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Transport models most often involve separate models for traffic assignment and demand. As a 
result, two different equilibrium mechanisms are involved, (i) the internal traffic assignment 
equilibrium, and (ii) the external equilibrium between the assignment model and the demand 
model. The objective of this paper is to analyse convergence performance for the external loop 
and to illustrate how an improper linkage between the converging parts can lead to substantial 
uncertainty in the final output. Although this loop is crucial for the performance of large-scale 
transport models it has not been analysed much in the literature. The paper first investigates 
several variants of the Method of Successive Averages (MSA) by simulation experiments on a 
toy-network. It is found that the simulation experiments produce support for a weighted MSA 
approach. The weighted MSA approach is then analysed on large-scale in the Danish National 
Transport Model (DNTM). It is revealed that system convergence requires that either demand or 
supply is without random noise but not both. In that case, if MSA is applied to the model output 
with random noise, it will converge effectively as the random effects are gradually dampened in 
the MSA process. In connection to DNTM it is shown that MSA works well when applied to 
travel-time averaging, whereas trip averaging is generally infected by random noise resulting 
from the assignment model. The latter implies that the minimum uncertainty in the final model 
output is dictated by the random noise in the assignment model. 
 
Keywords: system convergence, transport models, assignment, transport demand, method of successive 
average.  

1. Introduction 

In transport modelling, one of the most fundamental equilibrium principles is the internal 
assignment equilibrium, where a route choice model (demand) iterates with a congestion model 
(supply). The complexity of this iteration scheme arises because increasing demand causes a 
disproportional increase in travel time, which in turn will reduce the demand. Stable 
convergence can be achieved by applying various averaging techniques, including the Method of 
Successive Averages (MSA) and variants of this method (see e.g. Sheffi, 1985). The analysis of 
system convergence for large scale models is closely related to model uncertainty. Firstly, for 
large-scale model systems, convergence is a very time-consuming process. In reality, it means 
that no system can be expected to be fully converged and it is therefore relevant to consider the 
magnitude of model uncertainty after a realistic number of iterations. In particular it is relevant to 
consider methods that may reduce the uncertainty through a more efficient model convergence. 
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Secondly, as state-of-the-art models often involve various degrees of randomness it is relevant to 
consider under which averaging strategies this randomness may propagate to the final output 
and, in particularly, how this problem can be minimized.  

The iteration between demand and assignment, here referred to as the external equilibrium, is 
closely related to the mechanism of the internal equilibrium, but also different. It is similar in the 
sense that supply as represented by the assignment model interacts with a demand model. 
However, it is different in that the demand model is quite different and represents an aggregated 
measure of demand, typically at the origin-destination level. In any case, the importance of a 
unique and stable equilibrium at the system level, which can be achieved in a manageable 
number of iterations, is evident. If this was not possible, it would severely jeopardise the 
benchmark of different transport policies, as real differences in project efficiency (William and 
Lam; 1989) could not be separated from the uncertainty of achieving the equilibrium state. 
Fortunately, given that random noise in the model is (partly) controllable, convergence at the 
level of the system can be achieved. 

Typically the feed-back between demand and supply is less volatile in the external equilibrium 
(due to aggregation) and the convergence will tend to exhibit a more “well-behaved” path. The 
fact that convergence in the external equilibrium is smoother has caused many applied models to 
use a simple Method of Repeated Approximations (MRA) principle3, which in quite a few cases 
will perform quite well. However, the current paper shows that MRA will occasionally fail to 
converge or at least converge very slowly in a number of cases. This is seen in Section 4.1 (Figure 
6) in a simulation exercise on a toy-network. It has also been experienced on a large-scale in the 
Danish national transport model and in the OTM model for Copenhagen (Vuk and Overgaard, 
2010). In the Dutch National Model (Grol et al., 2010) it was concluded that, when using the MRA 
“…it may take a long time to converge to the optimum, and possibly it may not converge at all”. The 
inefficiency of the MRA was also found in an activity-based model for New York (Vovsha et al., 
2008).  

The Dutch National Transport model represents one of the most developed transport systems in 
Europe (Fox et al., 2003). The convergence of the “old” Dutch model system applied a 
combination of MRA and “clever jump” based on approximations of the demand and supply 
curve, which occasionally failed to converge. Due to these convergence problems variants of the 
MSA were tested. Firstly, Grol et al. (2010) tested MSA with constant weight, which did not 
converge as well. This is not surprising as the regularity conditions in Blum’s theorem (1954) are 
violated using this specification. In subsequent tests, reported in Grol et al., a simple MSA4 was 
tested. It was shown to be difficult to find an optimal solution even when a large number of 
iterations were used (60 iterations). We believe Grol et al. had issues in their convergence criteria 
as they benchmarked against an MSA, which did not seem fully converged. Convergence for 
activity-based models was analysed in Vovsha et al. (2008) in an application for New York and in 
Bekhor et al. (2013) for the city of Tel-Aviv. In the paper by Vovsha et al., methods for obtaining 
convergence are classified into; i) averaging methods, and ii) enforcement methods. The latter 
includes re-use of random numbers in the microsimulation as well as gradual freezing of 
proportions of households. One of the problems in complicated activity-based microsimulation 
models is that the re-use of random seeds for the simulation can be difficult. This is due to the 
modelling of time-of-day choice and the possibility of changing trip chains dynamically. As the 
properties of other enforcement methods need further research, Vovsha et al. dealt with the 
introduced random noise by averaging on the trip tables using MSA. It was shown that the 
performance by averaging on trip tables was much better than averaging on LoS. Clearly, this is 
because they apply a static assignment. In other words, by averaging on the trip tables, which are 
infected by random noise, the noise is subsequently averaged out. This complies well with the 

3 This is also sometimes referred to as the ”naive direct feedback”. 
4 Based on averaging on trips which we in the current paper recommend not to use. 
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finding for the Danish national model as presented in this paper. We apply a simpler demand 
model, which although based on a micro-simulated population, is based on fixed a random seed 
and hence can be made deterministic between runs as we re-use the seed. The assignment model, 
on the contrary, is a stochastic user equilibrium (SUE) model with random effects for links and 
routes, which cannot re-use the random seed. We demonstrated that averaging on LoS is a 
powerful tool as it facilitates a smoothly and consistent convergence.  

Hence, an important lesson is that if you have uncontrolled random effects in both the demand 
and the assignment model then the system convergence will never be better than the noise-floor 
of the system. The noise-floor is dictated by the model with the lowest degree of random noise. It 
is therefore quite important to be able to either re-use the random seed for the demand model or 
the assignment model so that random noise does not occur at both ends. Whether it is better to 
have uncontrolled noise in demand or assignment will depend on the modelling objective and 
possibly other characteristics such as the network layout and the zone system.  

Another strong motivation for being concerned with the convergence of the external equilibrium 
relates to the computational effort. As the external equilibrium loop involves running a complete 
assignment model combined with a complete demand model, iterations are much more costly 
than for the inner loop. This does not justify a simple iteration scheme for the sake of simplicity. 
As only 5 to 10 iterations may be possible in practice within a reasonable calculation time for 
many large-scale models5, it is important that these are spent wisely. 

The paper thus considers the convergence of the external loop and discusses variants of the MSA 
algorithm. Section 2 firstly introduces the fix point problem and algorithms in general in a 
theoretical perspective. Section 3 considers system convergence in practise and lines up different 
methods to be tested. Section 4 describes simulation experiments where solution methods are 
first tested on a “toy-network” with a stylized demand model and subsequently on a large scale 
by investigating convergence performance in the Danish National Model. Summary and 
conclusions are offered in Section 5. 

2. Introduction to fix point algorithms 

The main issue in large-scale transport models is to find the equilibrium between a supply 
(assignment) model and a demand model. This equilibrium solution is a fixed point and the 
problem falls within the more general family of mathematical fixed-point problems. Results on 
existence and uniqueness for a broad class of assignment models were presented in Fisk (1980) 
and for assignment with elastic demand in Cantarella (1997). In the current paper, where the 
demand models are of the nested logit type and with a fixed demand profile between iterations 
due to the re-use of random seeds in the model, the uniqueness and existence is well covered by 
these papers although demand and supply are iterated externally.  

Let demand be represented as a continuous vector function 𝒇𝒇(𝒙𝒙) ∶ 𝑆𝑆 ⊆ 𝑅𝑅𝑁𝑁→ 𝑆𝑆 and 𝑆𝑆 a non-empty, 
compact and convex set. According to Brouwer theorem (Agarwal et al., 2001) it has at least one 
fixed-point 𝒙𝒙∗ = 𝒇𝒇(𝒙𝒙∗) (existence). If it can also be proved that a fixed-point exists and is unique, 
then this unique fixed-point may be found through many algorithms, whose general specification 
can be written as (Agarwal et al., 2001);  

𝒙𝒙𝒌𝒌 = 𝒙𝒙𝒌𝒌−𝟏𝟏 + 𝑴𝑴𝒌𝒌 (𝒇𝒇(𝒙𝒙𝒌𝒌−𝟏𝟏) − 𝒙𝒙𝒌𝒌−𝟏𝟏)              (1) 

The algorithm is based on a starting solution 𝒙𝒙𝟎𝟎 ∈ 𝑺𝑺, and a properly defined matrix 𝑴𝑴𝒌𝒌 (see 
among many others Kelley, 1995).  

5 The 60 iterations applied in the Dutch experiment as referred in Grol et al. (2010) would imply a runtime of 25 
days in the DNTM. 
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The method of repeated approximations (MRA), which resembles the direct feedback approach, 
is given by 𝑴𝑴𝒌𝒌 = 𝑰𝑰. However, it can be proven to converge only for contractions or for strictly 
non-expansive functions. 

The Newton method is based on 𝑴𝑴𝒌𝒌 = �𝑰𝑰 − 𝑱𝑱𝑱𝑱𝑱𝑱�𝒇𝒇(𝒙𝒙𝒌𝒌−𝟏𝟏)��−𝟏𝟏 and will usually converge fast 
provided that the starting solution is close enough to the searched fixed-point.  

The Broyden method (refer to, e.g. Agarwal et al., 2001) is a kind of secant approximations, where 
matrix 𝑴𝑴𝒌𝒌 is updated at each iteration, from 𝑴𝑴𝒌𝒌 = �𝑰𝑰 − 𝑱𝑱𝑱𝑱𝑱𝑱�𝒇𝒇(𝒙𝒙𝟎𝟎)��−𝟏𝟏. It gives some computation 
advantages with respect to the Newton method since derivatives need to be computed only at the 
first iteration. However, from a practical large-scale perspective neither the Newton method nor 
the Broyden method are feasible due to the dimensionality of the underlying models and 
matrices. The methods require matrix inversion of very large matrices, which is computationally 
cumbersome.  

The method of successive averages (MSA) is given by 𝑴𝑴𝒌𝒌 = 𝑎𝑎𝑘𝑘𝑰𝑰 with 𝑎𝑎𝑘𝑘 = 1/𝑘𝑘. This form was 
suggested in the seminal work by Robbins and Monro (1951), which proved convergence under 
two regularity conditions. These conditions were later softened by the Blum theorem (Blum, 
1954) and by an extension in Cantarella (1997) with weakened regularity conditions. If the 
function is computed by means of Monte Carlo simulation which only provides an unbiased 
estimation of the value, only almost sure convergence can be considered. Since all intermediate 
solutions in the sequence are feasible, algorithms based on MSA are often called feasible, and the 
current solution may be considered an approximation to the searched equilibrium flows. These 
algorithms are also called simple since they only require computation of all the involved functions 
and will not require computation of derivatives and need no matrix algebra during iterations 
(Cantarella and Cascetta, 2009). 

The “success” of the MSA (and variants of the MSA) is due to the “successive averaging” forming 
a contraction principle. Although it is not a contraction in a strict mathematical sense, it is a 
contraction principle which will lead to convergence as the number of iterations goes to infinity. 
The principle of MSA is illustrated in Figure 1 below. As seen MSA will move towards the 
equilibrium, whereas MRA is unstable and moves away from the equilibrium. Depending on the 
shape of the curves, MRA may move away from the solution, may be cyclic unstable, or may 
move towards the equilibrium. 
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Figure 1. Illustration of unstable solution based on the MRA iteration scheme and the MSA contraction 
principle   

A general finding in many practical applications is that the MSA principle is particularly efficient 
in the start of the sequence, whereas the speed of convergence tends to be relatively slow as the 
algorithm moves towards the equilibrium. This is particularly true if the starting solution is very 
different from the equilibrium as the “noise” from the first iterations will be inherited in the 
entire path towards the equilibrium. This is especially the case when transport models are used 
for long-term forecasts and/or project appraisals, where the input variables are changed 
compared to the data in the calibration year. 

3. System convergence in practise 

The equilibrium between the demand model and the assignment model is typically solved by an 
outer loop as illustrated below;  

Step 0: Define base-line OD matrices.  

Step 1: Calculation of Initial Level-of-service (traffic assignment based on base-
line OD matrices).  

Step 2: Demand model, based on Level-of-service from Step 1. 

Step 3: Generation of OD matrices based on the demand model output (Step 2).  

Step 4: Calculation of Level-of-service (equilibrium inner-loop level-of-service 
based on demand matrices from Step 3). 
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Step 5: Iterate Step 2-Step 4 until convergence is obtained. 

The MSA works by either averaging OD matrices (Step 3) or by averaging level-of-service 
matrices (Step 4). If averaging is applied to OD matrices it basically averages matrices generated 
in Step 3 from iteration to iteration. If averaging applies to level-of-service, it is based on 
averaging of the outcome of Step 4 from iteration to iteration. 

An important issue in obtaining system convergence is that the use of different exogenous level-
of-service attributes in the demand and route choice could influence the convergence. For 
instance, it is common to use fixed value-of-time estimates in both demand and assignment and 
these could well be different as they represent different choice situations. If these values are 
different it could introduce a flip-flop between the demand and supply and cause convergence to 
slow down. An example hereof is if the “mark-up” for congestion compared to free-flow time is 2 
in the route choice model and 1 in the demand model. In this case, the route choice will tend to 
react more aggressively with respect to congestion than the demand model and produce trips 
which will be longer (de-tours) in order to circumvent congestion. The demand model will on the 
other hand counteract this process at the level of the matrices, as congestion is less costly. So it 
may lead to an assignment that seeks to avoid congestion and a demand model that “seeks” 
congestion which will slow down the convergence.  

3.1 Averaging methods 

Applying the MSA in the external loop is straightforward and implies that demand 𝑥𝑥𝑘𝑘 (or 
supply) at iteration 𝑘𝑘 is represented as a moving average. Hence, the final estimate of 𝑥𝑥�𝑘𝑘, is 
represented as 

 𝑥𝑥�𝑘𝑘 = 𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘 + (1 − 𝑎𝑎𝑘𝑘)𝑥𝑥𝑘𝑘−1 (2) 

In the original paper by Robbins and Monro (1951) it was suggested that 𝑎𝑎𝑘𝑘 = 1/𝑘𝑘. With this 
parameterisation of 𝑎𝑎𝑘𝑘, the MSA puts most weight on the “history” and less weight on the 
current iteration. As discussed in Section 2 this generally works well if the starting solutions are 
not too noisy. However, if the starting solution is bad the inherited noise from the first iteration 
will mess up the performance of the MSA and the convergence will be slow.  To deal with this 
issue several methods have been proposed. The underlying idea of most of these methods is to 
define a sequence 𝑎𝑎𝑘𝑘 that conforms to the regularity conditions (Blum, 1954) stating that ∑ 𝑎𝑎𝑘𝑘 =𝑘𝑘
∞ and ∑ 𝑎𝑎𝑘𝑘2 < ∞𝑘𝑘  and where the weight of the first part of the iteration process is gradually 
damped.  

A simple idea was put forward by Cascetta and Postorino (2001) who suggested resetting the 
iteration history at some points in the iterative process. If 𝜑𝜑 is the number of MSA iterations 
before reset, the resetting can then be accomplished by defining a new iteration index 𝑘𝑘� equal to; 

 𝑘𝑘� = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘, 𝜑𝜑)                  (3) 

𝑖𝑖𝑖𝑖 𝑘𝑘� = 0 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑘𝑘� = 𝜑𝜑                  (4) 

The MSA is then simply defined with step-size 𝑎𝑎𝑘𝑘� = 1/𝑘𝑘�, which will produce a repeated sequence 
1,2, … , 𝜑𝜑, 1,2, …𝜑𝜑, ..  

Cascetta and Postorino (2001) suggested resetting the history for every 5 steps, however, the 
optimal choice is strongly network-dependent and will also depend on the acceptable precision 
level for the final iteration and the number of iterations that are run. It should also be said, 
however, that in order for the resetting approach to be consistent with the regularity conditions 
(Blum’s theorem), there should always be a point from where the reset is no longer used. 
Moreover, choosing a value of 𝜑𝜑 which is too small can be dangerous and it is generally not 
recommended to use values below 5.  
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Polyak and Juditsky (1990) introduced an alternative step-size for the MSA equal to  𝑎𝑎𝑘𝑘 = 1

𝑘𝑘2/3 
. 

Compared to the original suggestion by Robbins and Monro (1951), this specification put more 
weight on the newest iterations. It has also been common to use 𝑎𝑎𝑘𝑘 = 1

𝑘𝑘1/2 
 although it is does not 

satisfy the Blum theorem. 

A weighted MSA approach was considered in Liu et al. (2009) where 𝑎𝑎𝑘𝑘(𝑑𝑑) is given by  

 
𝑎𝑎𝑘𝑘(𝑑𝑑) =

𝑘𝑘𝑑𝑑

1𝑑𝑑 + 2𝑑𝑑 + 3𝑑𝑑 + ⋯+ 𝑘𝑘𝑑𝑑 
 (5) 

where 𝑑𝑑 ≥ 0. Clearly, for 𝑑𝑑 = 0 the ordinary MSA emerges, however, as 𝑑𝑑 increases more 
emphasis is put on the latest iterations. It is easy to see that 𝑎𝑎𝑘𝑘(1) = 2

𝑘𝑘+1
 and 𝑎𝑎𝑘𝑘(2) = 6𝑘𝑘

(𝑘𝑘+1)(2𝑘𝑘+1)
. 

The weighted MSA series satisfy the regularity conditions as  

 𝜋𝜋2

6
= � 𝑎𝑎𝑘𝑘(0)2

∞

𝑘𝑘
> � 𝑎𝑎𝑘𝑘(0.5)2

∞

𝑘𝑘
> � 𝑎𝑎𝑘𝑘(1)2 >

∞

𝑘𝑘
… > � 𝑎𝑎𝑘𝑘(𝑑𝑑)2

∞

𝑘𝑘
 

(6) 

and  

 ∞ = � 𝑎𝑎𝑘𝑘(0) <
∞

𝑘𝑘
� 𝑎𝑎𝑘𝑘(0.5) <

∞

𝑘𝑘
� 𝑎𝑎𝑘𝑘(1) < ⋯� 𝑎𝑎𝑘𝑘(𝑑𝑑) <

∞

𝑘𝑘

∞

𝑘𝑘
, ∀𝑑𝑑 > 0 (7) 

3.2 Intersection approach 

In relation to the work with the Danish National Model (Rich, 2010b) a slightly different 
approach was tested, which we will refer to as the intersection method (Paulsen, 2013). This 
method approximates supply and demand by linear functions and these functions are then 
solved for their intersection points. Each OD pair is considered separately, and cross-effects 
between the different OD pairs are ignored. Hence, a demand response does not include level-of-
service changes from adjacent OD pairs.  

In the following two mappings are considered; 

• 𝐷𝐷(𝑡𝑡𝑘𝑘): Mapping of demand as a function of LoS tk at iteration k. Here demand is 
represented as the accumulated car demand OD matrices. 

• 𝑡𝑡(𝐷𝐷𝑘𝑘): Mapping of LoS as a function of demand at iteration k. Here LoS is represented at 
the car LoS matrix. 

The process applies the following steps: 

Step 0: Set the iteration number 𝑘𝑘 = 0. Start out with an initial level-of-service matrix;  𝑡𝑡𝑘𝑘−1 (this 
matrix may define trips between zones {𝑖𝑖, 𝑗𝑗} as well as possible trip purpose categories). 

Step 1: Evaluate the following point estimates 𝐷𝐷𝑘𝑘 = 𝐷𝐷(𝑡𝑡𝑘𝑘−1), 𝑡𝑡𝑘𝑘 = 𝑡𝑡(𝐷𝐷𝑘𝑘), 𝐷𝐷𝑘𝑘+1 = 𝐷𝐷(𝑡𝑡𝑘𝑘) and 
𝑡𝑡𝑘𝑘+1 = 𝑡𝑡(𝐷𝐷𝑘𝑘+1). This requires two evaluations of the demand model and two evaluations of the 
assignment, which leads to four data points {𝐷𝐷𝑘𝑘, 𝑡𝑡𝑘𝑘−1}, {𝐷𝐷𝑘𝑘, 𝑡𝑡𝑘𝑘}, {𝐷𝐷𝑘𝑘+1, 𝑡𝑡𝑘𝑘} and {𝐷𝐷𝑘𝑘+1, 𝑡𝑡𝑘𝑘+1}. In the 
following, the demand curve is approximated from {𝐷𝐷𝑘𝑘, 𝑡𝑡𝑘𝑘−1}, {𝐷𝐷𝑘𝑘+1, 𝑡𝑡𝑘𝑘} and the supply curve 
from {𝐷𝐷𝑘𝑘, 𝑡𝑡𝑘𝑘}, {𝐷𝐷𝑘𝑘+1, 𝑡𝑡𝑘𝑘+1}. 

Step 2: Define (for each OD pair) the linear system where demand and supply is approximated 
by the four most recent data points.  

 𝐷𝐷 =  𝑞𝑞1 + 𝑏𝑏1𝑡𝑡                      (8) 

 𝑡𝑡 =  𝑞𝑞2 + 𝑏𝑏2𝐷𝐷 (9) 

where 
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𝑞𝑞1 = �1 − �𝐷𝐷𝑘𝑘+1−𝐷𝐷𝑘𝑘
𝑡𝑡𝑘𝑘−𝑡𝑡𝑘𝑘−1

��𝐷𝐷𝑘𝑘+1, 𝑏𝑏1 = �𝐷𝐷𝑘𝑘+1−𝐷𝐷𝑘𝑘
𝑡𝑡𝑘𝑘−𝑡𝑡𝑘𝑘−1

� 
(10) 

 
𝑞𝑞2 = �1 − � 𝑡𝑡𝑘𝑘+1−𝑡𝑡𝑘𝑘

𝐷𝐷𝑘𝑘+1−𝐷𝐷𝑘𝑘
�� 𝑡𝑡𝑘𝑘+1, 𝑏𝑏2 = � 𝑡𝑡𝑘𝑘+1−𝑡𝑡𝑘𝑘

𝐷𝐷𝑘𝑘+1−𝐷𝐷𝑘𝑘
� 

(11) 

Step 3: Solve the linear system in Step 2. The solution is given by:  

  𝑡𝑡∗ = 𝑞𝑞2−𝑏𝑏2𝑞𝑞1
1−𝑏𝑏1𝑏𝑏2

 (12) 

  𝐷𝐷∗ = 𝑞𝑞1 + 𝑏𝑏1
𝑞𝑞2−𝑏𝑏2𝑞𝑞1
1−𝑏𝑏1𝑏𝑏2

 (13) 

Step 4: Let 𝑘𝑘 = 𝑘𝑘 + 1. Calculate 𝐷𝐷𝑘𝑘+1 = 𝐷𝐷(𝑡𝑡∗) and subsequently 𝑡𝑡𝑘𝑘+1 = 𝑡𝑡(𝐷𝐷𝑘𝑘+1).  

If an MSA function with sequence 𝑎𝑎𝑘𝑘(𝑑𝑑) is applied on the point sequence 𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘, … , 𝑡𝑡1 we get  

  𝑡̃𝑡𝑘𝑘+1 = 𝑎𝑎𝑘𝑘(𝑑𝑑)𝑡𝑡𝑘𝑘+1 + �1 − 𝑎𝑎𝑘𝑘(𝑑𝑑)�𝑡𝑡∗ (14) 

Use the MSA point for 𝑡̃𝑡𝑘𝑘+1 to calculate the corresponding point of demand 𝐷𝐷�𝑘𝑘+1. 

𝐷𝐷�𝑘𝑘+1 = 𝐷𝐷(𝑡̃𝑡𝑘𝑘+1) 

Step 5: If ‖𝑡̃𝑡𝑘𝑘+1 − 𝑡̃𝑡𝑘𝑘‖ < 𝜀𝜀 for all OD pairs, stop. Otherwise let 𝑘𝑘 = 𝑘𝑘 + 1 and define 𝐷𝐷𝑘𝑘+1 = 𝐷𝐷(𝑡𝑡∗) 
and 𝑡𝑡𝑘𝑘+1 = 𝑡𝑡(𝐷𝐷∗). Go to Step 2. 

A graphical illustration of the process is illustrated in Figure 2 below.  
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Figure 2. Illustration of the Intersection Method 

As seen from Figure 2 the intersection method performs very well when applied to a one-
dimensional case. Only 2-3 iterations are needed to get very precise approximations.  

A problem when looking at a single cell is however that the 𝐷𝐷(𝑡𝑡) and 𝑡𝑡(𝐷𝐷) functions may not be 
unique due to substitution effects. Changes of nearby cells may have a second-order effect on the 
cell under consideration. If in one iteration, cell {𝑖𝑖, 𝑗𝑗} attracts much traffic, {𝑖𝑖, 𝑗𝑗 − 1} may lose 
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traffic correspondingly. To build some robustness into the algorithm we introduce the MSA 
averaging in equation (14).  

Generally the intersection method seems to be somewhat similar to what was used in the Dutch 
model according to the description provided in Grol et al. (2010) and the final conclusion seems 
to be similar as well. 

Although the MSA averaging in equation (14) helps, it does not fully resolve the problem of 
correlation and we have experienced positive failure rates for the intersection method for most 
settings in the sense that it failed to converge to an equilibrium in 1000 iterations. The paper does 
not allow a detailed elaboration on the rigorous simulation exercise that was carried out (Paulsen, 
2013). However, below we present the most important conclusions and invite the reader to 
consider Appendix A where a small subset of the results is presented. For additional information 
readers should refer to (Paulsen, 2013).  

For the intersection method, the following was concluded: 

• Excellent performance in one-dimension. 

• For N-dimensional systems. 

o When used without MSA a significant share of the test cases did not converge and 
when convergence was experienced the rate of convergence was slow compared 
to a weighted MSA. 

o When used with MSA and proper weighting the failure rate could be reduced 
significantly and may even be zero for reasonably soft convergence criteria. Still 
the rate of convergence was slow compared to a weighted MSA.  

Based on these findings it was concluded that the intersection method, although tempting at first 
sight, could not outperform the weighted MSA and (more importantly) could not guarantee 
stable convergence. Due to this, the idea will not be considered further6.  

4. Simulation experiments  
In the following section, we test the various MSA techniques mentioned in Section 3.1 in two 
different model settings 

• A small/medium sized “toy-network” consisting of 9 zones and a total of 3,804 routes 

• A large network for the whole of Denmark consisting of 907 zones and more than 30,000 
road links.  

The strategy was to use the toy-network to “screen” for good solution candidates and then test 
the most successful ones in the Danish National model. 

4.1 Analysis of “toy-network” 

The lay-out of the “toy-network” is illustrated in Figure 3 below.  

6 We are aware of slightly similar ideas by Lv et al. (2010) on a two-directional approach which is shown to 
converge. Whether this approach is applicable to large-scale implementation and can compete with the efficient 
weighted MSA is an interesting future research topic. 
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Figure 3. Layout of toy-network 

The network is represented by 9 nodes (or zones), which by elimination of inter-zone traffic gives 
72 OD pairs connected by 16 arcs. There is no assumption of limitations in the network (e.g., 
closed links or one-way links) and the total combination of routes is 3,804 representing 22,404 
connected arcs. As a result, the average route consists of 5.88 arcs.  

Different OD matrix structures were generated randomly to reflect different OD flow patterns 
and congestion levels.  

The inner loop in the simulation experiment used a full stochastic loading on all routes for each 
loop in the assignment (approximately 50 routes per OD pair). This is in contrast to a normal 
assignment model, where routes are sampled sequentially in the MSA loop.  

The simulation experiment did not apply link-based random effects. This is usually applied to 
improve performance and robustness of the inner loop; however, in this case with a small 
network and very fast convergence (due to the full stochastic loading) it was not needed. 

In all of the simulation schemes on the toy-network we applied a simple demand and supply 
setup. Demand for car transport for a given OD pair {𝑖𝑖, 𝑗𝑗} at iteration 𝑘𝑘 is for simplicity notated as 
𝐷𝐷(𝑡𝑡𝑘𝑘). Mathematically it was represented as a logit model7 for the choice of mode 𝑚𝑚 scaled by a 
fixed OD matrix 𝑇𝑇𝑖𝑖,𝑗𝑗0  as illustrated below in (15) 

𝐷𝐷(𝑡𝑡𝑘𝑘) = 𝐷𝐷(𝑡𝑡𝑘𝑘|𝑚𝑚 = 𝑐𝑐𝑐𝑐𝑐𝑐, 𝑖𝑖, 𝑗𝑗) = 𝑇𝑇𝑖𝑖,𝑗𝑗0
𝑒𝑒𝑒𝑒𝑒𝑒�𝜗𝜗𝑚𝑚=𝑐𝑐𝑐𝑐𝑐𝑐+𝜃𝜃𝑡𝑡𝑚𝑚=𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖,𝑗𝑗)�

∑ 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜗𝜗𝑚𝑚′+𝜃𝜃𝑡𝑡𝑚𝑚′)𝑚𝑚′
         (15) 

The supply 𝑡𝑡(𝐿𝐿𝑘𝑘) function was represented as a traditional BPR formula (Highway Research Board, 
1965) as seen below in (16) where 𝐿𝐿𝑘𝑘 represent the link-load at iteration 𝑘𝑘.  

𝑡𝑡(𝐿𝐿𝑘𝑘) = 𝑡𝑡0 �1 + 𝛼𝛼 �𝐿𝐿𝑘𝑘
𝐶𝐶
�
𝛽𝛽
�            (16) 

These values of these functions were then updated iteratively to investigate convergence failure 
and rate of convergence. In the following section we consider the simulation results.   

7 A similar setup was used in the toy-network experiments presented in Section 4.1. 
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Non-convergence of the outer loop 
The first and very obvious issue is whether it is necessary to consider convergence problems in 
the outer loop at all? As many models have applied MRA iteration schemes with success it is a 
question whether it is possible to construct a counter example? However, it turned out to be 
straightforward to generate many examples where the external loop diverged from the 
equilibrium solution. If the slopes of the demand and supply curves were moderately flat, 
usually the performance of the MRA was quite good and sometimes even better than the MSA. 
However, as the slope increased the divergence was amplified and at some point it became 
cyclically unstable.  

Rather than illustrating this in a separate figure we refer to Figure 6, which indicates a nearly 
cyclically unstable MRA convergence and, in all cases, very slow convergence.  

Benchmark of averaging methods 
Figure 4-6 presents a series of convergence benchmarks for the MRA and five averaging methods. 
Unfortunately, even for a small-scale problem as represented by the toy network it is very 
difficult to find the exact solution. As a result, we have approximated the system equilibrium by 
iterating the system until stability. We used more than 300 iterations and tested the performance 
using different averaging methods. The convergence criterion is below the double-precision 

floating-points in SAS. For each method, we evaluated the mean % deviation 1
𝑁𝑁
∑ �

𝑇𝑇𝑖𝑖𝑖𝑖−𝑇𝑇𝑖𝑖𝑖𝑖
∗

𝑇𝑇𝑖𝑖𝑖𝑖
∗ �𝑖𝑖𝑖𝑖  from 

the approximated equilibrium trip matrix 𝑇𝑇𝑖𝑖𝑖𝑖∗  to facilitate a visual inspection of the convergence 
scheme of the different methods as presented in Figure 4-Figure 6.   

A first and interesting observation is that although the MRA failed to converge in certain cases it 
was quite efficient compared to many averaging methods in other cases. The main explanation 
for this is that many averaging methods will tend to converge slowly when the slope of the 
supply curve up to the point where it crosses the demand curve is relatively flat.  

 

Figure 4. Convergence performance measured in terms of mean % deviation of trips from equilibrium for 
six methods (iterations in the horizontal axis); “normal” congestion 

Figure 4 represents a situation with normal congestion. The BPR parameters are given by 
{𝛼𝛼, 𝛽𝛽} = {0.5, 2}, logit demand parameter (route choice) -0.5 and logit parameter for demand 
model -0.1. 
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In terms of absolute deviation, the weighted MSA with 𝑑𝑑 = 2 performs quite well for only 3 
iterations. However, the practical convergence rate is found to be close to 1 meaning that the 
relative convergence improved linearly. The MSA with reset is also efficient; however, it requires 
that the reset point is passed (in this case 5 iterations). In fact, from an infinitesimal point of view, 
the MSA with reset is the best performing method in this example for 10+1 iterations. 

Figure 5 below illustrates a situation where the congestion level is higher. For the BPR {𝛼𝛼, 𝛽𝛽} =
{0.5, 2.5}, the logit demand parameter (route choice) is -0.5 and the logit parameter for demand 
model is -0.13. As can be seen, the performance declines for all of the methods.  

 

Figure 5. Convergence performance measured in terms of mean % deviation of trips from equilibrium for 
six methods (iterations in the horizontal axis) “aggressive” congestion 

It is however interesting to see that the weighted MSA with (𝑑𝑑 = 2) is generally relatively 
efficient for even a small number of iterations. The MSA with reset tends to be efficient after the 
reset point of 5 iterations. 

Figure 6 illustrates a situation where the congestion level is “extensive”. The BPR parameters are 
now given by {𝛼𝛼, 𝛽𝛽} = {0.5, 3}, and the logit demand parameter (route choice) is -0.5 and logit 
parameter for demand model is -0.2. 
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Figure 6. Convergence performance measured in terms of mean % deviation of trips from equilibrium for 
six methods (iterations in the horizontal axis); “hyper” congestion 

Generally, the performance of the MSA as well as the MSA with Polyak step size and weighted 
MSA (𝑑𝑑 = 1) declines and tends to be unacceptable for a small number of iterations. However, 
the weighted MSA (𝑑𝑑 = 2) and MSA with reset perform well. The best performing method is 
again the weighted MSA with 𝑑𝑑 = 2. Values beyond 2 were shown to be too aggressive. The MSA 
with reset is again quite good, although “jumps” can occur, especially around reset points. Also, 
note the oscillating pattern for the MRA and the extreme slow convergence of the MSA. To 
supplement the visual inspection we present the Root Square Error (RSE) between the 
approximated equilibrium point 𝐷𝐷∗ and the solution at iteration 𝑘𝑘 given by 𝐷𝐷𝑘𝑘. This is shown in 
Table 1 below. 

Table 1. Convergence performance measured as norm difference for different methods and 
congestion profiles 

 RSE1 RSE2 RSE3 RSE4 RSE5 … RSE15        
Normal congestion        
MRA 38.454 13.166 5.204 2.220 0.983 … 0.002 
MSA 38.454 25.223 18.360 14.238 11.552 … 4.170 
MSA Reset 38.454 25.223 18.360 14.238 11.552 … 0.006 
MSA Polyak 38.454 21.895 13.658 9.020 6.229 … 0.661 
MSA Weighted (d=1) 38.454 20.970 12.882 8.525 5.973 … 0.898 
MSA Weighted (d=2) 38.454 17.690 9.491 5.545 3.443 … 0.222 

Aggressive congestion        
MRA 48.194 13.928 5.826 2.942 1.719 … 0.026 
MSA 48.194 28.503 20.100 15.157 12.296 … 4.405 
MSA Reset 48.194 28.503 20.100 15.157 12.296 … 0.015 
MSA Polyak 48.194 23.789 13.976 8.694 6.019 … 0.627 
MSA Weighted (d=1) 48.194 22.521 12.949 8.072 5.669 … 0.839 
MSA Weighted (d=2) 48.194 18.285 8.823 4.774 3.012  0.199 
Hyper congestion        
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MRA 54.362 16.568 13.149 9.686 9.966 … 4.378 
MSA 54.362 26.460 20.554 14.276 12.668 … 4.445 
MSA Reset 54.362 26.460 20.554 14.276 12.668 … 0.470 
MSA Polyak 54.362 20.336 14.656 7.553 6.926 … 0.732 
MSA Weighted (d=1) 54.362 18.841 13.567 6.987 6.465 … 0.957 
MSA Weighted (d=2) 54.362 15.007 10.496 4.723 4.650 … 0.463 

MSA with reset  
As indicated in the simulation experiments, the MSA with reset generally performs very well. 
However, it requires as a minimum that the number of iterations exceed the first reset point and 
at best 2 or 3 reset points as “jumps” can occur as shown in Figure 6. 

An obvious question is which reset point is optimal? Although the question cannot be answered 
in any precise way as it is network-dependent, simulation can give indications on how choice of 
reset point affects the iteration history.  

 

Figure 7. Convergence performance measured in terms of mean % deviation of trips from equilibrium of 
MSA reset with different reset points; “hyper” congestion 

Figure 7 suggests an interesting finding, namely that the choice of reset point, whether it is 2, 3, 4, 
5, 6 or 7 are not so important even in a “hyper” congestion regime. It is thus important to choose 
the correct stoppage point after the reset point. Given that iterations are costly, the optimal point 
seems to always be 1 plus the reset point. Hence, for a reset point of 2 the algorithm should stop 
after the third iteration, for a reset point of 5, it should stop at 6, etc. This finding was consistent 
for a range of different random OD matrices. Based on the various Monte-Carlo runs (as also 
indicated in Figure 7) the best reset point was 5. However, to fully investigate whether this is due 
to “peculiarities” in the data or points to a more general finding needs to be assessed in more 
detail.  

Weighted MSA  
Another interesting question is whether it may be efficient to further decrease the emphasis on 
“history” in the weighted sequence and increase the value of 𝑑𝑑 to 3 or 4. Again the “hyper” 
congestion regime from Figure 9 was used, since it provided the greatest challenge to the 
algorithms. 
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Figure 8. Convergence performance measured in terms of mean % deviation of trips from equilibrium of 
weighted MSA with different 𝑑𝑑-values; “hyper” congestion 

As can be seen, there is an optimal value somewhere between 1 and 4. However, 𝑑𝑑 = 2 is the 
optimal choice in this case.  

4.2 Analysis on the Danish National Transport Model 
The following analysis considers convergence performance for the Danish National Transport 
Model8 (DNTM). The model operates on Denmark as a whole and includes 907 Danish zones and 
more than 300 foreign zones to take account of traffic in and out of Denmark.  

The passenger model9 is based on forecasts of the entire Danish population, which is grouped 
into synthetically generated households fed into the demand model. In total the model operates 
with more than 5,000 different person classes divided by age, gender, labour market association, 
income and family status per zone. All individuals are then subsequently grouped into 
household entities in a micro-simulation process which includes “spouse-matching” and 
simulation of kids. This produces a long list of individuals, which is fed into the demand model 
in which car ownership, trip frequency, destination choice and choice of mode are calculated. In 
the discrete choice framework, which is of the nested logit type, more than 15 separate models for 
different transport segments and car ownership are processed. This in turn produces a list of trips 
which is then fed into the assignment model. In the demand model it is possible to re-use the 
random seed in the simulation, which implies that there are no random noise from iteration to 
iteration that can be attributed to the demand model.   

The assignment model is a stochastic user equilibrium (SUE) model which operates on a network 
of more than 30,000 links and 15 passenger user classes and 6 freight vehicle classes. The 
stochastic part of the model is a Mixed Probit model, where the error term is simulated (as in 
Sheffi, 1985, Appendix A.2) but where the model in addition used a logarithmic normal 
distributions of the value of times which is solved by simulation. Freight demand is determined 
in a separate freight model, which provides demand matrices (vans and various truck types) as 
input to the assignment model as well.   

8 The tested version is version 1.07. This official version will be version 1.08, which will be made official during 
the autumn of 2014.  
9 Refer to Rich et al. (2010b) and (2010c) for an overall description of the Danish Transport Model.   
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The DNTM model applies a pivot-point principle where the model is pivoted relatively to a 
baseline matrix for 2010. Hence, if we apply assumptions very close to those for 2010 in terms of 
population and network characteristics we would reproduce the 2010 solution and the 
convergence would be good. Hence, in order to “challenge” the model we apply a 2040 
population with a 25% reduction in travel cost for cars. This causes a rather large exogenous 
chock to the system with large re-bound effects.  

Measurement of convergence 
When testing different iterative root-finding algorithms such as MRA and weighted MSA with 
different weights, it is important to be able to benchmark the convergence speed of these 
different algorithms. The problem is obviously that the true equilibrium is unknown and cannot 
be approximated infinitesimally close as for the toy-network. The only thing we know, based on 
Blum’s theorem, is that convergence will be achieved given that the regularity conditions in 
equation (6) and (7) are fulfilled (note that this is not the case for MRA in general). 

A common measure of convergence for fixed point problems is ‖𝐷𝐷(𝒙𝒙) − 𝒙𝒙‖. If averaging is 
carried out on trips (hence, 𝒙𝒙 represents a trip matrix) it can be deducted from the output of the 
successively iterated OD matrices and the MSA weight. From equation (17) we have that 
𝒙𝒙𝑘𝑘 = 𝒙𝒙𝑘𝑘−1 + 𝑎𝑎𝑘𝑘 (𝐷𝐷(𝒙𝒙𝑘𝑘−1) − 𝒙𝒙𝑘𝑘−1). By rearranging, we get 

‖𝐷𝐷(𝒙𝒙𝑘𝑘−1) − 𝒙𝒙𝑘𝑘−1‖ = 1
𝑎𝑎𝑘𝑘
‖𝒙𝒙𝑘𝑘 − 𝒙𝒙𝑘𝑘−1‖           (17) 

As can be seen, the MRA iteration scheme implies that ‖𝐷𝐷(𝒙𝒙𝑘𝑘−1) − 𝒙𝒙𝑘𝑘−1‖ = ‖𝒙𝒙𝑘𝑘 − 𝒙𝒙𝑘𝑘−1‖. If 𝑎𝑎𝑘𝑘 is 
different from one, however, we need to weight the right hand side to account for the memory. If 
averaging is carried out based on LoS as in Section 0 we can calculate RSE in LoS-space at each 
iteration in a similar way. However, if applying LoS averaging we cannot easily examine the RSE 
in trip space and because of this we will examine convergence performance in the LoS space.  

As a different measure of convergence performance, we have tested whether it was possible to 
use an approximate convergence rate as suggested in Senning (2007). However, the experiments 
were not unambiguous and the variation in the convergence scheme from iteration to iteration 
influenced the rate. We believe the approach could be valuable if more iterations could be 
produced. In that case we suggest to calculating the average convergence rate. In all of our 
experiments, we experienced a convergence rate close to 1 indicating linear convergence. 

MSA applied to trips 
In the first experiment we applied MSA and MRA to OD trip matrices. That is, the successive 
averaging is applied to trip matrices from iteration to iteration. However, the problem with this 
strategy is the presence of random noise from the assignment model. It was found that the 
variation in the model was always above a certain noise threshold (amounting to ~ 1% deviation 
of trips between iterations). The problem is that when trips are used as basis for the MSA (or 
MRA), the stochastic element of the assignment is “renewed” for every iteration, which causes 
the model to converge, not to a unique equilibrium, but to any solution below the noise threshold 
of the model. If the random seed of the assignment model could be re-used this would eliminate 
the problem, however, this is complicated and generates a lot of computational overhead and 
requires methodologies for how to deal with possible new routes. A solution would be to choose 
a simpler deterministic assignment; however this would result in a much too simplified network 
loading. Due to these problems, it was decided to consider MSA on the basis of level-of-service 
rather than on trips. It was also decided not to use MRA due to possible convergence problems as 
illustrated for the toy-network and the poor performance when averaging on trips. The MSA 
averaging on LoS is considered below, and tests with different 𝑑𝑑 values are carried out.  
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MSA applied to LoS 
The averaging of LoS was carried out by weighting of the car LoS matrix. More specifically, LoS 
was defined as the perceived travel time between OD pairs which is the sum of free-flow and 
congested time (un-weighted).  

We measured convergence by looking at ‖𝑆𝑆(𝒕𝒕𝑘𝑘) − 𝒕𝒕𝑘𝑘‖, the RSE, between the LoS function 𝑆𝑆(𝒕𝒕𝑘𝑘) 
and the LoS solution at iteration 𝒕𝒕𝑘𝑘. This term can be calculated from the model output in a 
straightforward manner. 

   
Figure 9. Convergence measured by ‖𝑆𝑆(𝒕𝒕𝑘𝑘) − 𝒕𝒕𝑘𝑘‖ in LoS space. Based on averaging by LoS  for different 
values of 𝑑𝑑 in the weighted MSA. 

As for the toy-network, the simple MSA is outperformed by the weighted MSA schemes. It is also 
notable that convergence was relatively steep in the first couple of iterations, whereas it became 
flatter as we moved on to the right.  

Another way of benchmarking the performance of the different 𝑑𝑑-values is to look at the 
difference between 𝑆𝑆(𝒕𝒕𝑘𝑘) and 𝒕𝒕𝑘𝑘 relative to 𝒕𝒕𝑘𝑘. That is, we consider 𝑎𝑎𝑎𝑎𝑎𝑎 �𝑆𝑆(𝒕𝒕𝑘𝑘)−𝒕𝒕𝑘𝑘

𝒕𝒕𝑘𝑘
� and divide the 

degree of deviation into seven categories from below 0.25% deviation to above 12.5% deviation. 
In doing so, it is possible to picture the distribution profile on the different deviation categories 
for different iterations. The resulting frequency table is weighted with the number of trips in 
order to give more weight to larger cells compared to smaller cells. The result is shown in Figure 
10 - Figure 12 below. 
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Figure 10. System convergence illustrated as a distribution of 𝒂𝒂𝒂𝒂𝒂𝒂�𝑺𝑺(𝒕𝒕𝒌𝒌)−𝒕𝒕𝒌𝒌
𝒕𝒕𝒌𝒌

� for LoS and classified in seven 
deviation bands, with 𝒅𝒅 = 𝟎𝟎 and MSA by LoS. 

 

 

Figure 11. System convergence illustrated as a distribution of 𝑎𝑎𝑎𝑎𝑎𝑎 �𝑆𝑆(𝒕𝒕𝑘𝑘)−𝒕𝒕𝑘𝑘
𝒕𝒕𝑘𝑘

� for LoS and classified in seven 
deviation bands, with 𝑑𝑑 = 1 and MSA by LoS. 
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Figure 12. System convergence illustrated as a distribution of 𝑎𝑎𝑎𝑎𝑎𝑎 �𝑆𝑆(𝒕𝒕𝑘𝑘)−𝒕𝒕𝑘𝑘
𝒕𝒕𝑘𝑘

� for LoS and classified in seven 
deviation bands, with 𝑑𝑑 = 2 and MSA by LoS. 

Although Figure 10-Figure 12 does not represent a formal test of convergence, the figures are still 
informative. In a fully converged scheme for a given iteration number, everything would be 
“light-shaded”. The figures support the conclusion that 𝑑𝑑 = 2 is the most efficient choice. In 
particular, all of the figure underline that 𝑑𝑑 = 2 is a very efficient choice for the first round of 
iterations.  

The figures can also be illustrated without weighting by trips. In that case the deviation 
represents “cell-base” deviation and does not account for the size of cells. These figures, which 
we do not include in the paper, are quite similar to Figure 10-Figure 12. However, they exhibit a 
more volatile pattern indicating that the main fluctuations are only present in very small cells 
with limited impact. For 𝑑𝑑 = 2 we have tested convergence for 20 iterations and it converged 
approximately with the same pace as seen from iteration 3 to 10.  

5. Summary and conclusions 
The paper investigates the external convergence between a demand model and a separate 
assignment model. The performance of the convergence has direct consequences for the model 
output uncertainty. Firstly, as large-scale models in practise cannot be expected to be fully 
converged due to excessive computation time, it is relevant to consider magnitude of uncertainty 
and how this can be reduced by the use of proper averaging methods. Secondly, even in the best 
of all worlds where computation time is unlimited, the final model output can be affected by 
randomness from one or more model parts. In this case, it is crucial that the averaging principle is 
implemented in such a way that the contribution from the random noise is gradually averaged 
out. If not, the minimum uncertainty in the final model output is newer better than the level of 
the random noise.  

Whereas much research has been invested in how the inner-loop converges, the convergence of 
the external loop has not been given much attention in the literature. A reason for this may be 
that the convergence in the external loop (due to aggregation) is typically well-behaved and can 
in many cases be iterated without applying averaging principles. However, evidence from both 
simulation experiments and practise indicates that convergence problems may occur in large-
scale applications as well and depends on the volatility the underlying scenario will cause.  
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The little focus on the external loop also contradicts the fact that the iterations in the external loop 
are far more costly compared to the inner loop as they involve a complete assignment to be run 
for every iteration. Hence, it is important to spend these iterations wisely and a difference of 5-10 
iterations may well determine whether a model can realistically be applied or not. As an example 
the Danish National Model currently has a run-time of 50 hours for 5 iterations. 

The paper lists a range of averaging principles, which were tested in a small-scale simulation 
exercise with the following findings; 

• The common MRA (Method of Repeated Approximations) algorithm will usually be 
relatively efficient in low-congested networks, however, convergence is not guaranteed 
and cyclically unstable behaviour may be present. Generally, as the congestion level 
increases, the performance of the MRA declines and the failure rate increases. 

• The MSA (Method of Successive Average) in its original form with ak = 1/k will converge 
but at times very slowly if applied to “volatile” small-scale networks. 

• A weighted MSA (d = 2) is particularly efficient, even in situations with few iterations 
and “hyper” congestion. Generally, the d-parameterisation seems to include plenty of 
freedom to parameterize most processes.  

• A MSA with reset is also very efficient, although the reset point and the iteration 
stoppage point need to be specified. It appears to be efficient to stop the algorithm one 
iteration after the reset points irrespectively of the reset length. Although the reset 
method was better for low and medium congested toy- networks it was not better than 
the weighted MSA for heavily congested networks. Because of the uncertainty of the 
reset-point and stoppage point this was not implemented for the national model.  

• MSA with Polyak step size and weighted MSA with (d = 1) is significantly better than the 
MSA but also significantly worse than the weighted MSA d = 2 and MSA with reset. 

• Variants of a new intersection approach were presented and tested. However, it falls into 
the category of tempting ideas that do not work out in practice since it failed to converge 
in some cases, and since convergence was generally significantly slower than the 
weighted MSA in the cases where it did converge.  

The second wave of tests examined the convergence performance in the Danish National Model. 
Focus was on the weighted MSA due to the findings from the toy-network simulation 
experiment. There were two main findings; 

1. It was found that if the assignment model involves random noise such as link-based 
random components, MSA should not be applied to trips but to LoS instead. In case MSA 
is (wrongly) applied to trips, random components from the route-choice model will be 
renewed from iteration to iteration and the model will converge, not to a unique 
equilibrium, but to any solution below the noise-floor of the model. As a result, we 
recommend averaging over LoS attributes. This finding has a more general consequence, 
namely that model convergence requires that at least one of the models is free from 
uncontrolled random noise. This is an important design criterion for complex activity-
based models based on micro simulation.  

2. It was found that the most efficient weighting in the weighted MSA was d = 2 and hence 
similar to what was found for the toy-network experiment.  

5.1 Future research 

Only few publications have been concerned with system convergence in transport model systems 
and there is a number of interesting future research topics to consider. 
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• Further investigation into the MSA reset method and investigation into the robustness of 
large-scale systems.  

• The use of series acceleration methods such as the Aitken’s delta-squared process 
(Atkinson, 1989) and the Steffensen’s method (Johnson and Scholz, 1968). The latter is a 
root-finding method that achieves quadratic convergence without using derivatives.  

• Investigation into “enforcement methods” as suggested in Vovsha et al. (2008) and the 
impact on performance and model robustness.  

• Assessment whether joint averaging of demand and LoS will further improve 
performance.  

• Research on how to re-use random numbers in Stochastic User Equilibrium Assignment 
models as well as in the demand model of activity-based micro simulation models. The 
issue is specifically how to deal with new generated routes and trips between runs.  

Further, it is worthwhile considering if the approximate convergence rate, as suggested in 
Senning (2007), can be used as an alternative measure of convergence speed.  
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Appendix A: The intersection approach 

Below in Figure 13-Figure 16 we present selected results where the Intersection method and the 
MRA are investigated in Monte Carlo experiments for the toy-network. These experiments are 
parameterised with a relative steep speed-flow curvature and as a result, the model is quite 
responsive to congestion. Also, demand is fixed at a level which will lead to substantial 
congestion. As seen the shock causes the algorithm to produce positive failure rates. The tests in 
Figure 13 - Figure 16 is parameterised differently that the tests in Figure 4 -Figure 8.  

 

Figure 13. Failure rates of I-method (Intersection method) and MRA based on simulations on toy-network 
for 1000 iterations. Hard-convergence criteria (maximum absolute difference for OD pairs less than 0.001).   

 
Figure 14. Convergence for the I-method and MRA for the 20 best converged schemes. Hard-convergence 
criteria (maximum absolute difference for OD pairs less than 0.001). 
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Figure 14 basically describes the performance (in terms of the number of iterations used to obtain 
hard-convergence) for the 20 best simulation experiments. This is included in order to describe 
the performance if everything goes well and failure does not occur. In these cases the I-method is 
significantly better than the standard MRA.  

 
Figure 15. Failure rates of I (Intersection) method and MRA based on simulations on toy-network for 1000 
iterations. Soft-convergence criteria (maximum absolute difference for OD pairs less than 0.01). 

 
Figure 16. Convergence for the I-method and MRA for the 20 best converged schemes. Soft-convergence 
criteria (maximum absolute difference for OD pairs less than 0.001). 

The interpretation of Figure 16 is similar to that of Figure 14 except that we are now looking at 
soft-convergence.  
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