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The aim of this paper is to assess the reliability of policy evaluation based on Land Use and Trans-
port Interactions models, relative to the choice of the Basic Spatial Units. An UrbanSim (+ MATsim)
model applied to Brussels (Belgium) is used as the case study. The evolution of the study area
over twenty years is forecasted for four levels of Basic Spatial Units and five scenarios (business-
as-usual and four alternatives). Results show larger variations between Basic Spatial Units levels
than across scenarios. These findings are valid for various sustainability indicators and for a sim-
ple cost-benefit analysis aiming at ranking the scenarios. The direction of the variations resulting
from the implementation of the scenarios remains, however, the same for all Basic Spatial Units
levels. Hence, the influence of the scale on policy evaluation based on Land Use and Transport
Interactions models appears limited when it is only intended to compare scenarios, but it will have
a crucial role when evaluations are based on absolute variations or threshold values.
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1 Introduction

Nowadays, many cities seek to implement transport and/or land-use policies for increasing their
sustainability. Land Use and Transport Interactions models (hereafter LUTI) are a natural choice
of assessment tool in this situation, thanks to their ability to forecast future urban pattern with
and without the implementation of these policies (Rodrigue et al., 2013; for the type of policies
that can be simulated by different LUTI models, see Geurs and van Wee, 2004; Hunt et al., 2005).
Operational applications of LUTI models are, therefore, increasingly common (see Bartholomew,
2007; Thomas et al., 2015b, for reviews of US and European case studies).

In most of these applications of LUTI models, there is a lack of interest for spatial bias (Thomas et
al., 2015a, Thomas et al., 2015b). The issues of spatial aggregation and of the Modifiable Areal Unit
Problem (MAUP, see Openshaw, 1977; Openshaw and Taylor, 1979) has received a large attention in
the geographic literature, but also in the field of transport modelling (e.g. Ding, 1998; Viegas et al.,

1A: Voie du Roman Pays 34, 1348 Louvain-La-Neuve, Belgium T: +32484967551 F: +3210474301 E:
jonathan.jones@uclouvain.be

2A: Voie du Roman Pays 34, 1348 Louvain-La-Neuve, Belgium T: +3210474343 F: +3210474301 E: do-
minique.peeters@uclouvain.be

3A: Voie du Roman Pays 34, 1348 Louvain-La-Neuve, Belgium T: +3210472136 F: +3210474301 E: is-
abelle.thomas@uclouvain.be



EJTIR 17(1), 2017, pp. 103 − 131
Jones, Peeters and Thomas
Scale effect in a LUTI model of Brussels: challenges for policy evaluation 104

2009; Connors and Watling, 2015). In particular, the Scale Effect, i.e. the fact that changes to the size
of the Basic Spatial Units (noted BSU hereafter) will yield different results in statistical estimations
(Briant et al., 2010)4. The scale effect is known to affect parameter estimates of econometric sub
models within LUTIs (see e.g. Fotheringham and Wong, 1991; Arauzo-Carod and Manjon-Antolin,
2004; or Jones et al., 2015b). Nevertheless, it is almost never discussed in published papers or
reports on LUTI models application (Jones, 2016). Hence, this paper aims to assess the sensitivity
of LUTI models’ outputs to the size of the BSU. It focuses on potential inconsistencies in policies
evaluation. That is to say, can the implementation of one scenario be considered as profitable when
the model is run for one size of BSU, but unprofitable for another one?

The empirical case study used here is the Brussels (Belgium). An UrbanSim model has been de-
veloped for four levels of BSUs. The model is run for a set of five land-use or transport scenarios
(business-as-usual included; see section 3 for methodological details). The outputs for each BSU
level are used to compute different sustainability indicators, and to perform a simple Cost-Benefit
Analysis (CBA) of each scenario. The model system is thus considered here as a black box. To an-
swer the research question, the variations of the indicators across scenarios are compared to those
between BSU levels (for both their magnitude and direction). The CBA is used to assess if the
ranking of each scenario varies from one BSU level to another.

The paper is organized as follows. Section 2 shortly reviews the methods used in conjunction with
LUTI for policy evaluations. Data and methodology are detailed in section 3. Section 4 presents the
results that are discussed in section 5. Section 6 concludes.

2 Policy evaluation using LUTI models

To select the indicators that will be used for comparing the scenarios, it is necessary to summarize
how policy evaluation is performed in land use and transport planning, and the specificities of
LUTI models. This evaluation usually relies on multi-criteria or cost-benefit analysis (Geurs and
van Wee, 2004; van Wee, 2015). Both methods are widely described throughout the literature.
The reader can refer to e.g. Ishizaka and Nemery (2013), Nijkamp and Blaas (1994) for the former
one, and to Atkinson and Mourato (2006) or Boardman et al. (2006) for the latter. Nevertheless,
different conceptual and technical challenges restrain the capabilities of LUTI models to perform
policy evaluations.

The main criterion to evaluate a policy is often its sustainability. This notion is not exactly the same
from economic (see e.g. Arrow et al., 2004) or geographic point-of-views (see e.g. Brown et al.,
1987; Bulkeley and Betsill, 2005). In an urban/LUTI model perspective, the principal component
is the influence of transport on environment (Geurs and van Wee, 2004; Rodrigue et al., 2013). The
main conceptual challenge is thus to make this influence endogenous in the model. Car ownership
and air pollution level, for instance, are rarely estimated (Wegener, 2004; Dowling et al., 2005; Hunt
et al., 2005). Therefore, without additional methods or models, sustainability indicators estimated
from the outputs of LUTI models are limited, and often rely on expert judgment (Geurs and van
Wee, 2004).

Policy evaluation (i.e. the comparison between different scenarios) is, by definition, the last step of
LUTI model projects. As noted by Wegener (2011), many operational applications have run out of
time before reaching this stage due to unexpected practical difficulties. This is especially the case
of micro-simulation LUTI models. Some other LUTI models (e.g. MARS, see Pfaffenbichler et al.,
2008) are designed to be fast, but at the cost of a high spatial aggregation level.

Moreover, despite the large variety of detailed data required, one common and ancient (see Lee,
1973) criticism of LUTI models is that they produce only aggregated results. Again, sustainability

4Note that in this paper, the term scale effect will only be used to refer to that component of the MAUP, not to choice
models.
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indicators seem particularly prone to be available only at a meso- or study area level (Geurs and
van Wee, 2004). Efthymiou et al. (2014) proposed multidimensional indicators to take advantage of
the disaggregated nature (in space, time, and agents) of LUTI models. This approach has, however,
not yet been used for policy evaluation.

Eventually, the main difficulty is the multidimensional nature of the sustainability, encompassing
economic, social, and environmental components (Hély and Antoni, 2014; Proost et al., 2015). Ag-
gregation can be done qualitatively, but a formal integration of these three pillars requires each
indicator to be expressed in monetary units. For that purpose, Proost et al. (2015) have proposed
a Social Welfare (SW) function that allows comparing the outcome of one scenario to those of the
baseline. Its specification consists in a weighted sum of the utility of (a) the inhabitants, (b) the com-
muters, and (c) the rest of the world. The (d) local stock left to future generations is also included,
together with (e) the cost of implementation of the scenario and (f) the generated income. Using
the case studies of the EU-funded SustainCity project (Brussels, Paris, and Zürich) as examples,
Proost et al. (2015) conclude, however, that the translation of this SW function from a theoretical
formulation to a practical indicator is severely limited by data availability (see section 4).

To sum up, in operational applications, policy evaluation is often limited to a set of simple indi-
cators (see Bartholomew et al., 2007 for review). Hence, the same approach will first be used in
this paper. These simple indicators of the influence of the scenarios are assumed to have an equal
weight here and will, therefore, be examined independently rather than in a multi-criteria analysis.
In a second step, the SW level of each scenario will be computed, in order to rank them according to
their profitability. The results of both the indicators and the CBA will be compared for the different
BSU levels used here.

3 Data and methodology

3.1 Data
The empirical case study used in this paper is Brussels (Belgium). An UrbanSim model of the
metropolitan area has been developed between 2009 and 2013, within the framework of the EU-
funded project SustainCity (see Bierlaire et al., 2015). The database is re-used here while sub models,
on the contrary, are re-estimated from scratch due to the change of the study area (see section 3.2).
A detailed description of this model and of the database can be found in Cabrita et al. (2015). Note
that Patterson and Bierlaire (2010) and Patterson et al. (2010) described earlier implementations
of UrbanSim on Brussels. However, both works consist in prototype models, based on aggregated
data, and have few common points with the model of Cabrita et al. (2015).

The study area used in the SustainCity project (or ”SustainCity Area”) raises several concerns (see
Thomas et al., 2015a; Jones et al., 2015a), since it encompasses municipalities having few relation-
ships with the CBD and/or that belong to the catchment area of another city (Figure 1b). Previous
works (Jones et al., 2015b; Thomas et al., 2015a) have demonstrated that the extent and composition
of the study area may influence the parameter estimates of the location choice’s sub models within
UrbanSim and the outcomes from the model.

For our case study, a more meaningful geographical delineation of Brussels is the Urban Region
(or UR, see Van Hecke et al., 2009 and Figure 1a), to which we decided to reduce our study area.
Note that this reduction is linked to the densely built nature of Belgium, and should not be seen
as a general recommendation. In the case of a city isolated within rural areas, a large delineation
may perform better than a small one. The UR has an extent of 1 526 km2 and in 2001 (base year
of the model) it accounted for 1.44 million inhabitants and 0.99 million jobs (see also Figure 3). Its
core is composed of the 19 municipalities of the Brussels-Capital Region, hereafter noted BCR. For
comparison, the ”SustainCity area” reaches 5 169 km2, representing 2.69 million of inhabitants and
1.45 million jobs.

Cabrita et al. (2015) uses Statistical wards as BSUs. These are the smallest areal units for which sta-
tistical data are available from the Belgian Directorate General Statistics and Economic Information
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Figure 1. Urban Region of Brussels, relative to (a) the ”SustainCity Area” and (b) to Belgium (typology of
municipalities from Van Hecke et al., 2009)

(DGSIE). They can be aggregated into larger nested BSU levels: Sections, Former Municipalities,
and Municipalities. They will all be used in the simulations. Table 1 summarizes their relative
size. Note that these four BSU levels are perfectly nested into each other, meaning that there is no
boundary overlap.

Table 1. General characteristics of the BSU (values for 2001)

Surface (km2) Inhabitants
BSU level n Min Mean Max Min Mean Max

Statistical ward 2 074 0.01 0.74 13.70 0 694 4 608
Section 550 0.01 2.78 15.47 0 2 616 18 883
Former muni. 173 0.08 8.82 45.02 0 8 316 77 238
Municipalities 62 1.16 24.62 68.58 3 282 23 205 104 698

3.2 Methodology
The UrbanSim model is used to forecast the evolution of the Urban Region of Brussels. A detailed
introduction to the model system can be found in Waddell (2000), Waddell et al. (2002), and Noth et
al. (2003). Let us simply highlight that UrbanSim is a micro-simulation model with a disaggregated
representation of agents (households, jobs, and buildings). It only simulates land-use and is thus
interfaced here with the activity-based MATsim transport model (see Nagel et al., 2008), using the
implementation developed by Nicolaı̈ and Nagel (2015).

The base-year data in the model is 2001 (allowing the database to rely on the 2001 population
census). Since forecasting the evolution of the city far into the future is not mandatory here, the
simulation period is limited to 20 years (i.e. 20 iterations of UrbanSim). MATsim is run with an
interval of five iterations, i.e. in 2001, 2006, 2011, and 2016. Calibration is performed after ten
iterations (i.e. in 2011, year of the last existing population census). Simulations are performed in-
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dependently for the four BSU levels. Moreover, five scenarios are defined, and it is assumed that
they are implemented at the end of 2010. Note that the simultaneous implementation of different
scenarios is not considered. Hence, we end up with 20 combinations BSU level and scenario. Note
that within UrbanSim random sampling among existing agents (inducing a partially stochastic na-
ture) performs the selection of new and relocating households or jobs. Hence, each combination of
BSU level and scenario is simulated 10 times. In section 4, the indicators and the CBA are based on
average values. Figure 5 summarizes the workflow of the paper.

To provide a reference to which the scenarios described hereafter can be compared, a business-
as-usual situation is first defined. In this Baseline, the simulation period is uneventful. The only
variations are the growth of the number of households and jobs. These forecasts come from the
Belgian’ Federal Planning Bureau and are detailed in Cabrita et al. (2015). For households, it is of
about 1% per annum, from 743 487 in 2001 to 887 138 in 2020. Growth rates vary widely across
employment sectors, from 9% (hotel/restaurant) to 59% (leisure activities). In absolute terms, the
largest increases are observed for tertiary sector’ jobs (+86 250), health (+44 766), and industrial
activities (+32 320). Note that the variations of the number of agents over the simulation period are
assumed to be equal for all scenarios.

Scenarios

Cordon toll boundaries
Municipalities
Strategic zones
Land−use restrictions
Subsidied area (BCR)

0 5 10 15 20
km

Figure 2. Implementation area of the scenarios

A Cordon toll scenario is then designed, to reduce the congestion problems to or within the BCR.
Hence, the toll barriers are located at the intersection of the roads with the boundaries of the BCR
(Figure 2). The fee is fixed to 5e, as in Cabrita et al. (2015), and has to be paid whatever the time
of the day (this choice is the result of modelling constraints, see section 5). MATsim is used to
simulate traffic and compute accessibilities in the study area, relying on an external configuration
file defining the links of the road network affected, the type of congestion tax, the monetary value
of the fee, and the period of time. For details see Cabrita et al. (2015) and Nicolaı̈ and Nagel (2015).
It is important, however, to mention that technical issues prevented us to implement mode choice
in our model. Since it was not the main focus for the study, it was decided to continue without it.
The implications of this shortcoming are discussed in sections 5.1 and 5.3.

The Office scenario builds on the 11 strategic zones defined by the BCR territorial development
agency for future urban development (see ADT-ATO, 2015). A review of impact studies available
from the ADT website indicates that new office spaces are planned for five of them (Figure 2),
accounting for a total of about 440 000 square meters of floor space. We assume that these devel-
opment projects take place at the level of the statistical wards and are later aggregated into larger
BSU levels. The implementation of this scenario relies on the Scheduled Development Event Model
(SDEM) within UrbanSim (see Gallay, 2010). Practically speaking, this sub model will increase the
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values of non-residential square meters5 available in each zone by the required amount, in 2010.

Finally, the Subsidy and Land-use scenarios aim at reducing urban sprawl of households. For the
first one, we assume that a fiscal incentive is allocated to households choosing to locate within
the BCR. It accounts for an apparent decrease of real estate prices by 5%. The Land-use scenarios
introduce stronger land-use planning regulations, decreasing the number of future residential units
allowed in the suburbs of Brussels by 20%. Suburbs (see Figure 2) are defined here accordingly to
Van Hecke et al. (2009). Both scenarios are implemented in UrbanSim by altering the average value
per dwelling (Subsidy) or the residential units capacity (Land-use) within each zone, by means of the
SDEM sub model.

The last step prior to running the simulations is to estimate the econometric sub models within
UrbanSim (see Waddell et al., 2007; Sevcikova et al., 2011 for a complete description). They rely on
regression analyses to forecast the evolution of real estate prices, and on Discrete Choice Models
(DCM) for location choices of agents (households, jobs) and new real estate developments. The aim
of this paper calls for a workflow where these sub models are estimated independently for all BSU
levels (Figure 4). Hence, to ensure consistency and minimize potential selection bias, we rely on
automatic variables selection procedures.

Update of real estate prices at the end of the iteration is performed in UrbanSim by a log-linear re-
gression estimated by OLS. This specification was replicated in R and then calibrated by a backward
procedure (iterative exclusion of independent variables whose t-test’ significance level is higher
than 0.05, starting by the least significant one). The main weakness of this approach, as shown in
Table 7, is that several specifications are limited to fixed factors and/or to only one endogenous
variable. Therefore, variations of population or jobs’ densities will not influence these prices. Al-
though this situation is unsatisfactory from a modelling point of view, we have decided to keep
these specifications, to ensure consistency in the estimations.

Location choice sub models follow the framework proposed by McFadden (1978): a linear-in-
parameters multinomial logit (MNL) model with random sampling of alternatives. Different sub
models forecast the probability of a given building to be selected by new or relocating agents
(households and jobs), or for real estate development project. Calibration is handled by estimat-
ing, within UrbanSim, ten specifications based on different combinations of the explanatory factors
(Table 6). The specification having the lowest AIC value is selected. Note that for employment,
estimations are only performed for non-home-based jobs. Given the lack of accurate data on home-
based jobs, it has been decided to neutralize that part of the model system.

It should be noted that for Former municipalities and Municipalities, this procedure leads to fre-
quent inclusion of non-significant variables (especially for employment, see Table 9). Hence, the
AIC was perhaps not the best indicator (see e.g. Burnham and Anderson, 2002). However, the
sub models have been estimated within UrbanSim, in which no other indicators were available for
model comparison. To ensure the reproducibility of the results, it has been decided to stick to these
specifications.

Endogenous variables (i.e. updated by UrbanSim during its iterations) are used as much as possible.
Three constant variables are nevertheless considered to account for characteristics that cannot be
forecasted by the model (Table 6). The following indicators account for agglomeration economies:
Population density is defined as the number of inhabitants per square kilometre in each BSU. Job
density (expressed in jobs per square km) is given first for the total jobs, then independently for
each of the eight activities sectors (see Table 6). Accessibility factors are the Car Accessibility to
Jobs, a logsum indicator estimated by MATsim (see Nicolaı̈ and Nagel, 2012 for details), and the
Euclidean distance (in meters) to the Brussels’ CBD. This latter variable is measured between the
centroid of the municipality of Brussels and the centroid of all other BSUs.

5Square meters are used here in place of square feet, see Cabrita et al. (2015)
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Socio-economic amenities include the share of households within a BSU having a monthly income
higher than 3 100 e or lower than 1 852 e. These categories come from the 2001 population census.
In the households’ location choice sub model (or HLCM), these variables are used as interaction
term with a dummy variable equal to one if the household has a high income, and zero otherwise.
The percentage of households within a BSU where (at least) one member has a university degree is
also considered.

Other amenities are the House prices, the level of local taxes, and a Green amenities score. Avail-
able data on real estate prices are highly limited in Belgium. No transaction-level information is
available, but only aggregated values (in euro per sq. meter) at the municipality level. Data for
buildings other than houses are practically unusable, due to the many missing values induced by
the small number of transactions. House prices serves thus as a proxy for other residential real es-
tate types, and identical values are imputed to all BSUs belonging to the same municipality. Local
taxes is an instrumental variable, included only into the real estate price’ sub model (or REPM), to
reduce potential endogeneity biases. Note that their level is limited to 9% of the federal taxes (i.e. if
an household pays 10 000 e/year of taxes to the state, its municipality of residence can charge him
a maximum of 900 e local taxes). The Green Amenities score is computed from the surface of each
BSU covered by green areas (forest or agricultural land, data from the CORINE 2006 Land Cover
Database) divided by the total surface.

Descriptive statistics of these variables at the level of the statistical wards are given in Table 6. For
larger BSU levels, their value is computed by aggregating the database by sum or means. Note that
in the econometric sub models, most of these explanatory factors are expressed logarithmically.
Figure 3 shows their spatial distribution.

3.3 Policy evaluation
Simple indicators are first computed, for each BSU level and each scenario. Agents location choices
are first considered, by computing the share of (1) households, (2) tertiary sector jobs, and (3) total
jobs within the BCR at the end of the simulation period (i.e. 2020). At the study area level, the home-
to-work (1) travel times and (2) distances are used, together with (3) green space consumption. By
selecting these indicators, we attempt to cover different components of both the model systems and
the sustainability issue. They also have the advantage of being direct outputs of either UrbanSim
or MATsim. The variations in-between scenarios are later compared to those across BSU levels, to
assess the sensitivity of the model to each component.

In the second step, a simple CBA is performed, by computing the Social Welfare (SW) level of each
scenario (as proposed by Proost et al., 2015). The SW level, computed as in (1), has the advantage
(compared to the simple indicators) of allowing ranking the scenarios.

SW = U + R − C (1)

In equation (1), U is the final utility level at the case study level, R the direct revenues generated
by the scenario, and C the implementation costs. This specification comes from Proost et al. (2015).
Nevertheless, several simplifying assumptions are made: (a) the city is closed, meaning that the
utility levels of commuters and the rest of the world are not taken into account. (b) The only time
horizon considered is the end of the simulation period. (c) No assumptions are made on equity
preferences. Therefore, an equal weight is imputed to all income classes. (d) The utility level U is
computed as in equation (2).

U = INC − HC − TC (2)

INC denotes the annual income. HC is the annual housing cost equal (as in Di Pasquale and
Weathon, 1996) to the selling price times the interest rate (set here to 5%). TC is the annual trans-
port cost, equal to the product of the commuting time with the number of working days per year
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Figure 3. Spatial distribution of main variables (discretization: quantiles)

(220 here) and the value of time (0.15 eper minutes). All components of U are thus expressed in
Euros. We follow here the specification and parameters’ values of Proost et al. (2015). Housing and
transport costs are endogenous to the model system. Evolution of incomes, on the contrary, is not
modelled. The earnings of each household are thus constant over the simulation period. Cost and



EJTIR 17(1), 2017, pp. 103 − 131
Jones, Peeters and Thomas
Scale effect in a LUTI model of Brussels: challenges for policy evaluation 111

revenues of the scenarios are estimated based on the literature. Since only rough estimates were
found (see section 4.4), we preferred to rely here on the ”post-hoc” policy evaluation described
above, rather than on a continuous approach such as the Net Present Value, in order to reduce the
number of assumptions that have to be made.

4 Results

4.1 Econometric sub models
Table 7 presents the parameter estimates of the real estate prices’ sub model. For houses, all param-
eters have the expected sign. The adjusted R2 increase from small to large BSU levels, while the
number of significant variables decreases. The decreasing number of observation may constitute
an explanation of these variations. The goodness-of-fit is lower for flats, but parameter estimates
remains mostly of the expected sign.

For the households’ location choice sub model, the best specification (using the AIC criterion) is
identical for the four BSU levels, and corresponds to the inclusion of all explanatory factors (al-
though the goodness-of-fit remains low). In the case of employment, the goodness-of-fit is gener-
ally high, but the specifications vary more widely between BSU levels. Parameter estimates are of
the expected sign in most cases for both households (Table 8) and jobs (Table 9).

Note that sub models forecasting the location of future residential and non-residential develop-
ments have been constrained to a single specification, due to the lack of data on developers be-
haviour. For residential buildings, it involves the (log of) population density, Euclidean distance
to the CBD, housing prices, and the car accessibility to jobs. The specification for non-residential
buildings relies on the (log of) population density, job density, house prices, and on the car acces-
sibility to jobs. Both parameter estimates have the expected sign and further details are, therefore,
not included.

Parameter estimates of both regression and DCM are known to be sensitive to the scale effect of the
MAUP (i.e. to a change of the size of the BSU). As expected, such variations are also observed here.
The variations of parameter estimates will, however, not be further discussed since we focus here
on changes in the outputs of UrbanSim. We refer to Fotheringham and Wong (1991), Arauzo-Carod
and Manjon-Antolin (2004), and Jones et al. (2015b) for work dedicated to the MAUP.

4.2 Calibration of the Baseline scenario
Assessing the performance of the model for all BSU levels is necessary before comparing scenar-
ios. Cabrita et al. (2015) recognize that the goodness of fit of their model is quite limited, due to
shortcomings in data availability. An accurate model is, however, less crucial here (since we do not
intend to use it for actual forecasts) than a model that performs similarly for all BSU levels. In that
situation, it can indeed be assumed that eventual variations between BSU levels observed in 2020
will be linked with the scale effect, rather than noises due to a varying goodness-of-fit of the model.

In UrbanSim, as in other LUTI models, the calibration procedure consists in comparing the situa-
tion forecasted by the model with the observed reality on a given time step (Wegener and Fürst,
1999; Bonnel et al., 2014). Observed data come here from the 2011 population census (see DGSIE,
2015). The correspondence between the predicted (from the Baseline scenario) population densities
in 2011 and this reference is given in Table 2. Note that the location of the jobs was not available,
constraining to limit the calibration to households.

Table 2 shows, as expected, a limited absolute performance of the model. The population growth
was underestimated during the development of the model, leading to a predicted number of in-
habitants of 1 766 947 in 2011 (for all BSU levels) versus 1 906 258 according to the census. Figure
4 show that for all BSU levels the model underestimate the future population in the BCR and sec-
ondary urban centres, and overestimates it in rural areas. The spatial auto-correlation, however,
is not significant (Table 2). On both Figure 4 and Table 2, extreme values seem more frequent for
small BSUs (especially in the negative). This was expected, since in small areal units (some of them
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Table 2. Calibration of the model (observed data from the 2011 population census; *** = significant
for α ≤ 0.001)

Indicator
(Obs. - Pred. inhab. km2)/ (Obs. inhab. km2) Obs. versus pred. inhab/km2

In %
BSU level 10% Quantile Median 90% Quantile Pearson’s ρ Moran’s I

Statistical wards -57.08 9.74 39.27 0.91*** -0.001
Sections -42.66 8.71 28.63 0.95*** -0.004
Former Muni. -6.35 18.23 36.82 0.98*** -0.007
Municipalities 3.02 15.25 23.93 0.99*** 0.003

less than one square km, see Table 1) a limited variation of the absolute population may lead to
large differences of densities. Nevertheless, the variation range of the indicators is similar for all
BSU levels (especially Pearson’s ρ). Overall, the performance of the model appears thus similar at
all BSU levels.

a. Statistical wards

0 5 10 20 km

b. Section

0 5 10 20 km

c. Former municipalities

0 5 10 20 km

     (Observed − Predicted)/Observed, in %

Lower than −58.06]
]−51.34 to −19.69]
]−19.69 to 0]
]0 to 1.21]
]1.21 to 16.19]

]16.19 to 33.86]
]33.86 to 63.01]
]63.01 to 100]
No obs. inhabitants in 2011
Municipalities boundary

d. Municipalities

0 5 10 20 km

     (Observed − Predicted)/Observed, in %

Lower than −58.06]
]−51.34 to −19.69]
]−19.69 to 0]
]0 to 1.21]
]1.21 to 16.19]

]16.19 to 33.86]
]33.86 to 63.01]
]63.01 to 100]
No obs. inhabitants in 2011
Municipalities boundary

Figure 4. Variations of population density between 2011 population census and the Baseline scenario, through
BSU levels (inhabitants per sq. km)
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Table 3. Share of agents within the Brussels-Capital Region (average value over the 10 runs in 2020
in %; between brackets: inter-runs standard deviation)

Scenario
Indicator BSU Baseline Cordon Office Subsidy Land-use

Households Stat. ward 51.23 51.23 51.26 51.24 51.24
(0.06) (0.05) (0.06) (0.06) (0.06)

Sections 51.07 51.07 51.05 51.08 51.08
(0.02) (0.00) (0.01) (0.01) (0.02)

Former muni. 54.96 54.98 54.91 54.93 54.93
(0.08) (0.08) (0.06) (0.07) (0.07)

Municipalities 54.84 54.84 54.85 54.85 54.85
(0.02) (0.02) (0.02) (0.02) (0.03)

Tertiary jobs Stat. ward 72.34 72.33 72.35 72.31 72.33
(0.04) (0.03) (0.04) (0.06) (0.04)

Sections 72.34 72.33 72.28 72.30 72.32
(0.02) (0.03) (0.04) (0.04) (0.05)

Former muni. 72.34 72.32 72.36 72.36 72.35
(0.05) (0.03) (0.07) (0.04) (0.05)

Municipalities 72.35 72.32 72.32 72.33 72.30
(0.06) (0.03) (0.03) (0.05) (0.03)

Total jobs Stat. ward 69.12 69.13 69.12 69.13 69.11
(0.03) (0.01) (0.02) (0.02) (0.01)

Sections 69.15 69.12 69.11 69.13 69.12
(0.02) (0.02) (0.01) (0.02) (0.02)

Former muni. 69.49 69.49 69.49 69.50 69.50
(0.03) (0.01) (0.02) (0.02) (0.01)

Municipalities 69.49) 69.48 69.46 69.50 69.48
(0.02) (0.02) (0.02) (0.02) (0.03)

4.3 Indicators of location choices, transport, and land-use
Outputs of the model are presented, for each combination of BSU level and scenario, in Table 3
(final share of agents located within the BCR) and 4 (transport and land-use indicators at the scale
of the study area). In both tables, the rows show the differences observed between scenarios at
one particular BSU level, while the columns give the variations across these geographic scales for a
given scenario. Let us recall that our objective is assessing whether the scale effect can induce bias
in policy evaluation. If larger differences appear in columns (i.e. across BSU levels) than in rows
(between scenarios), then the answer will be yes.

Table 3 presents results for the Brussels-Capital Region. Note that the boundaries of all BSU levels
perfectly match those of the BCR. Therefore, differences observed here are due to the model, not
to any boundary effect. For households, variations are systematically larger between BSU levels
(in columns) than across scenarios (in rows), by one order of magnitude (i.e. across scenarios,
differences are only observed at for the second decimal digit; while between BSU it is at the first
decimal digit). Two groups of BSU levels appear: ”small” (Statistical wards and Sections) and
”large” (Former Municipalities and Municipalities). Intra-group differences are limited (but still
larger than across scenarios), while a large gap is observed between ”small” and ”large” BSU levels.
For tertiary sector’ jobs (services), no differences are observed on Table 3, either between BSU levels
or across scenarios. For all jobs, the gap observed between Sections and Former municipalities (in
columns) is larger than the differences across scenarios (rows). Inside the group of ”small” BSU
levels, however, the differences in columns are as limited as across scenarios (in rows). The same is
true for the ”large” BSU levels.
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Table 4. Transport and land consumption indicators (median value over the 10 runs in 2020 in %;
between brackets: inter-runs standard deviation)

Scenario
Indicator BSU Baseline Cordon Office Subsidy Land-use

Travel time Stat. ward 38.35 39.97 37.96 38.20 37.98
(minute) (0.52) (0.50) (0.22) (0.39) (0.19)

Sections 38.44 39.86 38.43 38.39 38.23
(0.20) (0.28) (0.21) (0.24) (0.16)

Former muni. 38.24 39.29 38.36 38.27 38.50
(0.19) (0.24) (0.29) (0.36) (0.33)

Municipalities 42.84 44.54 41.65 43.73 42.09
(0.81) (1.13) (0.21) (0.56) (0.34)

Travel distance Stat. ward 19.24 19.20 19.18 19.21 19.19
(km) (0.03) (0.03) (0.03) (0.03) (0.02)

Sections 19.09 19.06 19.11 19.12 19.1
(0.03) (0.04) (0.01) (0.01) (0.01)

Former muni. 19.53 19.50 19.52 19.53 19.52
(0.05) (0.03) (0.02) (0.05) (0.02)

Municipalities 19.20 19.18 19.2 19.23 19.2
(0.01) (0.02) (0.02) (0.02) (0.01)

Resid. area Stat. ward 23.99 23.99 23.96 23.99 23.99
(%) (0.01) (0.02) (0.02) (0.01) (0.01)

Sections 45.20 45.19 45.20 45.21 45.18
(0.05) (0.08) (0.07) (0.07) (0.06)

Former muni. 40.53 40.54 40.55 40.55 40.55
(0.04) (0.03) (0.05) (0.05) (0.03)

Municipalities 41.92 41.89 41.93 41.92 41.93
(0.04) (0.02) (0.01) (0.01) (0.04)

This contrast between the ”small” and ”large” BSU levels does not hold on Table 4. Variations of
the commuting distance are very limited for both BSU levels and scenarios. Given this stability, no
or few variations were expected for the commuting time. Table 4 shows that from Statistical wards
to Former municipalities, values are indeed close to each other. Nevertheless, commuting time for
Municipalities are 3 to 4 minutes larger than those estimated for other BSU levels (columns), for
reasons that will be addressed in section 5. Finally, the share of surface occupied by green areas is
stable across scenarios (rows). Larger variations are observed between BSU levels (in columns), in
particular for the Sections compared to other BSU levels.

The standard deviation allows assessing the inter-runs variations. We did not report the results
of the t-tests on Tables 3 and 4 for clarity purpose. However, across scenarios, significant dif-
ferences are only observed for the commuting time, between the Cordon scenario and the other
ones. Through BSU levels, significant differences mainly appear on Table 3 between the ”small”
and ”large” groups of BSU, for households and all jobs, as well as on commuting time (Table 4)
between Municipalities and other BSU levels.

4.4 Cost-benefit analysis
Table 5 gives the results of the CBA. Housing and transport costs are computed from simulation
results, while the income level is constant. Estimates of the implementation cost of the scenarios,
and of the direct revenues, are extrapolated from the literature. Since the scenarios are fictive (even
if inspired from actual projects), the accuracy of the cost and revenues is limited, and they should
be seen as an order of magnitude rather than exact values.
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Efficiency and/or equity of cordon congestion taxes have been assessed in numerous theoretical
works, but survey of real-world applications are much scarcer. Anas and Lindsey (2011) estimate
the implementation costs in London (256 million e for toll area of 22 km2), Stockholm (206 mil.
e for 30 km2), and Milan (7 mil. e for 8 km2). Geographical and technical differences make,
however, difficult to deduce generic values from these examples. In London, the perimeter of the
tolled area is 21 km, leading to a cost of 12 million e/km. In Stockholm, it is of 6.8 million e/km
(perimeter of 30 km), but the insular nature of the city strongly reduces the number of access points.
Annual operation costs (including maintenance and investments) are far from being negligible.
Anas and Lindsey (2011) estimate them to 245 (London), 31 (Stockholm), and 15 (Milan) million e.
For Stockholm, Eliasson (2009) attributes the lower operating costs (compared to Oslo) to the use of
a more automated system (note that a large amount of the operation cost was devoted to call centres
and to provision for complaints or legal action). Hence, we have assumed an implementation cost
of 10 millions e/km for the BCR which gives a total for the Cordon scenario of about 700 million
e. In the absence of reliable figure for Belgium, operating cost had been set to 100 million e/year
(value derived from those for Stockholm, see Eliasson, 2009). The total cost (implementation +
operation) is thus equal to 1.7 billione (0.7 + 0.1 times the number of years of operation, i.e. 10) and
is independent from the BSU level. The revenues will be computed using the predicted number of
commuters from outside the BCR, which may vary from one BSU level to another, times the cordon
fee (5e), the number of working days per year (220), and the number of years (10). Since UrbanSim
assumes a closed city (i.e. that there is no commuting coming from outside the study area), the
balance between these revenues and the additional transport costs for the residents will be zero.

Information about construction costs of offices in Belgium is extremely partial. Based on two recent
projects (EUROPA building, 55 000 sq. meter for 240 million e, see EC, 2015; and the new NATO
HQ, 250 000 sq. meter for 1.1 billion e, see NATO, 2014), they can be estimated between 4 000 and 4
300e/m2 in the BCR. These two examples are, however, ”high-end” buildings. Their requirements
(prestige, security features) are not commonly found in basic office space. The construction cost for
flats in the BCR was of 2 670 e/m2 in 2011 (Knight Frank, 2012). Hence, a rough estimation of
the Office scenario implementation cost would be of 1 to 1.6 billion e (assuming a price per sq.
meter ranging from 2 500 to 4 000 e). This estimate is independent from the BSU level. Data
on office space rents are more complete, at least for the BCR (from 165 to 285e/m2/year in 2012
depending on the location, see CBRE, 2012). We can thus estimate the annual revenues taken from
the implementation of the Office scenario to 81 millions e (for a 100% occupation rate), a value that
is also independent from the BSU level. Assuming no inflation and the maximal estimated cost,
the amortization period would be of 19 years, which seems conceivable. Furthermore, a public
ownership is assumed for these new office spaces. If these developments’ projects were to take
place, it is most likely that they will be organized in a public-private partnership, an option that
has not been considered here.

Uncertainties are lower for residential scenarios. In 2010, the cost of the Subsidy scenario would
have been about 160 millions e (12 276 residential real estate transactions in the BCR, for a total
price of 3.1 billion e; data from DGSIE, 2015). Its total cost over 2010 - 2020 is computed from
simulation results, using the number of relocating households and the residential units price at
their new location. Both factors are endogenous to the model system, and will thus vary through
BSU levels, explaining the different values given in Table 5. The Land-use scenario only requires
modifications in the land-use scheme by various public administrations. Its implementation cost
can thus be considered as null.

On the short term, direct revenues of both Subsidy and Land-use scenarios are limited to variations
in the stock of local taxes collected, which are defined by the municipalities and are thus, here,
independent from the BSU level. Observed taxes (Figure 3) vary only slightly within the study
area. To simplify, the direct revenues taken from the Subsidy and Land-use scenarios will thus be
considered equal to zero.
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Table 5. Cost-benefits analysis (average values over the 10 runs, in billion e; INC = income level;
HC = housing cost; TC = transport cost; U = utility level; C = implementation cost of the scenario; R
= direct revenues; SW = social welfare; Rank = rank of the scenario; note that the inter-run’
variations does not affect the ranking)

Scenario
BSU Baseline Cordon Office Subsidy Land-use

Stat. ward INC 21.39 21.39 21.39 21.39 21.39
HC 4.91 4.91 4.91 4.91 4.91
TC 0.21 2.35 0.19 0.21 0.19
U 16.27 14.13 16.29 16.27 16.29

C 0 1.70 15.5 to 16.1 1.48 0
R 0 2.12 0.80 0 0

SW 16.27 14.55 15.5 to 16.1 14.79 16.29
Rank 2 5 3 4 1

Sections INC 21.39 21.38 21.39 21.39 21.39
HC 4.89 4.90 4.89 4.89 4.89
TC 0.21 2.21 0.20 0.20 0.19
U 16.29 14.27 16.30 16.30 16.31

C 0 1.70 15.5 to 16.1 1.44 0
R 0 1.98 0.80 0 0

SW 16.29 14.55 15.5 to 16.1 14.86 16.31
Rank 2 5 3 4 1

Former muni. INC 19.15 19.16 19.15 19.15 19.16
HC 3.14 3.14 3.14 3.14 3.14
TC 0.22 1.96 0.21 0.22 0.21
U 15.78 14.47 15.80 15.79 15.81

C 0 1.70 15.5 to 16.1 1.38 0
R 0 2.11 0.80 0 0

SW 15.78 14.06 15 to 15.6 14.41 15.81
Rank 2 5 3 4 1

Municipalities INC 19.17 19.17 19.16 19.17 19.16
HC 2.78 2.78 2.77 2.78 2.77
TC 0.65 2.56 0.58 0.65 0.60
U 15.74 13.83 15.60 15.73 15.79

C 0 1.70 15.5 to 16.1 1.37 0
R 0 1.88 0.80 0 0

SW 15.74 14.01 15 to 15.6 14.37 15.79
Rank 2 5 3 4 1
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5 Discussion

5.1 Consistency and limitation
The sensitivity of the outputs of a LUTI model to the size of the BSU has, to our knowledge, never
been assessed in the scientific literature. Nevertheless, several components of the present paper
can be related to previous findings. First, the sensitivity of parameter estimates on the size of the
BSU is a known issue. As indicated in section 1, it is referred as the Scale Effect in the literature
on the MAUP (Fotheringham and Rogerson, 2009; Briant et al., 2010). Variations observed here
in parameter estimates are consistent with those found in works dedicated to the MAUP (see, in
particular, Jones et al., 2015b). Secondly, Wegener (2011) explores stochastic variations (i.e. inter-
run variations) due to changes in the ratio of the number of choices (i.e. agents who relocate) on
the number of alternatives (i.e. BSU). His results show that stochastic variations decrease when
this ratio increase. Since the number of agents is fixed here, inter-runs standard deviation should
decrease from small to large BSU levels (reduction of the number of alternatives), which is indeed
the case, especially for households (Table 3).

Thirdly, the low response of the model system to the scenarios is consistent with previous applica-
tions of LUTI models in Europe (see, e.g, de Palma et al., 2008 for Paris; or the MOEBIUS project
for Luxembourg; see Lord and Gerber, 2013). The Cordon scenario in Cabrita et al. (2015), who uses
the same model system than in this paper, is similar to the one implemented here. The observed
relocation of agents is negligible in both cases, and the influence on commuting time and distances
is also limited. On the contrary, the Densification scenario of Cabrita et al. (2015) leads to a large
relocation of households towards the BCR (+8.5% compared to the baseline). It is, however, based
on the very strong assumption that new residential units are constructed within the BCR at the
rate of 2% of the total dwellings stock per annum, for five consecutive years. The changes imple-
mented are, therefore, far larger than for our Subsidy and Land-use scenarios. Overall, the results
appear thus consistent with previous works. Modelling choices and various constraints in data
availability or the model system lead, nevertheless, to weaknesses that should be addressed.

Modal share of car and public transport would have been an interesting indicator to assess the
sustainability of the scenarios. Technical issues prevented us to implement it in our model, which
should have only a limited influence on the Baseline, Office, Subsidy, and Land-use scenarios but
important one for the Cordon (see section 5.3). For this scenario, the workaround was to apply
the congestion fee for the entire day, rather than for the morning peak hour only. To avoid the
fee, households must thus either relocate inside the BCR, or select a job located outside of it. Both
processes that have a reaction time far longer than a change in travel behaviour (see Wegener et
al., 1986; Simmonds et al., 2013). Therefore constraining the low effects observed for the Cordon
scenario. In any work requiring actual forecasts, enabling the mode choice is obviously more im-
portant than the scale effect for the proper assessment of a cordon toll scenario.

One could also argue that scenarios implementing larger deviations from the initial conditions
would have triggered a larger response of the model system (as in Cabrita et al., 2015). This has
not been attempted, since it would have contradicted the purpose of this work, in which variations
induced by the scenarios are used as references to assess the sensitivity of a LUTI model to the Scale
Effect. A more theoretically sound criticism is that a longer simulation period would have allowed
slower urban processes, such as land-use changes (see Wegener et al., 1986; Simmonds et al., 2013)
to take place. UrbanSim, however, is a path-dependent model: the utility function of agents, defined
by the specifications of the location choice sub models, is fixed over the simulation period. Changes
should thus start as soon as the scenarios are implemented, and continue until the development
constraints are reached. Note that in UrbanSim, these development constraints account for the
maximal non-residential floor space and number of residential units per building, defined using
land use planning regulations. In our case study, only a limited number of zones, located within
the BCR, reach this maximal level during the simulation period. Hence, if no variations are visible
after 10 years, it is unlikely that they would occur after twenty or more.
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5.2 First and second order scale sensitivity
The case study and the model used here have been selected thanks to their availability. However,
the main interest is not to focus on Brussels, but to highlight general results of the sensitivity of
LUTI models to scale. Variations observed in the location choices of agents (Table 3) appear to be
linked with the spatial structure of their perceived utility-level. Figure 3 shows that households are
less concentrated in the BCR than tertiary sector jobs. A monocentric structure seems thus to have
a lower sensitivity to the scale effect than a polycentric one. This result is quite straightforward,
since a large centre will always stand out from its neighbourhood, whatever the aggregation level,
while small centres may be diluted for large BSU levels (see also Jones et al., 2015b). Variations in
the distribution of agents can be seen as a first order scale’s sensitivity of LUTI models. They are
induced by the influence of the MAUP on econometric methods, specifically here the sensitivity of
DCM to the size of the areal units that constitute their choice set (see Arauzo-Carod and Manjon-
Antolin, 2004; Jones et al., 2015b).

A second order scale’s sensitivity is observed in Table 4. These indicators are derived from agents’
location choices, but their computations require additional parameters that are themselves sensitive
to the BSU level. Let’s consider the commuting times: MATsim uses as origins and destinations the
centroid of the zone. For large BSU levels, a high number of agents are therefore concentrated on
the same location. Yet, assuming that all agents within a zone are located on its centroid is usually
a too strong hypothesis (see e.g. Goodchild and Gopal, 1989) and MATsim thus allows randomly
distributing them in a buffer centred on each centroid. The width of this buffer was set here as the
radius of a circle whose area is equal to the median area of each BSU level (from Statistical wards
to Municipalities: 320, 790, 1 450, and 2 715 meters).

Such correction is needed to avoid local congestion effects that would otherwise arise from the con-
centration of a large number of agents in a small number of origins or destinations (note that the
road network used is strictly identical at all BSU levels). Our approach appears to work properly
for the three smallest BSU levels. On the contrary, the width of the buffer seems insufficient for
the Municipalities, which shows that a process valid for one geographical scale may lead to pecu-
liarities when applied at another scale. This issue can be related to the ecological fallacy problem
(Robinson, 1950). Note that we did not try to adapt the agents’ assignment methodology from one
scale to another, since the aim of this work is precisely to assess whether an identical model may
yield different results when applied to different BSU levels.

A related issue often found in operational applications of LUTI models (see Bartholomew, 2007;
Jones, 2016) is the difference in the areal units used by the transport and land use side of the model.
For instance, the transport model may operate with custom traffic analysis zones, while the land
use side relies on census track. In such case, the indicators produced by the transport model will
have to be spatially aggregated or disaggregated before feeding the land use model, which always
raise technical difficulties (see e.g. Goodchild and Gopal, 1989).

The fraction of the area that is residential constitutes a second example of the challenges linked to
spatial aggregation methods. This indicator depends on the average per BSU level of the median
area of a residential plot. For detached houses and from Statistical wards to Municipalities, it is of
716, 982, 1 098, and 1 039 square meters. For Sections, the average plot size is far larger than those
of Statistical wards, which explains the greater values observed in Table 4. While for ”large” BSU
levels, the increase in the median plot size is more than compensated by the relocation observed
towards the BCR, where plot size are smaller.

5.3 Ranking of the scenarios
The social welfare level (Table 5) changes through BSU levels due to variations of the inputs (lo-
cation of agents, real estate prices). The scenarios’ ranking are, however, not affected. Let us note
that the lower social welfare observed here for the Cordon scenario is due to the absence of mode
choice: the agents only suffer the additional costs (toll) of its implementation, without receiving
any benefits such as reduced congestion. With mode choice enabled, the social welfare level of this
scenario would be higher. Hence, its ranking is the product of methodological shortcomings rather
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than of any general property of the cordon toll policy itself.

Nevertheless, the CBA provides consistent results through scale. Reasons are that the scenarios
are either implemented at the building level (Office) or following the border of the municipalities
(Cordon, Subsidy, Land-use). It was a natural choice here, since the municipalities are the only BSU
level to have an administrative power. The sensitivity of the results to scale remains, however, an
open question for scenarios with a more complex spatial footprint. Nevertheless, the CBA relies on
aggregate values at the study area level, and large differences are observed in the balance (revenue
minus cost) of the scenarios. Therefore, it seems unlikely that, for other case studies and/scenarios,
major changes in the ranking of the scenarios would occur through scales.

5.4 Recommendations for operational applications of LUTI models
The results presented here raise several concerns for operational applications of LUTI models. Let
us first note that DCMs are used in almost all state-of-the-art LUTI models (see Wegener, 2004; Sim-
monds et al., 2013). Therefore, the sensitivity to scale observed for UrbanSim is likely to be present
in other models, even if variations in magnitude remain an open question. It is also probable that
other case studies will show a significant level of sensitivity to scale, linked to the initial spatial
distribution of agents. Polycentric patterns (i.e. households here) appear more influenced by the
size of the BSU than monocentric one (services). A careful exploratory spatial data analysis should
help to assess the potential magnitude of spatial biases. These findings also confirm that a good
knowledge of the study area is vital for LUTI model projects (Nguyen-Luong, 2008).

One can argue that a model developed at the parcel level can be considered unbiased. However,
recent applications of such purely disaggregated model have encountered similar, or even worse,
development’ difficulties than zone-based LUTI models (see e.g. Lord and Gerber, 2013; Schirmer
et al., 2015). Given the aforementioned stochastic variations issue (Wegener, 2011), and the con-
siderable data requirement of a parcel-level model, it is likely that more aggregated LUTI models
will remain the most commons applications in a foreseeable future. In any case, it was impossible
to add that geographical scale on the analysis presented throughout this paper, essentially due to
a lack of data for our case study (see also Cabrita et al, 2015). Nevertheless, we encourage future
works to study these potential differences between parcels and zones.

The main finding is that the sensitivity to the size of the BSU varies from one output of the model
system to another. It is unclear if primary (i.e. the final location of agents) or secondary (e.g. travel
times) indicators should be preferred. LUTI models have long been criticized for producing only
the kind of aggregated results that the former one constitutes (Lee, 1973). The meaning of the latter
may, however, be obfuscated by their computation that requires additional parameters varying
with the BSU level. Yet, they highlight an additional dimension of the urban realities. Indicators
at the agents’ level (as in the CBA) would allow taking advantage of the disaggregated nature of
micro-simulation model. However, as long as the LUTI model is not based purely on individual
observations and agents, the spatial bias will persist. And it is unclear if an evolution towards
more disaggregation is a desirable path for LUTI models, due to stochastic variations and longer
computation times (see Wegener, 2011), but also constraints on data availability (see Thomas et al.,
2015a).

The research question of this paper was: can the scale effect bias policy evaluation? Our results
suggest that it depends on the indicator used. If policy makers require predictions threshold values
(e.g. that the commuting time should decrease by 10%), then the answer is yes. Nevertheless, the
direction of the variations between scenarios is identical through BSU levels. For instance, when the
implementation of the scenario increases the value of one indicator, an increase happens at all BSU
levels, even if the magnitude of this increase varies (the only example where statistically significant
differences are observed being the increase of travel time between the Baseline and Cordon scenarios,
see Table 4). This is also true for the ranking of the scenarios according to their SW level (Table 5).
Hence, when the model system is used as a simplified reality, to compare options, then the size
of the BSU does not seem to be an issue. This result can be related to the discussion between
explanative versus predictive models (Shmueli, 2010).
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Unhopefully, to our knowledge, LUTI model results often favour actual predictions (see Badoe and
Miller, 2000; Bartholomew, 2007; Handy, 2008). Generalizing policy evaluation methods based on
a consistent, multi-dimensional, economic framework (e.g. Hély and Antoni, 2015; Proost et al.,
2015) may reduce the risk of wrongheadedness due to the Scale Effect. They do not, however,
solve the fundamental problem that LUTI models themselves (and particularly their econometric
components) are sensitive to spatial bias (see Jones et al., 2015b; Thomas et al., 2015a; Thomas et al.,
2015b), for which no easy or straightforward solution exists. We would like to urge here (following
Nguyen-Luong, 2008) that a good knowledge of the study area is vital to select the adequate BSU
level, according to data availability constraint and the spatial structure of the city.

6 Conclusion

This paper proposes a sensitivity analysis of a LUTI models output to the size of the areal units
used by the model. Using an empirical case study (Brussels, Belgium) and four BSU levels, the
results show that variations with scale are generally larger than those between scenarios. A poly-
centric structure appears more sensitive than a mono centric one, but variations of the results are
not monotonous with the BSU level and thus cannot be easily generalized. The main reason is
that econometric methods in LUTI models are sensitive to the scale effect of the MAUP, confirming
previous works by Jones et al. (2015b). These results have important implications for policy eval-
uations based on LUTI models. Actual predictions are likely to be biased by the BSU chosen for
the model, especially if separated indicators are used rather than a unified economic framework
(cost - benefit analysis). On the contrary, when the model is used as a simplified reality to com-
pare scenarios, the results are consistent through scales. Together with Thomas et al (2015a) and
Thomas et al (2015b), these findings call for a better awareness of potential spatial bias in opera-
tional applications of LUTI models. Space may bias LUTI models and, therefore, space matters in
their operational applications.
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Table 7. Parameter estimates of the Real Estate Price sub model (between bracket: standard
deviation; significativity level: * = α ≤ 0.05, ** = α ≤ 0.01; *** = α ≤ 0.001)

Building type Variable Statistical Section Former Municipalities
ward municipalities

Houses Constant 11.38*** 11.59*** 11.61*** 11.17***
(0.09) (0.04) (0.07) (0.12)

(Log of) Pop. density 0.011*** 0.014** 0.052***
(hab/km2) (0.003) (0.005) (0.007)

(Log of) Job density
(jobs/km2)

Car Access. to Jobs 0.010*** 0.004*
(logsum) (0.002) (0.002)

(Log of) Dist. to CBD 0.034***
(meters) (0.006)

Housing taxes -0.088*** -0.043*** -0.052*** -0.03**
(%) (0.005) (0.004) (0.007) (0.01)

Green Amenities score 0.28*** 0.27*** 0.32*** 0.59***
(0 to 1) (0.02) (0.02) (0.06) (0.09)

Adjusted R-square 0.18 0.35 0.39 0.54
n 2 074 550 173 62

Flats Constant 11.73*** 11.74*** 11.04*** 11.50***
(0.04) (0.07) (0.29) (0.26)

(Log of) Pop. density
(hab/km2)

(Log of) Jobs density
(jobs/km2)

Car Access. to Jobs 0.006***
(logsum) (0.001)

(Log of) Dist. to CBD -0.007* 0.05*
(meters) (0.003) (0.02)

Housing taxes -0.038*** -0.081*** -0.08*** -0.07*
(%) (0.002) (0.009) (0.01) (0.03)

Green Amenities score 0.21*** 0.30*** 0.33** 0.66**
(0 to 1) (0.01) (0.05) (0.12) (0.22)

Adjusted R-square 0.3 0.16 0.21 0.23
n 2 074 550 173 62
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Table 8. Parameter estimates of the Households’ Location Choice sub model (between bracket:
standard deviation; significativity level: * = α ≤ 0.05, ** = α ≤ 0.01; *** = α ≤ 0.001)

Amenities Variable Statistical Section Former Municipalities
ward municipalities

Agglomeration (Log of) Pop. Density 0.09*** 0.13*** 0.82*** -0.19***
(hab/km2) (0.01) (0.01) (0.02) (0.02)

(Log of) Job Density -0.11*** -0.03** 0.08*** 0.56***
(job/km2) (0.02) (0.01) (0.01) (0.02)

Accessibility Car Accessibility to Jobs 0.045*** 0.103*** 0.048*** 0.002
(logsum) (0.006) (0.007) (0.009) (0.01)

(Log of) Dist. to CBD -0.32*** -0.33*** 0.43*** 0.38***
(meters) (0.01) (0.01) (0.02) (0.03)

Socio-economic % high inc. HH 0.32*** 0.26*** 0.39*** 0.41***
x high inc. HH (%) (0.02) (0.02) (0.03) (0.04)

% low inc. HH 0.086*** 0.084*** 0.07*** 0.06***
x low inc. HH (%) (0.007) (0.008) (0.01) (0.01)

Local (Log of) Houses prices -1.58*** -1.90*** -1.61*** -2.003***
(%) (0.04) (0.05) (0.05) (0.05)

x high income HH 0.52** 0.75*** 0.71*** 0.55**
(0.15) (0.16) (0.18) (0.17)

x low income HH -0.65*** -0.75*** -0.82*** -0.87***
(0.16) (0.17) (0.21) (0.18)

Green Amenities score 0.14*** 0.07** 0.31*** 0.11***
(0 to 1) (0.02) (0.02) (0.02) (0.02)

Adj. LL Index 0.07 0.13 0.22 0.11
AIC 56 620 53 440 47 400 54 800
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Table 9. Parameter estimates of the Employment’ Location Choice sub model (between bracket:
standard deviation; significativity level: * = α ≤ 0.05, ** = α ≤ 0.01; *** = α ≤ 0.001)

Sector Variable Statistical Section Former Municipalities
ward municipalities

Industrial (Log of) Pop. Density -0.117*** -0.26*** 0.05 -1.09***
Activities (hab/km2) (0.007) (0.02) (0.03) (0.05)

(Obs = 222 009) (Log of) Job Density -0.69*** -0.41*** -0.09 0.73***
(job/km2) (0.02) (0.04) (0.05) (0.08)

(Log of) sector job density 1.19*** 1.04*** 0.88*** 0.63***
(job/km2) (0.02) (0.04) (0.04) (0.05)

Car Accessibility to Jobs 0.161*** 0.08*** 0.02 -0.05
(logsum) (0.005) (0.02) (0.02) (0.03)

(Log of) Dist. to CBD -0.16*** -0.21*** 0.16
(meters) (0.01) (0.04) (0.09)

% High income HH -0.022*** -0.04** -0.007
(%) (0.002) (0.01) (0.04)

% HH with univ. Degree -0.123*** -0.05 0.07* -0.04
(%) (0.005) (0.03) (0.03) (0.1)

(Log of) Houses prices 6.65e-05*** 9.8e-05** 0.0001* 8.2e-05
(e) (1.03e-05) (3.6e-05) (4.7e-05) (5.3e-05)

Adj. LL Index 0.19 0.27 0.26 0.15
AIC 121 500 11 130 11 250 12 910

Office (Log of) Pop. Density -0.132*** -0.21*** 0.03 -1.48***
(Obs = 280 873) (hab/km2) (0.009) (0.02) (0.03) (0.04)

(Log of) Job Density -0.72*** -0.53*** 0.62***
(job/km2) (0.02) (0.05) (0.12)

(Log of) sector job density 1.25*** 1.03*** 0.74*** 1.09***
(job/km2) (0.03) (0.04) (0.02) (0.11)

Car Accessibility to Jobs 0.349*** 0.16** 0.04 -0.13***
(logsum) (0.004) (0.02) (0.02) (0.03)

(Log of) Dist. to CBD -0.611*** -0.46*** 0.52***
(meters) (0.008) (0.003) (0.08)

% High income HH 0.002 -0.04*** -9e-04
(%) (0.002) (0.01) (0.04)

% HH with univ. Degree -0.083*** 0.07* 0.02
(%) (0.004) (0.03) (0.11)

(Log of) Houses prices 0.0001*** 1e-05 0.0002*** -0.0001*
(e) (8e-06) (3.2e-05) (2.7e-05) (4.7e-05)

Adj. LL Index 0.22 0.3 0.34 0.24
AIC 149 100 13 200 12 510 14 530
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... Continued from previous table

Sector Variable Statistical Section Former Municipalities
ward municipalities

Retail (Log of) Pop. Density -0.17*** -0.28*** -1.17***
(Obs = 59 321) (hab/km2) (0.02) (0.06) (0.12)

(Log of) Job Density -0.34*** -0.23*** -0.31*** 0.44***
(job/km2) (0.04) (0.06) (0.07) (0.09)

(Log of) sector job density 1.02*** 0.98*** 1.03*** 1.02***
(job/km2) (0.05) (0.07) (0.09) (0.12)

Car Accessibility to Jobs 0.177*** 0.15*** 0.09 -0.02
(logsum) (0.009) (0.04) (0.05) (0.01)

(Log of) Dist. to CBD -0.11
(meters) (0.07)

% High income HH -0.01 0.007
(%) (0.03) (0.05)

% HH with univ. Degree -0.059*** -0.05 0.02 0.01
(%) (0.008) (0.09) (0.14) (0.01)

(Log of) Houses prices -0.0001*** -6.2e-05 6.9e-05 3.3e-05
(e) (1.7e-05) (6.6e-05) (7.8e-05) (8.6e-05)

Adj. LL Index 0.11 0.18 0.22 0.09
AIC 36 060 3 290 3 089 3 630

Hotel, (Log of) Pop. Density -0.07** -0.09 -0.04 -1.52***
Restaurant, (hab/km2) (0.02) (0.07) (0.11) (0.12)

Bar (Log of) Job Density -0.29*** -0.30** 0.06 1.31***
(Obs = 35 039) (job/km2) (0.04) (0.09) (0.14) (0.24)

(Log of) sector job density 1.01*** 0.86*** 0.78*** 0.46*
(job/km2) (0.05) (0.09) (0.11) (0.18)

Car Accessibility to Jobs 0.16*** 0.22*** 0.07 -0.13
(logsum) (0.01) (0.05) (0.07) (0.11)

(Log of) Dist. to CBD -0.71*** -0.44*** 0.16
(meters) (0.02) (0.08) (0.16)

% High income HH -0.001 -0.007 -0.02
(%) (0.006) (0.03) (0.07)

% HH with univ. Degree 0.03 0.01 0.08 0.22*
(%) (0.01) (0.11) (0.2) (0.11)

(Log of) Houses prices 5.3e-05 -5.8e-05 0.0002* -6.03e-05)
(e) (2.7e-05) (9.6e-05) (1e-04) (1e-04)

Adj. LL Index 0.19 0.29 0.33 0.23
AIC 19 080 1 689 1 642 1 831
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... Continued from previous table

Sector Variable Statistical Section Former Municipalities
ward municipalities

Government (Log of) Pop. Density -0.04** -0.17*** -1.59***
& Public Service (hab/km2) (0.01) (0.04) (0.06)

(Obs = 169 822) (Log of) Job Density -0.65*** -0.51*** -0.18* 0.97***
(job/km2) (0.03) (0.06) (0.07) (0.13)

(Log of) sector job density 1.22*** 1.01*** 0.98*** 0.79***
(job/km2) (0.03) (0.04) (0.04) (0.06)

Car Accessibility to Jobs 0.336*** 0.36*** 0.07* -0.04
(logsum) (0.005) (0.02) (0.03) (0.05)

(Log of) Dist. to CBD -0.75*** 0.31*** 0.46***
(meters) (0.01) (0.07) (0.11)

% High income HH 0.010*** -0.08
(%) (0.002) (0.06)

% HH with univ. Degree -0.056*** -0.13*** 0.36*
(%) (0.006) (0.02) (0.14)

(Log of) Houses prices 1.4e-05 -0.0002*** -0.0002***
(e) (1.4e-05) (4.9e-05) (7.5e-05)

Adj. LL Index 0.27 0.38 0.49 0.39
AIC 84 010 7 093 5 809 6 902

Education (Log of) Pop. Density -0.12*** -0.20** -0.12 -1.51***
(Obs = 57 953) (hab/km2) (0.03) (0.06) (0.08) (0.09)

(Log of) Job Density -0.72*** -0.26*** -0.28**
(job/km2) (0.07) (0.07) (0.08)

(Log of) sector job density 1.50*** 0.85*** 1.12*** 1.47***
(job/km2) (0.08) (0.06) (0.08) (0.07)

Car Accessibility to Jobs 0.21*** 0.27*** 0.02 0.007
(logsum) (0.01) (0.04) (0.05) (0.07)

(Log of) Dist. to CBD -0.14***
(meters) (0.02)

% High income HH 0.007
(%) (0.004)

% HH with univ. Degree -0.03* 0.08** -0.01
(%) (0.01) (0.03) (0.05)

(Log of) Houses prices 4.5e-05* -0.0002*** 0.0002** -0.0001*
(e) (1.7e-05) (6.8e-05) (8e-05) (5.4e-05)

Adj. LL Index 0.12 0.24 0.33 0.22
AIC 34 520 2 961 2 685 3 060
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... Continued from previous table

Sector Variable Statistical Section Former Municipalities
ward municipalities

Health (Log of) Pop. Density -0.20*** -0.21*** -1.54***
(Obs = 76 850) (hab/km2) (0.02) (0.04) (0.1)

(Log of) Job Density -0.56*** -0.31*** -0.13 0.47***
(job/km2) (0.04) (0.06) (0.07) (0.09)

(Log of) sector job density 1.35*** 0.96*** 1.02*** 1.05***
(job/km2) (0.05) (0.05) (0.06) (0.08)

Car Accessibility to Jobs 0.051*** 0.18*** 0.12* 0.03
(logsum) (0.008) (0.03) (0.05) (0.06)

(Log of) Dist. to CBD -0.44*** 0.48***
(meters) (0.02) (0.1)

% High income HH -0.012**
(%) (0.003)

% HH with univ. Degree 0.003 -0.05 -0.04
(%) (0.01) (0.03) (0.05)

(Log of) Houses prices 0.0002*** -8.7e-05 7.31e-05
(e) (1.5e-05) (5.6e-05) (7.8e-05)

Adj. LL Index 0.12 0.32 0.34 0.16
AIC 46 250 3 626 3 404 4 346

Leisures (Log of) Pop. Density -0.009 -1.61***
activities (hab/km2) (0.033) (0.16)

(Obs = 26 326) (Log of) Job Density -0.30*** -0.42*** 0.11
(job/km2) (0.04) (0.05) (0.22)

(Log of) sector job density 1.02*** 0.96*** 1.25*** 1.45***
(job/km2) (0.05) (0.07) (0.08) (0.12)

Car Accessibility to Jobs 0.11*** 0.12* 0.08
(logsum) (0.01) (0.06) (0.14)

(Log of) Dist. to CBD -0.64*** -0.33** 0.77***
(meters) (0.03) (0.11) (0.18)

% High income HH -0.024***
(%) (0.005)

% HH with univ. Degree 0.008 -0.02
(%) (0.009) (0.12)

(Log of) Houses prices 0.0001*** 1e-04 1e-04
(e) (3.2e-05) (1e-04) (1e-04)

Adj. LL Index 0.27 0.34 0.47 0.3
AIC 13 010 1 196 917 1 190
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