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ABSTRACT 

Survival analysis is a method of analysis used to study 

event occurrence. Missing periods in discrete-time 

survival analyses are problematic, since whether an event 

occurs determines whether the subject is followed up 

upon. Seven strategies that can be used when missingness 

occurs (case deletion, deletion upon missing, single 

imputation, multiple imputation, remembrance, the Non-

Event-Strategy and the Event-Strategy) are evaluated 

using four criteria: effect size bias, standard error bias, 

power and coverage rate of confidence intervals. Single 

imputation, multiple imputation and the Non-Event 

Strategy show good results. Single imputation performs 

slightly better, yet the Non-Event Strategy is easier to 

implement. 
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INTRODUCTION 

Event occurrence is studied in many different 

experimental settings, both in psychological and in 

medical research. In such studies, the research question 

is often whether and when such an event occurs. An 

example of a study where event occurrence is analyzed 

is a study of relapse after treatment for drug abuse, where 

researchers are comparing a new type of treatment to an 

older treatment and want to know if, and when, relapse 

occurs. In such a study, calculating relative risks or odds 

ratios does not consider how much time goes by before 

subjects start using drugs again. On the other hand, it is 

impossible to calculate a mean time to event and use an 

Analysis of Variance (ANOVA) to compare the mean 

times to event of treatments, since not all participants 

will return to drug abuse during the study, or return to 

drug abuse at all. Survival analysis, also known as Event 

History Analysis, takes this into consideration. It 

analyzes simultaneously both whether and when events 

occur1. It does so by calculating a hazard probability, (the 

probability of event occurrence during a time interval), 

and a survival probability (the probability at any given 

moment in time that the event has not yet occurred to the 

average participant). 
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Using survival analysis, a variety of research questions can 

be answered. Singer and Willett  coined the mnemonic ‘the 

whether and when test’ 1: if a research question mentions 

the word ‘whether’ or ‘when’, then a survival analysis is 

probably useful. Examples of studies using survival 

analysis are numerous, including a study of relapse after 

treatment of alcoholism 2 and  a study of the recurrence of 

child maltreatment 3. 

Event occurrence can be measured both in continuous time 

and in discrete time 1. Although measuring on a continuous 

scale is often ideal, this is generally difficult to accomplish 

in the social and behavioral sciences4. Instead, events are 

often measured in time intervals. This can lead to some 

loss of information. The decision to discretize data should 

therefore be made carefully. However, previous research 

has shown that discretizing data leads to little loss of 

power and small parameter and standard error bias 4. When 

measuring in discrete time, a discrete-time hazard model 

is used1. In discrete time survival analysis event 

occurrence is measured in time intervals. For each interval, 

it is recorded whether the event occurred. Subjects are only 

followed up upon until event occurrence. After the event 

occurs, the subject is removed from the dataset for the 

remainder of the study.   

Missing data is a common and difficult problem5. 

Especially in survival analysis a missing period is 

troublesome, since the observations are done on the 

condition that each subject in the sample has not yet 

experienced the event. A missing time period can therefore 

not be ignored, since it is then unknown whether the 

subject should still be under observation. Three types of 

missing data exist6,7: data missing completely at random 

(MCAR), where the missingness is independent of other 

variables, missing at random (MAR), in which case the 

missingness is independent of event occurrence, but 

dependent on some other variable in the model, and 

missing not at random (MNAR), in which case the 

missingness depends on event occurrence.  

Although the problem of a missing period can often 

partially be solved by the researcher putting in extra effort 

to reach his subjects, it is unlikely missing observations 

can be avoided altogether. Multiple strategies to manage 

missing data exist. However, no formal study analyzing 

strategies in managing missing data in a discrete time 

survival analysis has yet been done. This thesis aims to 

study how, in survival analyses, missing periods are best 

managed.  

METHOD 

Modeling 

Discrete time survival analysis describes event occurrence 

using two functions: the hazard function and the survivor 

function. 
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Table 1. Possible values for the different parameters  

Parameter  Possible Values (meaning of values) 

ω  0.25 (few event 

occurrences)  

0.5 (medium event 

occurrences)  

0.75 (many event 

occurrences)  

β  0.25 (low effect size for 

experimental group)  

0.5 (medium effect size)  1 (high effect size)  

τ  0.5 (event occurrence 

concentrated towards 

beginning of the study)  

1 (event occurrence 

constant throughout the 

study)  

2 (event occurrence 

concentrated towards end of 

study) 

n  100 (small group size)  200 (medium group size)  500 (large group size)  

The hazard is the probability of event occurrence during 

each time period. Since survival analysis only follows 

participants until the event occurs, the hazard probability 

is a conditional probability: it is the risk that an event 

occurs, given that it has not already occurred. The set of 

hazard probabilities as a function of time is called the 

hazard function. This function can be used to identify 

hazardous periods and to find out whether the probability 

of event occurrence changes over time1.  

The hazard function is often written as a function of a 

predictor. The hazard function is written as a logit 

function, which is the natural logarithm of the hazard 

odds.  Such a discrete time hazard model is written as1: 

 

logit ℎ(𝑡𝑗) = log (
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

1 − 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
)

= [α1D1

+ α2D2 + . . . + αjDj]

+ β1X1 

(1) 

where D1, …, Dj are dummies for the different time 

periods and α1, …, αj represent the logit hazard of each 

time period, while β1 represents the effect size for 

predictor X1 on a logit scale. Note that a positive β results 

in a larger hazard, thus more participants will experience 

the event.  

The survival function is, unlike the hazard function 

which analyzes individual time periods, an accumulation 

of event occurrence over time. As a function of time it 

represents the proportion of participants that did not yet 

experience event occurrence. At the beginning of the 

study, no events have yet occurred, and thus the survival 

probability is 1. From there on the function can only 

decrease or remain constant, but never increase.  

Data generation 

To evaluate strategies that manage missing data, a Monte 

Carlo Simulation Study was performed. The strategies 

were tested in 81 scenarios, based on the parameters ω 

(proportion of control group that experiences the event), 

τ (concentration of event occurrence), β (effect size of 

the experimental group on a logit scale) and n (total 

number of subjects). Table 1 shows the different values 

of the parameters. Each scenario contained twelve time 

periods during which the event could occur. In this 

simulation study only one predictor (control group vs. 

treatment condition) was used.  

The datasets were created using a simulation program 

written specifically for this study. The simulation was 

performed using R 8 and the package MASS9.  

Simulation 

For each of the scenarios a total of 2000 datasets were 

generated.  In each iteration, data was removed at 

random. For each subject one period was removed. Each 

period had an equal probability to become missing. In 

some cases, the missing period comes after event 

occurrence. Since in survival analysis subjects are only 

followed up upon until the event occurs, this effectively 

means that these subjects have no missing period. 

Therefore, the subjects that experience the event later in 

the study have a higher risk of having a missing period. 

The missing data are therefore Missing At Random 

(MAR). 

Strategies 

Seven strategies to manage the missing data were 

evaluated:  

1. Case deletion (CD).  This strategy deletes all cases 

(subjects) with missing data.  

2. Deletion upon missing (DUM). Subjects are deleted 

from the dataset once a missing period occurs, but the 

data up until the missing period is kept in the analysis. 

3. Single imputation (SI). The missing valuable is 

replaced by a random but plausible value10 

4. Multiple imputation (MI). Multiple datasets are 

created. In each dataset, the random but plausible 

valuable is imputed. The datasets are then analyzed 

and combined. Multiple imputation is considered the 

golden standard in handling missing data7. 

5. Remembrance (R). The subject is asked during the 

next time period whether he/she remembers whether 

the event occurred during the previous, missing 

period. The subject has a chance to answer 

incorrectly. In this study, the subject has a forty 

percent probability of being correct.  

6. Non-Event-Strategy (NES). Each missing period is 

considered as if the event did not occur that period.  

7. Event-Strategy (ES). Each missing period is 

considered as if the event did occur that period.  

All seven strategies were tested on the same datasets.  

Criteria for evaluation 

The results of each strategy are compared to the original 

dataset without missings and evaluated using four criteria: 

relative effect size bias, relative standard error, power, and 

coverage rate for the confidence intervals of treatment 

effect. The first criterion calculates the percentage relative 

bias of effect size: 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 = 100% ∗  
�̂�−𝛽

𝛽
. (2) 

This equation calculates the difference between the effect 

size estimate β̂ and the true effect size β as a percentage. 

A value of zero percent is considered ideal. A negative 



percentage indicates an underestimation of the effect 

size, increasing the risk of a type II error (failure to reject 

a false null hypothesis (H0), a ‘false negative’), whereas 

a positive percentage indicates an overestimation of the 

effect size and therefore increases the risk of a type I 

error (rejection of a true H0, a ‘false positive’). The 

estimated effect size is the average estimation of 2000 

generated datasets.  

The second criterion estimates the percentage relative 

bias of standard error (SE) using the equation: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑆𝐸 = 100% ∗  
 𝑆𝐸 ̂ (�̂�)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑆𝐷(�̂�)

𝑆𝐷(�̂�)
. (3) 

The standard error is the average estimated standard error 

of 2000 replications. The difference between the 

standard error of the estimated effect size �̂� and the 

standard deviation of the estimates of �̂� is calculated and 

then expressed as a percentage of the standard deviation 

of the estimates of �̂�. Overestimation of the standard 

error may lead to not detecting significant effects, while 

an underestimation may lead to overstatement of 

significant effects11.   

Power, the third criterion, is the probability that a 

statistical test finds an effect, given that this effect exists 
12. It measures the proportion of datasets that correctly 

reject the H0 using α = 0.05 (the probability of a type I 

error).  

The fourth criterion is the coverage rate. Coverage is the 

proportion of generated datasets for which the 95% 

confidence interval contains the actual, true parameter 

value10.  

There is no consensus on what is ‘acceptable’ bias. 

Muthén and Muthén 11 suggest a 10% limit for parameter 

and standard error bias and a 5% limit for the standard 

error of the parameter for which power is being assessed. 

They also suggest that the coverage rate should be 

between 0.91 and 0.98. Schafer and Graham10 believe 

that bias becomes problematic when it’s absolute size is 

greater than one half of the estimates standard error, or 

when coverage is below 0.90. In this study, the Muthén 

and Muthén criteria are used.  

RESULTS 

The estimates of the effect size β and its standard error 

were very extreme in eighteen scenarios for strategies 

CD and DUM. These were all scenarios with a low event 

occurrence, event occurrence concentrated towards the 

end of the study and small group sizes. These estimates 

are likely based on a mathematical error due to one or 

more of the periods in these scenarios not having any 

events. Analysis of the individual iterations of these 

scenarios showed a small amount of iterations with 

extreme estimates. These iterations were then deleted for 

all seven strategies within the same scenario. This aids 

the comparison between strategies within one scenario.  

Convergence was achieved for all datasets in all 

scenarios.  

Relative Effect Size Bias 

Strategy DUM, SI, MI and NES produce acceptable mean 

effect size biases when averaged over all scenarios, given 

the 10% limit proposed by Muthén and Muthén  (2009). 

Of these strategies, strategy NES has the smallest mean 

bias (0.64%), followed by strategy MI (-0.86%), then SI 

(2.02%), then DUM (3.20%). Although on average 

strategies DUM, SI, MI and NES produce similar mean 

biases equal to 0%, strategy MI has a larger bias than the 

other three strategies in the scenarios where ω = 0.25, τ = 

2 and β =0.25, and where ω = 0.25, τ = 2 and β = 0.5 

(Scenarios with little event occurrence, where event 

occurrence is concentrated towards the end of the study, 

and where there is a small effect size). Strategy CD, R and 

ES all show a large, negative biases, respectively -77.72%, 

-48.71% and -60.77%.  

In each strategy, the bias decreases as event occurrence ω 

and effect size β increase. This effect is stronger for ω than 

for β. As event occurrence concentrates towards the end of 

the trial (τ increases), the bias increases as well.  

Relative Standard Error Bias 

Strategy SI and NES have an acceptable mean bias when 

averaged over all scenarios (under 5%11) for the standard 

error (0.77% and 3.00%, respectively) while strategy MI is 

close to this limit (6.67%). Strategy CD shows the worst 

result (74.27%), followed by strategy DUM (41.99%), ES 

(-19.57%) and R (-16.75%). Strategy R and ES both 

underestimate the standard error equally. Strategy CD 

overestimates the standard error by almost double the 

amount that strategy DUM does.  

For each strategy, the bias comes closer to 0% for a larger 

ω (higher event occurrence) and a lower τ (concentration 

of event occurrence towards the beginning of the study). 

A larger β has only a marginal effect on decreasing the 

absolute value of the bias. There seems to be no interaction 

effect between ω, β and τ.   

Power 

Strategy SI, NES and MI each have a power almost 

indistinguishable from the power of the complete dataset). 

Strategy CD, DUM, R and ES have a considerably lower 

power.    

Across the scenarios, the power of strategies SI, MI and 

NES remains about equal to the power of the complete 

dataset for different values of ω. Strategy CD, DUM, R and 

SE have a decreasing power as ω (event occurrence) 

increases. The parameters τ and β each have a positive 

main effect on the power of the different strategies: as 

these parameters increase (concentration of events towards 

the end of the study and increasing effect size), so does the 

power. This effect has an equal size for the benchmark and 

all strategies except CD. For strategy DUM, R and ES, 

when β = 1, the decrease in power that goes with an 

increase in ω, is much larger than the decrease in power 

when β = 0.25.  

Coverage Rate 

Using the coverage rate suggested by Muthén and Muthén 

(2009), strategies DUM, SI, MI and NES have overall 

acceptable coverage rates (0.95, 0.93, 0.96 and 0.95, 

respectively). Strategies CD, R and ES have low mean 

coverage rates (0.68, 0.61 and 0.50, respectively). Across 

all scenarios, strategy DUM, SI, MI and NES are hard to 

distinguish from each other.  

As τ and β decrease, the coverage increases. As ω 

increases, the coverage rate also increases.  
  



CONCLUSION 

Single imputation (SI), multiple imputation (MI) and the 

Non-Event-Strategy (NES) perform equally well for each 

criterion of evaluation. Of these three, single imputation 

performed slightly better than the other strategies, and if 

the researcher has the statistical knowledge then it is 

certainly the best strategy to use. The Non-Event 

Strategy is the easiest strategy to implement however, 

since it requires no extended knowledge of statistics. It is 

both a fast and easy method. There are no specific 

scenarios where one strategy stands out.  

The available literature on missing data in other scientific 

fields suggests that single and multiple imputation are 

good strategies. Multiple imputation is generally 

preferred over single imputation7,10, but this was not 

found in this study. The Non-Event-Strategy produces 

acceptable results as well. This can be explained by the 

fact that since the probability that the event occurs during 

the specific missing time period is low, even if 

throughout the trial event occurrence is high. Only if 

event occurrence would be extremely high during each 

period, then this strategy would not work. Most subjects 

would then experience the event within very few periods 

however, and it can then be argued that the study should 

either be using smaller time periods or use a continuous 

time survival analysis. There is no literature available to 

either validate or invalidate this strategy, since it was 

designed specifically for this study. 

The results also showed that as τ increases (meaning 

event occurrence concentrates towards the end of the 

study), the bias increases as well. This is logical, since in 

this study, each participant would have one missing 

period. Because survival analysis only observes people 

that have not yet experienced the event, only the missing 

periods before an event can produce bias. Missing 

periods following an event do not produce bias, since 

those periods are not analyzed. As event occurrence 

shifts towards the end of the study, more missing periods 

become actual missings and as such the bias increases. 

The results also show that as ω (proportion of 

participants in control group that experiences the event) 

increases, the bias decreases. The logic behind this 

follows the same line of reasoning as for τ: as ω 

increases, and thus more participants experience the 

event, the probability that a missing period comes after 

an event increases. As therefore the number of actual 

missing periods decreases, the bias decreases as well.  

Although the fact that hazard can change over time was 

factored in, not all possible scenarios were considered. 

For instance, the hazard rate can be high in the middle of 

a trial, or have multiple peaks and troughs throughout the 

study. This was not tested for in these scenarios. 

However, since single and multiple imputation and the 

non-event strategy stood out from the other four 

strategies in all 81 scenarios, it is expected that this also 

holds in other scenarios. Another limitation was that each 

subject had a 40% probability of remembering event 

occurrence correctly. This is an arbitrary percentage, 

which will be different for various studies. As this 

probability increases, this strategy is expected to obtain 

better results. Future research could focus on at what 

probability this strategy starts to produce acceptable 

results. A final limitation could be that due to the way 

missingness was introduced, not all scenarios contained 

the same amount of missingness. Although larger biases 

were found in scenarios with more missings, these larger 

biases were found for all strategies. This did not seem to 

affect the hierarchy of strategies.  

ROLE OF THE STUDENT  

Nils van de Ven was an undergraduate student working 

under the supervision of Mirjam Moerbeek and Maryam 

Safarkhani. The topic was chosen by Nils from a list of 

available topics. The R script of the simulation was handed 

to the student. The different strategies were thought of in 

collaboration between the student and the supervisors. The 

analyzation of the results, formulation of the conclusion 

and the writing were done by the student.   
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