins and the poor dynamic range of detection 
(Fey & Larsen, 2001; Rabilloud, 2002).

To overcome some of these limitations, high-throughput 
chromatography in combination with mass spectrometry can be 
used for fast and accurate protein identification, as long as the 
protein/s already exist/s uniquely in a sequence database (Mann 
et al., 2001). The most commonly used high-performance liquid 
chromatographic (HPLC) approach for the separation of peptides 
from protein digests in complex proteomic applications is 2D 
nano-liquid chromatography-mass spectrometry (LC/MS). In 
this approach, a strong cation exchange (SCX) column is used 
for the first dimension and a reversed phase (RP) column for 
the second (Nägele et al., 2004). A total of 1504 yeast proteins 
have been unambiguously identified in a single analysis using 
this 2D chromatography approach coupled with tandem mass 
spectrometry (MS/MS) (Peng et al., 2002).

In fermenting yeast, the first forays into proteomics have been 
reported, usually in conjunction with transcriptomic or metabolomic 
analysis (Brejning et al., 2005; Salvadó et al., 2008). Such studies 
have increased our knowledge regarding the growth phases of 
fermenting yeasts, and have suggested new methodologies for 
optimization and control of growth during fermentation-based 
industrial applications. Proteome studies of yeast responses to 
various stress conditions have also increased our knowledge of 
the functional modules involved in yeast responses to specific 
environmental factors (Vido et al., 2001; Kolkman et al., 2006). 
For example, Kolkman et al. (2006) compared yeast responses 
to nitrogen and carbon limitation: Interestingly, comparison 
of transcript and protein levels clearly showed that increases 
in protein levels in response to glucose limitation was mainly 
transcriptionally controlled, whereas upregulation of proteins in 
response to nitrogen limitation was essentially controlled at the 
posttranscriptional level by increased translational efficiency and/
or decreased protein degradation.

Another important goal of functional proteomics is the 
identification of functional modules based on the knowledge of 
protein action. Protein-protein interactions play a crucial role in 
elucidating the nature of these mechanisms. Innovative methods for 
the cell-wide analysis of protein interactions and signaling pathways 
have been developed in recent times (Templin et al., 2004). These 
include the high-throughput yeast two-hybrid systems (Uetz et 
al., 2000; Ito et al., 2001), protein arrays (Walter et al., 2000; Zhu 
& Snyder, 2003; Weiner et al., 2004), and fluorescence-based 
interaction assays (Hu & Kerppola, 2003). In contrast to clustering 
genes, clustering protein interactions reveals modules which have 
similar functionalities and are therefore more closely associated 
in bringing about a particular response. For yeast specifically, 
the protein interactions from a wide range of experiments were 
transformed into a weighted network, with the weights representing 
the experimentally determined confidence levels for a particular 
interaction (Pereira-Leal et al., 2004). Such models of protein-
protein interactions in yeast form an invaluable framework for 
future analysis and evaluation of ‘omic’ data-types.
4-Metabolomics
Strain phenotype characterization has relied primarily on transcript 
abundance and protein measurements. Only rarely have small 
metabolites been included in the analysis of the system due to 

difficulties in sampling and analyzing these molecules. The major 
complication is the rapid time scales of change, or oscillations 
in the levels of metabolites in a pathway, even if this pathway is 
in a balanced, unperturbed state of equilibrium. Small molecules 
also cover a wider range of chemical characteristics than do 
RNA transcripts, for example, and are more difficult to measure 
simultaneously (Dettmer et al., 2006).

Despite all the above-mentioned complications, advances in 
high-throughput methodologies in analytical chemistry now 
allow the detection and relative quantification of a large number 
of metabolites simultaneously (Dunn & Ellis 2005; Smedsgaard 
& Nielsen 2005; Villas Bôas et al., 2005). Gas chromatography 
coupled to mass spectrometry allows high-throughput analysis 
in a relatively short time and at a fairly low cost. The gas 
chromatograph separates metabolites while the mass spectrometer 
identifies and quantifies metabolites corresponding to a given 
standard peak. Specifically, the chemical analysis of wine has 
made tremendous progress over the last decade, and it is now 
possible to quantify a large number of chemical compounds 
(both volatile and non-volatile) with relative accuracy (Villas 
Bôas et al., 2005). In addition to gas or liquid chromatography 
–mass spectrometry (GCMS or LCMS), the development of 
two dimensional techniques has increased throughput and 
effectiveness by allowing for the analysis of compounds with 
different physiochemical properties in one analysis (Adahchour 
et al., 2006; Campo et al., 2006).

Metabolites are known to be involved as key regulators of 
systems homeostasis. As such, level changes of specific groups 
of metabolites may be descriptive of systems responses to 
environmental interventions. Their study is therefore a powerful 
approach for characterizing complex phenotypes, as well as 
for identifying biomarkers for specific physiological responses. 
Globally assaying metabolic states does present the opportunity 
to identify a more diverse set of active molecular relationships, 
particularly in the context of high-level regulation of transcriptional 
and translational processes by certain metabolites. Metabolic 
profiles can be used to define a ‘footprint’ of processes that occur 
in response to developmental, genetic or environmental effects, 
and are thus useful in defining the cellular phenotype (Allen et al., 
2003). Metabolic data can also be incorporated into databases that 
integrate transcription, protein-protein interactions and metabolism 
to identify multilevel sub-networks which are activated in response 
to a given perturbation to the system.

To complement these types of analysis, chemometrics approaches 
have evolved to enable these large data sets to be mined for 
information through multivariate analysis of multi-level datasets. 
The broader metabolic state characterization of fermenting yeast 
should allow better understanding of the interplay between 
different pathways and may enhance our ability to identify key 
cellular mechanisms (Çakir et al., 2006). Metabolomics studies 
focused on yeast have been on the increase over the past few years 
(Daran-Lapujade et al., 2004; Beltran et al., 2006; Kresnowati 
et al., 2006; Villas-Bôas et al., 2007), and have provided new 
insights into molecular events associated with the responses of 
yeast to environmental factors such as fermentation temperature 
and the availability of carbon substrates. For example, Kresnowati 
et al. (2006) showed that upon relief of glucose limitation cellular 
homeostasis is restored by a significant increase in trehalose-6P 
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levels, followed by the coordinated downregulation of the three 
hexokinase encoding genes as part of a response to prevent 
‘glucose-accelerated death’. Immediate adjustment of fructose-
2,6P levels was also evident, thus providing evidence for the 
cellular mechanisms responsible for adjusting metabolite levels 
in central carbon metabolism.
5-Fluxomics
Another noteworthy obstacle to the rational optimization of yeast 
for industrial purposes is the lack of a reliable, global metabolic 
model that captures the majority of the stoichiometric, kinetic and 
regulatory effects on metabolite interconversions and metabolic 
flux distribution through the cellular reaction network (Edwards 
& Palsson, 2000). In order to gain full understanding of the 
metabolism of any cell/ tissue/ organism, both levels of metabolites 
and their fluxes need to be studied. Flux determination is thus an 
essential component of strain evaluation for metabolic engineering 
(Stephanopoulos, 1999). New methods for flux measurement have 
been developed based on NMR and MS technologies which allow 
accurate, high resolution measurements of pathway flux to be 
made using radiolabeled substrates (Szyperski, 1998; Christensen 
& Nielsen, 1999). Such methods are based on feeding 13C-labeled 
substrates to the cell for the characterization of metabolism 
(Wiechert, 2001). For example, feeding of cells with 13C-labeled 
glucose followed by analysis of the 13C enrichment pattern in 
different intracellular metabolites establishes an experimental 
platform for the calculation of real flux estimates (Gombert et al., 
2001). The tight connection of the different parts of metabolism 
means that changes in fluxes in one part of the metabolic network 
disseminate to many other related parts (Nielsen, 2003). Thus, 
with the development of the necessary mathematical frameworks, 
measurement of even a few metabolic fluxes may provide valuable 
information regarding complete metabolic networks (Wiechert et 
al., 1997).

Metabolic fluxes can be used to characterize phenotypes and 
carbon flow in a system due to any given perturbation (Nielsen, 
2003) and forms an integral part of applications in yeast systems 
biology and metabolic engineering. Metabolic flux modeling can 
also be used to capture the genome-scale systems properties of 
an organism’s metabolism and further facilitate the construction, 
validation, and predictive capabilities of models constructed from 
‘omic’ information (Sauer, 2004). For instance, constraint-based 
network models have been developed using reaction stoicheometry 
to represent the biological network (Reed & Palsson, 2003). Such 
models are built by connecting the metabolites and the reactions 
they participate in to form a metabolic graph which is then applied 
to optimize the reaction rates (fluxes) given a specific target 
function (i.e. biomass or fermentation product formation). These 
models have also been invaluable in predicting the impact of 
gene deletions in several model organisms (Edwards et al., 2001; 
Famili et al., 2003; Forster et al., 2003). Conveniently, genome-
scale models have also been constructed for yeast (Forster et 
al., 2003; Duarte et al., 2004), which means that predictions of 
carbon flux distribution can be integrated with other ‘omics’ data 
types for interpretation purposes and to further guide metabolic 
engineering strategies.
6-Interactomics
Ultimately, systems biology is faced with the formidable task 
of interpreting and contextualizing the diverse sets of biological 

data from the various levels of ‘omic’ analysis with the aim to 
elucidate the mechanisms behind complex biological phenomena. 
Comparisons of yeast transcriptomes and proteomes under 
different cultivation conditions have shown that multilevel 
analysis is essential for yeast systems biology (Kolkman et al., 
2006) to avoid possibly missing the cause and effect relationships 
from other stages which impact the system as a whole.

The significant advances in genome sequencing, transcription, 
and protein and metabolite profiling have not always translated into 
successful metabolic engineering applications in yeast and other 
microbial systems. This is mainly due to a breach in the incorporation 
of these large datasets into meaningful models which explain how 
these components work in unison to produce the desired trait in 
the cell (Vemuri & Aristidou, 2005). A comparative transcriptomic 
and exometabolomic analysis has been successful in predicting 
the impact of changes in expression levels of individual genes on 
the complex network of pathways that lead to the production of 
aroma compounds (Rossouw et al., 2008). The final component 
of a successful systems biology study is thus within the sphere of 
interactomics, which aims to integrate the transfer of information 
between the other phases of analysis with the use of mathematical 
modeling and simulation tools (De Jong, 2002).

Cellular computational models are becoming crucial for 
the analysis of complex biological systems. Various statistical 
methods, including pattern discovery and characterization tools, 
are available to create links between large data sets and phenotypes. 
Given enough data, it becomes possible to extract probabilistic 
models that can theoretically capture cellular interactions 
without prior knowledge of an interaction network (Jeong et al., 
2000; De Jong et al., 2003). By building these cellular models, 
a comprehensive scaffold of molecular interactions is made 
available for mining to reveal a hierarchy of signaling, regulatory 
and metabolic pathways. Pathway maps can be extracted from 
this scaffold using computational models which identify the 
key components, interactions and influences required for more 
detailed interrogation using data from transcriptome or proteome 
analyses (Ideker & Lauffenberger, 2003).

To summarize, the yeast cell is an elaborate network of 
molecular and environmental interactions that together bring 
about a highly complex phenotype. Understanding the functional 
consequences of the biomolecular interactions that occur in the 
yeast is a pre-requisite to understanding the relationship between 
yeast and must, and how each is changed by the other during 
the course of fermentation. Although we are still limited in our 
understanding of regulatory phenomena from a global perspective, 
high-throughput ‘omic’ techniques have the potential to provide 
such information. In particular, the combination of comparative 
microarray datasets with existing models of yeast metabolism and 
interaction networks offers the potential for in silico evaluation 
of biologically relevant gene expression changes in the context 
of key areas of metabolism (Förster et al., 2003; Patil & Nielsen, 
2005). This approach is one of several accessible multi-level 
analyses that can be applied to fermenting yeast, and holds great 
potential in terms of providing answers to scientific questions of 
fundamental importance.
Systems biology meets biotechnology
The emergence of systems biology constitutes a massive paradigm 
shift for biotechnologists. The switch from reductionist approaches 
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in molecular biology to a new school of biological thought that 
is dominated by integrative ‘big-picture’ thinking opens new 
perspectives for the design and implementation of biotechnological 
approaches. The high throughput technologies of the post-genomic 
era have effectively created a massive amount of largely unexplored 
datasets, mostly publicly available in various databases. Systems 
biology may hold the key to assimilating all this information 
together into coherent models that facilitate drug discovery and 
metabolic engineering, the two hubs of modern biotechnology. 
For a more complete review of the impact of systems biology on 
metabolic engineering, see Nielsen & Jewett (2008).

There is undoubtedly a desperate need for novel alternatives 
to the hit-and-miss approaches of bioprocess and bioproduct 
development in the past. A few systems biology companies have 
already emerged in the last decade, mostly in the spheres of drug 
discovery and development, as well as signal transduction. Global 
biotech companies such as Novartis have also embraced systems 
biology divisions into the folds of their existing corporate structure 
(Mack, 2004). By using systems biology approaches, established 
pharmaceutical companies have managed to drastically reduce 
their ‘screening to compound development’ periods in drug 
development for diabetes, obesity, arthritis, asthma, several 
cancers and many more money-spinning diseases. Outside of 
healthcare, the same opportunity for accelerated success exists 
for metabolic engineers as well.

Systems biology also has the potential to be a key role-player in 
the strain improvement arena of biotechnology (Stephanopoulos 
et al., 2004). Successful exploitation of cellular complexity for 
strain enhancement relies on a coordinated understanding of 
multiple cellular processes. Progress in this area is thus dependent 
on the development of theoretical frameworks that facilitate 
the elucidation of molecular mechanisms and the identification 
of genetic targets for modification. Strain improvement does 
present a very specific and attainable goal in the context of 
systems biology, particularly in combination with genetic tools 
such as the yeast overexpression and deletion libraries. Strains 
can be modified by introducing specific transport, conversion or 
regulatory changes that result in flux redistribution and improved 
production of desired compounds, or altered strain physiology. 
Clearly innovative application of relevant technologies holds the 
potential to expedite insightful modifications to yeast strains for 
application in the wine-making industry.
CONCLUSION
The idea of wine science as a convergence of multidisciplinary 
scientific exploits is a well known and established reality. Core 
sciences include biological, chemical, ecological, geological and 
sensory sciences, as well as certain aspects of process and chemical 
engineering. As understood by everyone in the field, the process 
of winemaking on a large-scale agricultural and industrial level 
involves numerous interlinked factors that are to a large extent 
poorly characterized and even more poorly controlled. While the 
more classic methods of scientific research will always remain 
an integral and indispensable part of the biological sciences, a 
ceiling is eventually reached by these approaches which can only 
be breached by holistic interdisciplinary techniques that integrate 
biological information into knowledge-based models of complex 
systems. Systems biology has emerged as the scientific challenge 
of present times, and looks set to hold this title for a few more 

years to come. In order to be able to benefit from current and future 
scientific developments, wine science has to embrace the ‘omic’ era 
and incorporate its toolbox of profiling technologies into standard 
research practices. A holistic approach towards understanding the 
complex metabolic and regulatory phenomena that characterize 
living systems will undoubtedly reveal many of the unknown 
interactions between genes, proteins, and metabolites, facilitating 
the truly rational improvement of production processes and the 
development of new biotechnological approaches to address 
current limitations of vine growing and wine making.
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