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The implementation of travel time reliability (TTR) in route choice behaviour is still not very 

common in transport models, especially not in a public transport context. The reasons probably 
are that it is difficult to measure and that there is no agreement how it best can be represented in 
utility functions. Typically, it is represented by a standard deviation, however, particularly in 
public transport choices it is more likely that travellers think about the consequences of 
unreliability in travel times in terms of buffer times. This paper contributes to the literature by 
comparing five different model specifications of TTR in public transport route choices that are 
either based on standard deviations or on buffer time indicators. The models are estimated from 
choices observed in a stated choice experiment. To address heterogeneity, a latent class model is 
estimated. The results suggest that the reliability buffer time indicator outperforms the standard 
deviation indicator. Furthermore, the reliability buffer time parameter is only statistically 
significant in two of the four classes. The other two classes are particularly sensitive to making 
transfers and to low frequencies of public transport services, suggesting different strategies to 
deal with TTR.  
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1. Introduction 

Policy makers in many countries aim to enhance sustainable mobility (Van Oort et al. 2013) by 
improving public transport (PT) service quality in order to increase the overall attractiveness of 
public transport. One of the aspects of PT service quality is travel time reliability (TTR). However, 
reliability is usually not included in transport models and consequently these models are not able 
to quantify the effects of enhanced service reliability. Therefore, these reliability effects cannot be 
taken into account in societal cost benefit analyses of, for example, infrastructural projects.  
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In transport models, typical attributes of specific route alternatives, such as travel cost and travel 
time, are valued and transformed to the same unit, usually cost in euros or dollars (or in any 
other currency). Incorporating reliability in a generalized cost function is however more 
complicated, because there is no widely accepted agreement on its unit of measurement as is the 
case for travel cost (measured in the nation’s currency) and travel time (typically measured in 
minutes or hours). Because the measurement unit of reliability is not trivial (Van Loon et al. 2011), 
several distinct modelling approaches can be found in the literature. The two most common 
approaches are the so-called scheduling approach and the centrality-dispersion approach. 
Because this study was carried out in the context of improving a four-step static model (that is the 
VRU-model, the regional transportation model of Utrecht, the Netherlands), this paper focuses 
on the centrality-dispersion approach since this approach better matches the scope of static 4-step 
models (Paulley et al., 2006). Also Carrion & Levinson (2012) concluded that the centrality-
dispersion approach is preferred on practical grounds, while the scheduling approach is 
favoured theoretically. Fosgerau & Karlström (2010) also proved that, under some assumptions, 
the scheduling approach can be converted to a centrality-dispersion form. However, it should be 
noted that this relation becomes increasingly complex and non-linear when scheduled services 
are considered. 

The centrality-dispersion approach, also known as the mean-variance approach, was first 
proposed by Jackson & Jucker (1982). It is based on the assumption that travellers place a 
disutility on travel time variability (TTV) itself, and the uncertainty that is associated with that. 
This approach assumes that the traveller makes a trade-off between expected travel time and 
TTV. Different measures exist for TTV of which the standard deviation is most often used 
(Significance, 2013, Kouwenhoven et al., 2014). Mean and median travel time are predominantly 
used as a centrality measure. Note that TTV and TTR are reversely related concepts: if travel time 
variability is high, travel time reliability is low and vice versa. 

However, many different dispersion measures for both car and public transport travel can be 
found in the literature, because there is no consensus about how travellers perceive reliability and 
make decisions accordingly. The following two dispersion measure types are identified in Lomax 
et al. (2003) and are proposed in a public transport context in Van Oort (2011). The first are 
Statistical range measures, which include a Standard Deviation (SD). These are the predominantly 
used measures in the literature (Significance, 2013; Tseng, 2008; Hollander, 2006, Kouwenhoven 
et al., 2014). The second are Percentile difference measures, which are based on the assumption that 
travellers incorporate a buffer time in their trip to account for unreliability of their travel time in 
order to arrive on time for their planned activity. This measure was first proposed in Furth & 
Muller (2006) as the so-called Reliability Buffer Time (RBT). It is usually expressed as the difference 
between the 80th, 90th or 95th percentile and the median travel time. Other measure types include: 
(i) Tardy-trip measures, which use the amount of trips that result in late arrivals, and (ii) 
Probabilistic measures, which express reliability in, for example, the probability that a trip can be 
made within a specified interval of time.  

Because underlying aim of this study was to improve a static 4-step model, we focus however on 
Statistical range and Percentile difference measures. Table 1 presents the SP/RP studies found in 
the literature that used a centrality-dispersion approach. These studies are categorized in the use 
of their TTV indicator (SD or RBT), in the inclusion of other attributes in addition to TTV, that is 
travel cost, travel time, transfers and/or frequency, and mode type examined, either car or PT. 
The table makes clear that TTR has mainly been studied in car choice contexts. However, at least 
three important differences exist with respect to studying TTR in a public transport (PT) context. 
First, due to scheduled arrival times, a PT passenger is probably more aware of the precise arrival 
time than a car driver. This allows the passenger to compare the actual arrival time with the 
scheduled one. Any differences might be interpreted as unreliability, whereas in case a car route 
always results in a 5 minutes delay, actually the car driver may not perceive travel time 
unreliability. Thus, the incorporation of scheduled travel time in the generalized cost function 
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might be more appropriate in a PT context than in a car context (Bates et al., 2001). Second, a trip 
made by public transport may consist of multiple legs that requires one or more transfers. When 
a vehicle arrives late and the transfer is missed, this immediately results in added travel time 
with a full headway. A missed transfer therefore always depends on the interaction between the 
two vehicles (Lee, 2013; Mai et al. 2012), and a few minutes late can have large additional travel 
time as a result. Third, the frequency of public transit services limits the departure times for the 
traveller to several discrete times per time unit (hour, day, week). Therefore, the PT arrival time 
has a more discrete nature than the car arrival time which may not always be ideal for travellers 
regarding their planned activities (Van Oort, 2011; Ma et al. 2014).  

Table 1. Attributes used in the literature on travel time reliability 

Other considered 
attributes  

TTV indicator 

SD RBT 

Travel cost  
Travel time 

Car: Asensio & Matas (2008) 
PT: Hollander (2006). 
Both: Significance (2013), Tseng 
(2008) and (Li et al. (2010), 
Kouwenhoven et al., 2014. 

Car: Ghosh (2001), Liu et al. (2004) 
and Small et al. (2005). 
PT: none 

Travel cost  
Travel time  
Transfer  
Frequency 

PT: none  PT: none 

Thus, modelling TTR in a PT context induces more complexity than modelling TTR in a car 
choice context, hence, the best TTR modelling approach in car context is not necessarily the best 
modelling approach in a PT context. Furthermore, Table 1 makes clear that to the best of our 
knowledge, no TTR studies exist that applied RBT in a public transport context. Finally, no study 
to date took PT-specific attributes into account, such as the number of transfers and service 
frequency, whereas these play an important role in the TTR impact in a PT context, as just 
argued. This paper therefore intends to make the following contributions to the literature. First, 
to find which representation is better among two centrality-dispersion type alternatives in the 
context of modelling public transport choices. To that effect, various model specifications based 
on SD and RBT are developed and estimated from choices observed in a stated choice 
experiment. Results are compared in terms of interpretability and model fit. Second, to examine 
the relative importance of TTV attributes in a context that also describes the PT-specific attributes 
making transfers and service frequency. Therefore, this research will focus on pre-trip route 
choice to catch actual behaviour concerning travel time reliability not affected by mode 
preference and other long-term behaviour found in Peer et al. (2015). Third, to test whether 
different strategies exist among travellers with respect to dealing with TTR. To that effect, a 
Latent Class Model (LCM) is estimated to identify latent segments in the population with 
different valuations of TTR.  

The remainder of this paper is structured as follows. In the next section, the model alternatives 
are developed. Subsequently, the stated choice experiment and the data collection procedure are 
discussed. This is followed by a presentation and discussion of the results. Finally, some 
conclusions are drawn. 

2. Development of model alternatives 

In this section, we develop alternative model specifications, which are based on the two main 
conceptual models for dispersion measures discussed in the Introduction, either Standard 
Deviation or Reliability Buffer Time. As earlier discussed, the standard deviation is the most 
widely used indicator for TTV. A study by Benwell & Black (1984) suggests, however, that this 
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indicator may not be the best one. In the latter study travellers were asked to choose between 
three alternative patterns of lateness with the same mean delay value as shown in Table 2. 
Surprisingly, the alternative with the highest standard deviation was most preferred by the 
respondents, while the alternative with the smallest standard deviation was the least preferred. 
The 80th –percentile (presented in the fourth column), however, seems to explain the results 
better: The alternative with the lowest 80th-percentile is most preferred, while the alternative with 
the highest value is the least preferred. The effect that travellers prefer an alternative with a larger 
travel time standard deviation will be further referred to as the Benwell & Black-effect. These 
results contradict the hypothesis that a larger travel time standard deviation will always result in 
less attractive route alternatives. Since the 80th-percentile is directly related to the concept of RBT, 
we expect that RBT is a better indicator of TTV than SD. However, Table 2 also suggests that 
much heterogeneity in preferences with respect to TTV among the travellers exists, which 
suggests that this should be taken into account in the modelling. 

Table 2. Results of Benwell & Black (1984) (modified: 80th-percentile added) 

Series of delay patterns Mean delay S.D. 80th-percentile Ranked first Ranked last 

0,0,5,6,8,7,6,4,5,9 5 2.86 7 38% 47% 

0,0,0,0,0,0,25,5,10,10 5 7.75 10 6% 29% 

0,0,0,0,0,0,0,0,20,30 5 10.25 0 56% 24% 

 
The following five model specifications either based on the standard deviation (SD, used in 
variants 1a and 1b), or Reliability Buffer Time (RBT, used in variants 2a, 2b and 2c) will be 
compared in this paper. These are summarized in Table 3 and graphically depicted in Figure 1. 

1a The first model alternative (1a), Mean-SD (M-SD), is used in various studies 
(Significance, 2013; Tseng, 2008; Hollander, 2006; Asensio & Matas, 2008, Kouwenhoven 
et al., 2014), and it only uses the mean travel time Tmean and its standard deviation σT.  

1b The second model alternative (1b), Scheduled-Mean-SD (SM-SD) is a more elaborate 
variant of the previous model alternative. It is based on Van Oort et al. 2014 and assumes 
that travellers experience two effects if confronted with variability in travel time 
duration for the same service: first, additional travel time, which in this alternative is 
represented by Tadd,mean, calculated as the mean travel time (Tmean) minus the scheduled 
travel time (Tscheduled). Second, uncertainty around the mean travel time, which results in 
uncertain arrival times, which in this alternative is represented by the standard 
deviation of travel times σT as a dispersion measure.  

2a Model alternative 2a, Median-RBT (M-RBT), is extensively used in Uniman (2010). It is, 
as the following two alternatives, based on the RBT. This alternative, as well as model 
1a, does not take Tscheduled into account, but assumes that only Tmedian and RBT play a 
role.  

2b Alternative 2b, Scheduled-Median-RBT (SM-RBT), was originally proposed in Van Oort 
(2011). It uses the scheduled travel time Tscheduled, the added median travel time 
Tadd,median and the RBT. For reasons explained in Section 3.1, the 80th-percentile travel 
time will be used for RBT in this study. 

2c Finally, model 2c, Scheduled-RBT (S-RBT), uses a relatively new definition of RBT and 
was first proposed by Ma et al. (2014). It only uses Tscheduled and RBTscheduled, which is 
defined as the difference between T80th -percentile and Tscheduled (see Figure 1). Ma et al. 
(2014) originally defined it as the difference between the Mth -percentile travel time and 
the typical travel time Ttypical. However, since the direct expectation of the travel time of 
a trip comes from the timetable published by the operator, Ma et al. (2014) also stated 
that the scheduled travel time should be chosen as Ttypical. Note that model 2c does not 
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take any statistically based centrality measure such as mean, median or standard 
deviation into account. 

Table 3. Considered model alternatives 

Model alternative Tscheduled 

Centrality measures Dispersion measures 

Proposed/used in Tmean Tmedian SD RBT 

1a) M-SD  x  x  

Significance (2013), Asensio & 
Matas (2008), Hollander (2006) 
and Tseng (2008) , 
Kouwenhoven et al., 2014 

1b) SM-SD x x 
 

x 
 

Van Oort et al. (2014) 

2a) M-RBT   x  x Uniman (2010) 
2b) SM-RBT x 

 
x 

 
x Van Oort (2011) 

2c) S-RBT x       x Ma et al. (2014) 

 

 
Figure 1. Illustration of SD- and RBT-models 

3. Methodology 

This section describes the methodology applied in this research. First, the construction of the 
conducted stated choice experiment and the data collection procedure are described. 
Subsequently, the Latent Class Model (LCM) is briefly explained. 

3.1 Stated choice experiment 
The collection of revealed preference (RP) data tends to be quite challenging and expensive (Peer 
et al., 2015), since it has been proven to be difficult to find real choice situations with sufficient 
variation in TTV, together with other relevant attributes, in order to obtain statistically reliable 
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estimates (Bates et al., 2001). Regarding the timeframe of this research the stated preference (SP) 
method is preferred above the RP method. Therefore a stated choice experiment is constructed to 
observe choices between transit route alternatives. Each choice set describes two unlabelled PT 
routes, of which the attribute levels vary across the different choice sets. Following the format 
suggested by Tseng (2008) as the best one understood by respondents, travel time variability is 
operationalized by presenting a reference travel time, in this study the scheduled travel time, 
plus 5 travel times of which respondents have to assume that these all have equal probability of 
occurring for that particular route. Because the 5 travel times are shown in increasing order, the 
fourth presented travel time travel is the 80th-percentile travel time; therefore this percentile will 
be used to define the RBT in the analysis. In addition to TTV, three other attributes are varied in 
the choices sets: travel cost, presence of a transfer and frequency (Tuinenga, 2014) (Hoogendoorn-
Lanser et al. 2005). The frequency attribute is processed as the average waiting time defined as the 
headway divided by two, under the assumption that travellers arrive randomly at a stop. Hence, 
the alternatives are defined by 5 attributes. 

It is widely believed that the validity of the SP results increase if respondents are presented 
choice situations that are familiar to them, since “it creates more realism in the SP experiments by 
assuring that the alternatives are similar to that which the respondent has experienced in an RP 
setting” (Train & Wilson, 2008). To achieve this, respondents are presented choice alternatives 
that aresimiliar in trip length and trip purpose as those they encounter in their daily lives. 
Therefore, respondents were first asked for which trip purpose they use public transport most 
often, either for commuting/business, for educational, for leisure/shopping or other purposes. 
Thereafter, the length of this trip is administered. Because the trip purpose ’other’ is often a non-
recurrent trip, for this ‘purpose’ the length of the last trip is administered. Subsequently, the 
respondent is assigned to the corresponding distance class, either 0-10 km, 10-30 km or >30 km. 
The respondents are then presented with 12 choice tasks with attribute ranges typical for trip 
lengths of either 5 km, 20 km and 65 km respectively (see Table 4). The corresponding attribute 
levels from the distance classes are adopted from Arentze & Molin (2013). An example of a choice 
set is presented in Figure 2. 

Table 4. Attribute levels 

Parameters Distance class  
< 10 km 
(Trip length 5 km) 

Distance class 
 10 - 30 km 
(Trip length 20 km) 

Distance class 
 > 30 km 
(Trip length 65 km) 

Tscheduled (min) 15/20/25 30/40/50 70/80/90 

RBT (min) 0/3/6 0/5/10 0/5/105 

Tadd,median (min) 0/3/6 0/5/10 0/5/10 

Travel cost (€) 0/1/2 0/2/4 0/7.5/15 

Transfers 0/1 0/1 0/1 

Frequency (per hour) 2/8 2/8 1/4 

 

                                                        
5 Note that these values are similar to those of the second distance class. However, larger values were considered 
to be unrealistic by the participants of the pilot survey. 
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Figure 2. Example of a choice set 

In order to obtain the most reliable estimates, hence those with the smallest possible standard 
errors, and to avoid dominance among the alternatives, the D-efficient design method is applied 
(Bliemer et al., 2009) to construct the choice alternatives. In order to construct such a design, the 
best available estimates of the true parameter values, so-called priors, are required. For this, 
estimates found in the literature (Significance, 2013, Kouwenhoven et al., 2014) were first used as 
priors in a small pilot choice experiment, which was conducted to test the choice experiment and 
obtain better priors. The experimental design is arbitrarily optimized for model 2b SM-RBT. The 
NGENE software package (ChoiceMetrics, n.d.) was applied to generate the experimental design.  

An Internet panel was used for recruiting respondents, resulting in 525 respondents. 
Respondents were mostly recruited from urban areas in the Netherlands in order to have a 
higher probability of recruiting regular transit users. This resulted in 75% of the respondents that 
stated they use public transport more than once per month, which suggests that most 
respondents are indeed regular transport users. Because respondents were recruited from a 
commercial panel that rewards respondents for filling out questionnaires, there is a certain risk 
that part of the respondents only participate for financial gain and are not fully engaged. After 
we could not meaningfully interpret estimated MNL and Mixed Logit Models from the observed 
choices in the experiment (see section 4), we tried to identify respondents that were not fully 
engaged in the choice task by applying the following selection criteria: Respondents that either 
failed to correctly answer the dominant stated choice question, gave repetitive answers (only 
alternative A or only alternative B) or completed the survey faster than a certain time restriction 
(200 seconds: which involves that respondents need on average at least 10 seconds for each choice 
task and 80 seconds to read and understand the explanation of the experiment), were removed 
from the dataset. This led to the exclusion of 101 respondents, resulting in 424 respondents. From 
this reduced sample we still were not able to estimate interpretable MNL and ML models, 
however, we were able to meaningfully interpret a latent class model (see next subsection).  

Because this result came at the expense of removing a considerable group of respondents, we 
tested whether the criteria for removing a respondent could be relaxed. We consecutively 
estimated a latent class model from three different response groups, which each were constructed 

PT-alternative A PT-alternative B

Scheduled travel time Scheduled travel time

25 min 15 min

There is an equal probability on the following travel 

times (potentially missed transfers included)

There is an equal probability on the following travel 

times (potentially missed transfers included)

25 min 15 min

28 min 18 min

28 min 18 min

31 min 21 min

36 min 26 min

Travel cost Travel cost

€ 1 € 2

Number of transfers Number of transfers

0 1

Lowest frequency Lowest frequency

8 times/hour 2 times/hour
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by applying only one of the selection criteria. The model most akin to the final model presented 
in this paper, was estimated from the group that excluded the respondents that did not meet the 
time criterion. The models estimated from excluding repetitive answers or opting for dominated 
options, the response groups that still included those who did not meet the time criterion, 
resulted in uninterpretable models. Applying the time criterion led to excluding 67 respondents 
and was the criterion the led to largest number of excluded respondents. The model estimated 
from this group (N=458) led to the same number of classes, but the structure was somewhat less 
clear than the model estimated from applying all three criteria (N=425): the SRBT is only 
statistically significant at the 0.05 level in one of the classes and additionally statistically 
significant at the 0.10 level (two-sided test) in another class. Moreover, a model without a 
membership function fits better. This suggests that not only the respondents that did not meet the 
time criterion were not fully engaged in the choice task, but also the respondents that did not 
meet the other two criteria. Based on these test results, we still have most confidence in the model 
we estimated from the response group we obtained by applying all three selection criteria.  

3.2 Latent class model 

A latent class model is estimated to address heterogeneity in preferences among the travellers. It 
is assumed that segments exist in the population that have different preferences, but which are 
internally relatively homogenous. These classes or segments cannot be observed and are 
therefore latent and emerge in the estimation process (Nylund et al., 2007). The latent class model 
estimates a set of parameters for each class, where each set describes the preference tastes of that 
class. Simultaneously, a class membership model is estimated that predicts the probability of 
each individual belonging to each class, in which observed individual characteristics such a 
socio-demographic variables may be included as predictors.  

The latent class model does not assume any particular shape for the distribution of tastes, since 
the classes are discrete (Significance, 2013). Each set of class specific parameters may be regarded 
as stemming from an MNL model. However, due to the fact that a set of parameters is estimated 
for each class, the latent class model does not have the Independence of Irrelevant Alternatives 
property, which allows for more valid predictions than the MNL model. The LC models will be 
estimated using the software package Nlogit 4.0. 

In a latent class model, the number of segments is unknown and, therefore, the optimal number 
of segments needs to be determined. The likelihood ratio test cannot be applied in this case as the 
different models are not nested. Instead, the optimal number of classes is determined by using 
the Akaike Information Criterion and the Bayesian Information Criterion (Gupta & Chintagunta, 
1994). The goal is to find the model with the minimal AIC or BIC, where the BIC penalizes extra 
classes more heavily and shows the better performance of the two (Nylund et al., 2007). 

4. Results 

In order to have basic reference models, MNL models were first estimated for all five model 
alternatives. However, the results were not satisfactory: not in any of the model alternatives a 
TTR related parameter was found to be statistically significant or had the expected sign. Also 
more advanced models did not result in more satisfying results: we tried segmentation on 
observable characteristics, estimation of interaction effects with personal characteristics, and 
mixed logit models involving randomly distributed parameters to address taste heterogeneity. 
This suggests that taste heterogeneity exists that cannot be captured by segmentation based on 
observable characteristics or by assuming distributions around mean parameters. To examine 
whether different strategies exist to deal with TTV in the context of PT travel, latent class models 
were estimated. The results of the best fitting LC-models for each of the five model alternatives 
are presented in Table 5. The optimal number of classes for each model alternative is shown in 
the second column of Table 5. The table shows that the minimum adjusted Rho square value of 
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any of the latent class models is 0.294 which is a considerable improvement in goodness of fit 
compared to the estimated MNL and mixed logit models, which had adjusted Rho-square values 
in the range of 0.180-0.200 and 0.230-0.250 respectively. 

Table 5. Results of latent class model estimations for all model alternatives 

Model No. of 
classes 

No. of 
parameters 

Adj. Rho2 AIC BIC Correct signs for 
all TTR 
parameters? 

TTR 
parameters 
significant? 

1a M-SD 5 29 0.318 0.952 0.989 No Yes 

1b SM-SD 4 27 0.316 0.954 0.989 Yes No 

2a M-RBT 4 23 0.294 0.982 1.012 No Yes 

2b SM-RBT 4 27 0.301 0.974 1.009 No Yes 

2c S-RBT 4 23 0.316 0.953 0.983 Yes Yes 

 
The last two columns of Table 5 indicate whether all TTR related parameters have the correct sign 
and whether any of the TTR parameters are statistically significant in all classes. Only in models 
1b and 2c all TTR parameter estimates have the correct sign. Of those two models, only model 2c 
contains statistically significant TTR related parameters. Moreover, although model 2c has the 
same adjusted ρ2 value as model 1b6, it has a smaller number of parameters and is thus the more 
parsimonious model. Hence, it is the only model in which all TTR related variables have the 
correct sign, one of its parameters is statistically significant in at least one class, it is parsimonious 
and has a good model fit. Hence, we conclude that model 2c is the preferred model. This result 
suggests that, as expected, RBT is a better indicator of TTR than SD in the context of PT route 
choices.  

Table 6 shows the estimates of model 2c. Each class is highly sensitive to a single attribute, which 
is consequently used to label the segment. The segments are briefly discussed in the following: 

 In segment 1 the parameters of RBTscheduled and Twait are not statistically significant, and 
compared to most other segments, the Tscheduled parameter has a somewhat lower value. 
Most remarkable is the very large parameter value estimated for Transfer. Apparently the 
main strategy of this segment in dealing with travel time uncertainty is to avoid transfers, 
while they don’t mind waiting and traveling somewhat longer. Hence, it  is labeled as 
‘transfer sensitive’. 

 Segment 2 does not have a significant RBTscheduled parameter. Of all segments, this 
segment is most sensitive to waiting time; its parameter value is almost three times as 
high as its scheduled travel time value. The main strategy of this ‘waiting time sensitive’ 
group is choosing route options with a high frequency of service.  

 Segment 3 is the only segment with significant parameter estimates for all attributes. 
Most distinctive of this class is the very high value of the cost parameter and it is 
therefore labeled as ‘cost sensitive’.  

 Also in segment 4 the estimate of RBTscheduled is statistically significant, while its transfer 
parameter is not statistically significant. Compared to the previous segment, all 
parameters have somewhat lower values, which is illustrated by the fact that the ratio 
between its RBTscheduled and Tscheduled parameter is almost the same as in segment 3 (0.168 
and 0.163 respectively). Although its Tscheduled parameter is somewhat lower than that 
of segment 3, within this segment this parameter has the highest t-value and therefore 

                                                        
6 Note that model 1a has an even better model fit than model 1b, however the SD-parameter is estimated with the 
incorrect sign for all segments, which might be explained by the Benwell & Black-effect. 
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this segment is labeled ‘time sensitive’. However, it should be noted that this group has 
less distinct features than the other segments. 

All class probabilities are between 20-30%, hence, the four segments have fairly equal class sizes. 
The results make clear that segments 3 and 4 have statistically significant RBTscheduled parameters. 
As those two segments represent 56.3% of the travellers, this suggests that the majority of the 
travellers derives a direct disutility from the amount of buffer time. However, this does not mean 
that only those two groups are sensitive to TTV: the main strategies applied by the first two 
groups, that is avoiding transfers and choosing for high frequency services, may be regarded as a 
general strategy to deal with uncertainty in PT travel times. In sum, the results suggest the 
existence of four different decision strategies in making PT route choices in the context of travel 
time variability.  

Table 6. The estimated parameters of the segments of model 2c (RBTSCHEDULED) 

 1. "Transfer 
sensitive" 

2. "Waiting time 
sensitive" 

3. "Cost sensitive" 4. "Time sensitive" 

Par. t-ratio Par. t-ratio Par. t-ratio Par. t-ratio 

Attributes 
Tscheduled -0.081 -3.076 -0.038 -5.917 -0.127 -9.011 -0.103 -15.737 

RBTscheduled 0.033 1.878 0.010 1.085 -0.021 -2.334 -0.016 -3.178 

Cost -0.374 -3.607 -0.547 -17.522 -2.058 -21.123 -0.246 -9.537 

Transfer -2.185 -11.077 -0.559 -5.588 -0.937 -9.688 -0.023 -0.457 

Twait 0.002 0.299 -0.106 -19.875 -0.032 -7.565 -0.009 -4.979 

         
Class probability 23.3% 20.4% 27.0% 29.3% 
         
Class membership 
Constant -0.842 -3.543 -0.875 -3.631 -0.022 -0.108 0.000 (fixed) 
Distance  0.018 3.813 0.016 3.282 -0.003 -0.367 0.000 (fixed) 

 
To explain class membership, we explored different variables as predictor in the MNL class 
membership function. Age and travel distance appeared as the only two serious candidates for 
inclusion. However, inclusion of only distance resulted in a higher adjusted Rho-square value 
than inclusion of distance and age together or inclusion of only age. Thus, only distance was 
included in the membership function of the final model. The parameters of the function that 
predicts for each respondent the probability of belonging to each class are presented at the 
bottom of Table 6. The estimated constants of segments 1 and 2 are both statistically significant 
and negative, and indicate an overall smaller probability of belonging to these groups compared 
to the fourth segment (the reference group of which parameters are fixed to zero), which is 
reflected in the lower class probability values that are also presented in the Table. Furthermore, 
the distance parameters of the first two groups are statistically significant and positive, meaning 
that with increasing distance of the reference trip, the probability of belonging to these two 
groups increases. Among others, this suggests that travellers with longer reference trips are more 
sensitive to making transfers (segment 1) or to waiting time (segment 2), while they are less 
sensitive to the amount of buffer time.  

5. Discussion of results 

The results of this research are compared with those of other studies in Table 7. For this we 
calculate several ratios that allow comparison with other studies. The Reliability Ratio (RR) is 
here defined as the Value of Reliability (VOR) divided by the Value of Time (VOT). The waiting 
time factor gives the ratio between the waiting time parameter and the scheduled travel time 
parameter. The transfer penalty gives the ratio between the transfer parameter and the scheduled 
travel time parameter. No studies were found which used RBTscheduled as an operationalization of 
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reliability. Also studies that directly value RBT are scarce. In the beginning 2000’s some RP 
studies were conducted on a motorway stretch in California. The RR values found in these 
studies are compared with the average value of the RR of all classes found in the latent class 
analysis. Also the RR found in the national VOT study of the Netherlands, for BTM and train, is 
presented, as well as some other SP studies. These studies used the standard deviation of travel 
times as a TTR indicator. From Tseng (2008) we know that this TTR definition is roughly equal to 
T85th-percentile - T50th-percentile, when a normal distribution for travel time is assumed (which is not 
true in most cases). Table 7 also compares the waiting time factor and transfer penalty found in 
this research with a few other studies. Hoogendoorn-Lanser et al. (2005) conducted a RP survey 
for the Rotterdam-Dordrecht region, while Tuinenga (2014) (RP study) is applicable on the Paris 
metropolitan region. 

Table 7. Comparison with results of other studies 

Research RR TTR 
indicator 

Average 
VOT 

Range VOT Waiting time 
factor (min) 

Transfer penalty 
(min) 

Small et al. 
(2005) (car) 

0.91 80th - 50th 
percentile 

- - - - 

Liu et al. (2004) 
(car) 

1.61 90th - 50th 
percentile 

- - - - 

Ghosh (2001) 
(car) 

1.17 90th - 50th 
percentile 

- - - - 

Hollander (2006) 
(PT) 

0.10 Standard 
deviation 

- - - - 

Tseng (2008) 
(car/PT) 

0.50 Standard 
deviation 

- - - - 

Significance 
(2013), 
Kouwenhoven 
et al., 2014 
(car/PT) 

0.60 Standard 
deviation 

€8.25 €6.00 - €19.75 - - 

Shires & De 
Jong (2009) 
(car/PT) 

- - €15.17 €6.21 - €24.83 - - 

Börjesson & 
Eliassion (2011) 
(car/PT) 

- - €5.08 €2.80 -  €7.20 - - 

Hoogendoorn-
Lanser et al. 
(2005) (PT) 

- - - - 2.2 5.1-11.4 

Tuinenga (2014) 
(PT) 

- - - - 1.34 1.06-9.70 

Current research 0.00-
0.17 

80th perc. - 
Tscheduled 

€12.26 €3.37 - €24.64 0.63 10.67 

 
The results indicate that the RR found in this research is much smaller than in the other studies, 
however, as indicated before, those studies use other TTR indicators and are more or entirely 
focused on private cars. Furthermore, the (average) transfer penalty found in this research is on 
the high end of the range found in the other studies. A possible explanation is that presenting 
variable travel times makes travellers more aware of the risk of a transfer, that is that it 
immediately increases travel time by a full headway. Despite the fact that in the survey it was 
specifically stated that potentially missed transfers were included in the presented variable travel 
times, it seems that respondents tend to be risk avoiding when variable travel times are shown in 
combination with a transfer. The fact that the transfer penalty is especially high in the segment 
with an insignificant RBTscheduled parameter supports this explanation.  

Moreover, the waiting time parameter is relatively low for the classes with a statistically 
significant RBTscheduled parameter. A possible explanation for this is that some of the waiting time 
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related disutility is allocated to RBTscheduled (or transfer) parameter, since the magnitude of the 
consequence of a missed connection is indicated by the frequency of the service (low frequencies 
result in long waiting times). Thus, the results might show that the respondents’ perception of 
TTR, frequency and transfer, and its valuation, are intertwined. The interaction between TTR and 
transfer was probably also encountered in Significance (2013) (SP study), where the estimation of 
a transfer parameter in the model lead to ‘wrong signs and/or insignificant estimates for this 
variable, and inconsistencies between purposes’ (Significance, 2013). The identification of the four 
latent classes make clear that different strategies exist to deal with this complex interplay of 
factors related with travel time variability in public transport. 

A remarkable finding is that in most of the classes a single parameter is by far the most 
prominent parameters as suggested by very high t-values. This suggests that instead of making 
trade-offs among all attributes, a considerable part of the respondents applied simplifying 
heuristics to complete the choice task, such as for example a lexicographic choice rule, that is that 
one considers only a single attribute and one always chooses the alternative that has the best 
values on that attribute. To examine to what extent this is the case in this study, we conducted the 
following analysis. We first assigned each respondent to only one class that is the class for which 
they have the highest estimated probability of belonging to. Then we examined which share of 
the class members always chooses for the alternative that scored best on the prominent attribute 
in that class. Only the choice sets that have different values on the prominent attribute were 
considered. The results are presented in Table 8. 

Table 8. Percentage of respondents that based their decision on the segment-specific 
prominent attribute 

Class Decision based on the prominent attribute 

Cost sensitive 60% 

Time sensitive 17% 

Transfer sensitive 30% 

Waiting time sensitive 25% 

 
The highest percentage (60%) of always choosing for the prominent attribute is observed in the 
cost sensitive class. However, this is the only class in which all parameters are statistically 
significant and what is more, they all have the expected sign. This suggests that although 
members of this class consider travel costs most important, they actually also considered the 
other attributes and made trade-offs among them. For the three other classes much smaller 
percentages of always choosing the alternative that scores best on the most prominent attribute 
are observed. From these results we may conclude that lexicographic decision-making does not 
play a large role in the observed choices and it cannot explain the prominence of the single 
attributes in each class. These results thus suggest that the latent segments indeed have different 
strategies to deal with uncertainty in travel times.  

These findings might be affected by the rather complex experimental set-up, i.e. the way travel 
time reliability is presented and the number of attributes. Although we based our format for 
presenting TRR on the best scoring format found in empirical research, we cannot rule out that its 
meaning is hard grasp for part of the respondents. Furthermore, the use of an Internet panel 
might lead to biased results as well. On the other hand, in reality public transport travellers are 
confronted with choice situations that are even more complex than this stated choice experiment. 
SP studies that have limited the description of choice situations to reliability, travel time and 
travel cost only, ignore important characteristics as transfers and frequencies and may therefore 
arrive at less valid models. Moreover, there is a large variety in public transport travellers, so the 
concept that they might use different strategies to cope with these complex situations seems 
certainly plausible.  



EJTIR 17(2), 2017, pp.263-278  275 
Swierstra, Van Nes & Molin 
Modelling travel time reliability in public transport route choice behaviour 
 

Regarding the observation that the RBTscheduled showed better results than the SD, we should 
acknowledge that this could be biased by the presentation of the five possible travel times. Also 
the fact that the experimental design is optimized for one of the RBT-models could have biased 
the result. However, the Benwell & Black-effect suggested a shortcoming of standard deviation as 
an indicator of travel time reliability. Nevertheless, corroboration in future research that applying 
different representations of travel time reliability is needed before firm statements about the best 
TTR indicator can be made. 

6. Conclusions 

This paper examined travellers’ preferences regarding travel time reliability in public transport 
route choice. The main question addressed was how best to represent travel time reliability in 
utility models. To answer this question, five model alternatives have been developed and 
estimated from choices observed in a stated choice experiment. To address heterogeneity, latent 
class choice model were estimated. The results suggest that RBT (Reliability Buffer Time) is a 
better indicator for inclusion of TTR (travel time reliability) in utility models than the SD 
(standard deviation). This suggests that when travellers are presented with a range of possible 
travel times that are all equally likely, most travellers do not “calculate” a standard deviation and 
react to that outcome, but they rather consider the acceptability and probability of the delays. Of 
the three tested RBT variants, the variant with only the RBTscheduled parameter appeared to 
provide the best results. This indicator is the buffer time calculated by the difference between the 
80th-percentile of the five presented travel times with the scheduled travel time. A possible 
interpretation is that the buffer time could be regarded as the additional time travellers add to the 
scheduled travel time in order to be on time in most of the trips they make. More specifically, the 
80th percentile would then mean that if they add this buffer to the scheduled time, they are on 
time in 80% of all trips they make, while they are late in 20% of the trips. Therefore, the 
RBTscheduled represents a degree of acceptability of being too late. The decision for the 80th 
percentile is, however, somewhat arbitrarily and should be further researched.  

A four-segment latent class model appeared to fit the data best, which showed that considerable 
heterogeneity in preferences exists among respondents. The four segments suggest different 
strategies in dealing with the complex interplay of factors that are related to travel time 
reliability, that is variability of arrival time, having to make transfers and frequency of service 
that determines waiting time. While buffer time was not statistically significant in the first two 
classes, the main strategies in making PT route choices in those classes still seem to be related 
with travel time reliability:  the main strategy of the first segment is to avoid making transfers, 
while the main strategy of the second segment is to avoid low service frequency (hence, 
minimizing waiting time). Recall that missing a transfer due to irregular public transport services 
might lead to substantial longer travel times. In the latter two segments that represent the 
majority of travellers (56.3%), buffer time is statistically significant, while these two segments 
have more conventional strategies in making PT choices: the third segments mainly focuses on 
minimizing travel costs, while the fourth segment mainly focuses on minimizing travel time 
(although this strategy is less pronounced). Overall, the results of this study suggest that when it 
comes to TTR in PT route choice behaviour it is worthwhile to estimate latent class models, since 
this significantly improves the model fit and the interpretation of the results. This heterogeneity 
could not be captured by segmenting on observable characteristics or by mixed logit models. 
Also the inclusion of PT-specific attributes, such as transfer and frequency, is recommended in 
future research, since these attributes are closely interrelated with TTR in a public transport 
context. 

It should be noted that the results presented in this paper are found in the context of a stated 
choice experiment. Travel time reliability is operationalized in a specific way by presenting five 
equally likely outcomes. Hence, this represents a situation where the traveller is aware of travel 
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time reliability and has full knowledge on the likelihood and the magnitude of the travel time 
outcomes. It may be obvious that this may not be the case in the real world. Although it seems 
reasonable to assume that most travellers are aware of travel time variability, they may not be 
aware of the magnitude. Moreover, travellers’ perceived distributions of TTR may differ from 
true values. Hence, the way travel time variability is stored in their memory may influence the 
performance of TTR indicators. Hence, an interesting direction for future research is to examine 
the performance of TTR in a revealed choice context. In the Netherlands some unique data sets 
exist that may offer opportunities for conducting such a research. Public Transport Chipcard data 
allows for the analysis of public transport trip making over time, while GOVI-data provides 
detailed information on the actual (operational) quality of the services offered (see also Van Oort 
et al. and GOVI (n.d.)). By analysing route choice behaviour of a specific group of travellers and 
linking their choices to the actual operational performance of the public transport system, more 
detailed insight can be obtained in the way travellers perceive TTV, and what kind of strategies 
they apply when they are faced with a transport system that inherently reveals variability in 
vehicle times and in which they experience the discrete impacts when missing a vehicle or 
missing a transfer.  

Furthermore, and as argued before, it is highly recommended that such a research considers 
estimating latent class models to capture heterogeneity. Our results suggests that different classes 
exhibit different behaviours, that is, they apply different decision weights to arrive at decisions. 
That we could not find interpretable MNL and mixed logit models in this study suggests that, in 
contrast to widespread belief, MNL models do not always produce robust results in case of 
heterogeneity.  
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