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Abstract 

The interplay between humans and built environments is a new frontier for microbial 

ecology. Approximately 90% of human activities occur indoors, and current estimates for 

microorganism diversity in buildings are in the trillions. Previous studies have investigated 

microbial resuspension (i.e., the surface to air release of biotic and abiotic particulate matter) via 

temporal analysis of human occupancy patterns and spatial analysis of different flooring 

materials. However, prior research has not sufficiently addressed flooring structure, human-

mediated resuspension in unconstrained environments, and phylogenetic analysis within the 

context of a single study. Our investigation examined the effect of surface composition and 

human traffic intensity on the taxonomic composition of airborne microbial communities. In a 

college academic building, 24 air samples were collected over carpeting during high (n=6) and 

low (n=6) human activity periods and over linoleum during high (n=6) and low (n=6) activity. 

DNA was extracted, amplified using prokaryotic 16S primers, sequenced using the Illumina 

MiSeq platform, and analyzed with the Quantitative Insights into Microbial Ecology statistical 

package. Prior to merging reads and quality filtering, 227 sequences were yielded across 14 

samples and one control. Alpha (within sample) diversity indices of genera richness and 

evenness were reported along with beta diversity (between sample) comparisons of sequence 

counts and shared genera across sampling conditions. While low sequence yields precluded the 

determination of the explanatory power for the activity and flooring variables, the present study’s 

limitations and new directions for investigating the composition of indoor microbial 

communities were discussed. With methodological revisions, we anticipate that future studies 

will help to elucidate the role of building design in modulating microbial resuspension dynamics 

induced by human traffic patterns between indoor and outdoor environments.  
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Introduction 

Context 

 Bacteria and fungi are ubiquitous residents across nearly every environment on Earth. 

The discipline of microbial ecology seeks to apply ecological principles of diversity and species 

interactions to microorganisms (Konopka, 2009). One means of classifying microbial 

communities is by grouping them into microbiomes, or the sum total of microorganisms 

interacting within a community defined by a given parameter (Kembel et al., 2012). Microbiome 

research initially gained traction through the study of human microbial communities, such as 

those in mammalian gastrointestinal tracts, to determine the functionality of microbes in terms of 

disease susceptibility (Ursell et al., 2012). The rise of high-throughput characterization methods 

that are independent of culturing biases, such as 454 pyrosequencing and Illumina, has 

tremendously accelerated research and shifted the discipline towards a more genetic focus 

(Kembel et al., 2012; Ursell et al., 2012).  

Genomic analysis has implemented the gene for the small ribosomal subunit in 

prokaryotes, also known as the 16S rRNA gene, as a metric for determining phylogenetic 

relatedness among microorganisms. Specifically, the V4 segment of the gene has conserved and 

variable regions that are apt for genetic comparisons (Yarza et al., 2014). Polymerase chain 

reaction (PCR) amplification of sample DNA followed by sequencing using “next-generation” 

technologies is far more cost effective and efficient than the previous standard, the Sanger chain-

termination method. Such advances have had positive implications not just for microbial 

ecology, but for evolutionary biology, oncology research, and even the general public through 

the promises of personalized medicine through individual genome sequencing (Schuster, 2008).  
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 Despite the focus on the human microbiome, other investigators have applied microbial 

ecology and genomic techniques to microbial communities of inanimate domains. One such area 

is the built environment microbiome, which focuses on microbial communities in indoor 

locations (Kembel et al., 2012). Numerous studies have identified relationships between 

microbial community distribution and the structure of the indoor environment as well as 

suggested implications for human health. Phylogenetic analysis of resuspended bioaerosols could 

provide insight into respiratory diseases, such as asthma (Hospodsky et al., 2012) and foster 

evidence-based building design decisions (Kembel et al., 2014). Pathogenic organisms, such as 

MRSA (methicillin-resistant Staphylococcus aureus), can spread via surface to air exchange 

(Rintala et al., 2008). A recent risk analysis assessed the probablitiy of pathogen resuspension 

from either air or human-mediated disturbance events (You & Wan, 2015). Furthermore, 

nonspecific externalities, such as sick building syndrome (SBS), can result from improper 

building ventilation (Chen & Hildemann, 2009; Kembel et al., 2012). Developmentally, 

bioaerosols may be able to impact colonization of the fetal intestine, which would have lifelong 

health ramifications (Rintala et al., 2008). Thus, resuspension is a broad public health concern 

given that 90% of human activities are indoors (Kelley & Gilbert, 2013). 

Depending on the location and type of environmental sampling, some investigators 

concluded after analysis of indoor dust that the indoor microbiome is significantly comprised of 

human-associated taxa (Rintala et al., 2008), while other evidence suggests that outdoor taxa are 

the primary sources of diversity for indoor air (Meadow et al., 2014). In either case, these 

communities are subject to both spatial and temporal factors. For example, building use and 

seasonal change (Rintala et al., 2008) as well as dispersal mechanisms (Kembel et al., 2012) can 

impact species distribution. The term microbial biogeography, referring to spatial and temporal 
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variations in biodiversity, is often applied to microbiome studies. This perspective seeks to 

elucidate the relative contributions of selective pressures from the environment and stochastic 

historical events to community composition (Hughes Martiny et al., 2006; Kelley & Gilbert, 

2013).  

The physical structure of the built environment is intrinsically linked to the microbial 

biogeography of indoor air (Hughes Martiny et al., 2006; Kembel et al., 2014). Function 

(utilization), form (overall shape), and organization have been identified as key architectural 

factors that govern species diversity, linking construction and ecological processes. One area of 

interest is the circulation of microorganisms across various building domains. In particular, 

researchers have observed compositional homology among microbial communities of dust, 

flooring surfaces, and the air. Proteobacteria and Firmicutes are two phyla that are thought to be 

shared across these three locations, indicating that a particulate dispersal mechanism, such as 

resuspension, may be influential in the establishment of a core community as well as affecting 

change over time (Kembel et al., 2014). 

 

Particulate Matter Resuspension 

Indoor microbial dispersal is governed by both internal release, such as from building 

materials or occupants, and external inputs. The latter could include transfer via HVAC systems 

as well as human-mediated passive conveyance from an outdoor source. While outdoor air is a 

major compositional contributor, other abiotic sources of diversity, such as moisture availability 

and temperature, remain significant (Kembel et al., 2014). Conceptual research has generated a 

hypothetical model for inflows and outflows of particulate matter (Figure 1). The schematic of 

the two-compartment model addresses both the source and the destination of resuspended 
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particulate matter. Of primary interest are the inputs and outputs between the surface particulate 

matter and the rest of the environment. The major inflows are track-in, spillage (i.e., direct 

surface-to-surface conveyance), and deposition (i.e., air-mediated transfer). Resuspension is the 

only significant outflow from the surface to the atmosphere, besides purposeful cleaning 

activities (Schneider, 2008).  

 

Figure 1. Schematic of inflows and outflows of particulate matter in a system.  

Note. From “Dust and fibers as a cause of indoor environment problems” by T. Schneider, 2008, Scandinavian 

Journal of Work, Environment & Health Supplement, 4, p. 11.  

 

General particulate resuspension is defined as “…a phenomenon in which particles, 

initially on a surface, join the passing fluid stream” (Mukai et al., 2009, p. 1022), and it is 

considered to be a relatively strong outflow source effector (Qian et al., 2012). Most simply, it 

can be mathematically modeled by r=R/L, whereas the L variable is particulate concentration on 

the surface layer, R is the resuspension flow, and r is the rate of release in a given time interval 

(Qian et al., 2008). Resuspension is governed by numerous factors, including air speed, size, air 

turbulence, vibration forces, air moisture, and interactions with the solid surface. For example, 

increasing air velocity can generally lead to increased rates of resuspension. Laboratory 

simulations have been attempted using artificial “seed” particles to determine the force of 

stimulation needed to reach a resuspension threshold (Mukai et al., 2009). Room airflow patterns 

can also dictate compositional dynamics, especially with regard to HVAC systems. One study 
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found that levels of resuspension were an estimated 60% to 80% lower when sampling was 

completed approximately 120 cm away from the activity source versus immediate source 

sampling. The quantity of particulate collection was inversely proportional to distance from the 

source of disturbance, suggesting that more global airflow patterns were affecting collection as a 

result of HVAC operation (Rosati et al., 2008). 

Research on particulate resuspension has primarily sought the mechanistic explanations 

for anthropogenic release of abiotic particulate matter. The human foot is able to produce 

sufficient lift forces that outcompete the attractive forces acting on a particle; when this 

imbalance occurs, the particle leaves the depositional surface. Shearing forces and interactions 

with other particles lead to greater dispersal (Qian et al., 2008) along with increases in particle 

size, though the threshold varies in the literature. Kildeso et al. (1999) observed resuspension at 

diameters greater than 1 μm due to the reduction of Van der Waals inter-particle forces that 

prevent dispersal for smaller sizes. In contrast, other human traffic studies found resuspension 

was most elevated for particles between 10-25 μm and decreased as particle size decreased 

(Thatcher & Layton, 1995). Given that bacteria and other microorganisms suspended in the 

atmosphere occur anywhere from 0.2 μm to 30 μm, the resuspension mechanism would likely 

include a substantial biotic component (Chen & Hildemann, 2009). 

 

Resuspension Variables 

Indoors, resuspension proceeds during general human activities, such as walking (Qian et 

al., 2008), dusting, and vacuuming (Schneider, 2008). For example, household walking led to a 

two-fold increase in resuspended particulate matter over basal levels (Thatcher & Layton, 1995). 

The amount of particulate matter released is less for moderate household movements over 
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intensive cleaning activities (Schneider, 2008), and human participant density is associated with 

higher rates of release for 5 μm particles (Ferro et al., 2004). Furthermore, the type of activity 

has been correlated with the average size of particles resuspended. Walking and cleaning have 

been shown to result in the release of particulate matter along the 2.5 to 10 μm size range. 

Excluding aerosol release from combustion activities, resuspension is regarded as a major 

mechanism for particulate matter efflux indoors (Hospodsky et al., 2012).  

However, resuspension studies are limited by the effect of a confounding variable, 

anthropogenic deposition. Both general resuspension from environmental surfaces and human-

mediated microbial dissemination combine to increase bioaerosol concentrations. Resuspension 

is inherently linked to human microbial shedding in a cycle of deposition and rerelease from a 

surface (Mukai et al., 2009). A personal cloud is hypothesized to facilitate dispersal on a per 

person basis, which would have ramifications for the heterogeneity of building airflow dynamics 

(Schneider, 2008). In occupied residential environments, one study by Qian and colleagues 

(2008) identified both resuspension and deposition as influential dispersal modes. Researchers 

found an average particulate matter increase of 2.5 times the basal level for 10 μm particles due 

to resuspension and deposition but could not distinguish among the competing variables. Finally, 

deposition is hypothesized to alter inter-particle interactions, including promoting adhesion, 

which could potentially impact the propensity for future resuspension. 

In terms of temporal variation, Qian et al. (2008) also analyzed human resuspension of 

general particulate matter over a thirty-minute interval and found that the rate of release 

decreased as the sampling interval progressed. The change over time was attributed to particle-

surface dynamics; species that have lower attractive interactions are displaced most easily during 

the initial sampling period. The rate of resuspension may also depend on the duration of the most 
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recent accumulation, with longer elapsed times from the original deposition event leading to 

resuspension resistance due to particle migration into the interior of the carpeting material. 

  Physically, resuspension can be influenced through surface variations. For example, 

different flooring materials impact the rate and content of particulate resuspension. One study 

found that resuspension was lowest with sheet metal, intermediate with linoleum flooring tiles, 

and highest with carpeting. The fibrous carpet was hypothesized to facilitate resuspension by 

promoting particle exposure to higher velocity airflow (Mukai et al., 2009). Carpets are 

considered to be dust sinks (Thatcher & Layton, 1995), and increasing the density of the upper 

carpet layer can retard resuspension by adhering particulate matter (Schneider, 2008). In general, 

older carpets have a lower rate of resuspension, reduced approximately 10 to 100 fold, when 

compared to that of newer carpets (Rosati et al., 2008).  

 One carpet study attempted to separate resuspension from deposition by covering 

carpeting with plastic sheeting to minimize resuspension and only permit deposition. During 

human traffic conditions, particulate release was 2.7 times greater than the background level 

without activity. In contrast, occupancy with a pure carpet that permitted resuspension and 

deposition resulted in a statistically significant level of release that was 4.7 times greater than the 

basal levels. While shedding can account for some variation in particulate matter release, 

resuspension remains an important mechanism for dispersal (Hospodsky et al., 2012). 

 

Phylogenetic Resuspension Studies 

Resuspension is applicable to microbial biogeography when there is a biologically active 

component to resuspended particulate matter, namely prokaryotes and fungi. In the previously 

discussed Hospodsky et al. (2012) study with plastic sheeting and carpeting, human traffic was 
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classified as both a source of general particulate matter mass (15-fold concentration increase of 

10 μm particles vs. background) as well as bacterial genetic material (66-fold concentration 

increase of 10 μm particles vs. background). Using pyrosequencing, the researchers found 

evidence of compositional homology between air and surface microbial communities. Indoor 

resuspension and shedding appeared to facilitate dispersal of microbial taxa associated with 

humans (17% of total sequence abundance), such as Propionibacterineae, Staphylococcus, and 

Streptococcus, as well as external outdoor taxa, namely Sphingomonadaceae, 

Rhodobacteraceae, and Streptophyla. The human-associated taxa were hypothesized to originate 

from dermal squamous cells. Researchers have estimated that the percentage of human-

associated taxa is highly variable, shifting from ~15%-75% for indoor dust analysis depending 

on the building type and usage patterns. 

Other studies have used diverse methods to investigate the biotic composition of indoor 

air (Chen & Hildemann, 2009; Qian et al., 2012). In an occupied classroom, Qian et al. (2012) 

found elevated atmospheric levels of bacterial DNA in the 3 to 5 μm fractions and fungal DNA 

in the 2 to 5 μm and greater than 9 μm range within air samples collected during activity periods 

(Qian et al., 2012). Interestingly, the largest general particulate matter increases during 

occupancy were for those greater than 9 μm, which stands in opposition to the size ranges 

established for bacterial hereditary material detailed above. The researchers hypothesized that the 

lack of size range overlap between general particulate matter and genomic fractions was the 

result of aggregate formation among bacteria/fungal species. Particle size may not be 

representative of the biotic or abiotic content of resuspended material, showing the deficits of 

non-phylogenetic methods. In the study, pyrosequencing ascertained that 18% of the collected 
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DNA was from microorganisms typically associated with humans, particularly taxa connected 

with the skin, nose, and hair. 

Chen and Hildemann (2009) classified the components of particulate matter into protein 

(for general quantification), beta-glucan polymers (for fungi), and endotoxins (for gram-negative 

bacteria) as biomarker indicators for microbial diversity in ten residential homes. The researchers 

found some evidence that domesticated animals and extensive carpeting led to elevated particle 

release, especially >2.5 μm in size, which correlated to the beta-glucan size range. The study also 

suggested that levels of particulate matter could not be correlated to the cleaning history of the 

environment or the time elapsed since the flooring was placed, demonstrating that past building 

activities may be weaker effectors for resuspension. 

A more recent study analyzed airborne microbial diversity in a 30x30 m controlled 

chamber where between one to eight participants either walked or sat during a two hour period. 

Walking conditions were conducted over carpeting or plastic sheeting. Samples were collected 

using 0.2 m nitrocellulose membrane filters under a flow rate of 25 liters per minute (LPM). 

The researchers found evidence that higher occupancy (2 people walking or 8 people sitting) 

resulted in a 100% increase in OTU richness. OTUs, or operational taxonomic units, are a means 

of genetic classification based upon percent sequence homology at the 16S rRNA gene. Also, 

larger particles beyond 5 m were more likely to be released in the carpeting condition versus 

the plastic sheeting treatment. Interestingly, based on Illuminia sequencing analysis, the 

researchers postulated that humans may be more likely to resuspend nonhuman-associated taxa, 

thus serving as a surrogate of sorts, rather than shed human-associated taxa. Overall, the 

researchers hypothesized that human activity does not substantially alter the taxonomic 

distribution of indoor air from that of outdoor air (Adams et al., 2015). 
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The results of Adams and colleagues (2015) highlight a more general trend in the 

literature. Phylogenetic analysis of an academic building found evidence that overall, outdoor air 

sources were the strongest predictor of microbial diversity (Meadow et al., 2014), and these 

results are consistent with other literature sources previous described (Adams et al., 2015; 

Hospodsky et al., 2012; Qian et al., 2012). In the study by Meadow and colleagues, the most 

prevalent taxa indoors were 88% homologous to taxa of the external environment. Therefore, 

ventilation is a primary means by which temporal variations in outdoor air, such as during 

seasonal fluctuations, can induce similar compositional changes within indoor air. Nevertheless, 

room occupants still significantly influenced bioaerosol diversity, and human-associated taxa 

were recorded, including the most prevalent genera Corynebacterium, Staphylococcus, and 

Acinetobacter. In contrast, Tringe et al. (2008) argued in a metagenomic study of two 

commercial shopping indoor environments for the existence of a core indoor microbiome distinct 

from outdoor air. In juxtaposing phylotypes across indoor environments, the authors found 

evidence that there were more composition similarities between the two indoor sampling 

locations in comparison to outdoor samples.  

 

Current Study 

Given the novelty of next-generation sequencing, phylogenetic studies of the built 

environment are not yet sufficiently comprehensive to explain how human activity intersects 

with the built environment to subsequently affect microbial diversity. Studies in the scientific 

literature have investigated resuspension of general particulate matter during human occupancy 

(Rintala et al., 2008) and with different flooring materials (Mukai et al., 2009). However, much 

of the current body of research has focused on particle size, rather than the identity of those 
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particles, such as classification of biotic vs. abiotic or fungal vs. bacterial components. The few 

studies that implemented phylogenetic analysis to characterize composition only sampled a 

single activity event (Hospodsky et al., 2012) and flooring type (Qian et al., 2012) or used a 

controlled chamber rather than a more ecologically valid environment (Adams et al., 2015). 

Therefore, prior research has not sufficiently integrated aspects of flooring design, in situ human-

mediated resuspension, and genetic analysis to elucidate microbial community dynamics.   

The 2011 Indoor Air Symposium on the microbiomes of built environments strongly 

recommended that future studies evaluate construction components, such as carpeting, and 

human traffic patterns (Corsi et al., 2012). Based on this directive, the present study sought to 

investigate some of the spatial and temporal variables influencing resuspension and determine 

their subsequent effect on microbial community composition. To this end, human-mediated 

microbial resuspension with different types of indoor flooring materials, carpeting and linoleum, 

was measured and analyzed within an indoor hallway. A weekday sampling period served as a 

high human activity treatment, and a weekend time was the low human activity treatment. The 

study aimed to answer the following research questions: 

1.  How is the phylogenetic profile of indoor air influenced by variations in flooring type 

 and human activity?  

 2.  What is the extent of within sample variation, or alpha diversity, for indoor air? 

 3. What is the extent of between sample variation, or beta diversity, for indoor air? 

 

To answer these questions, DNA was extracted from air samples collected over two 

different flooring materials and during high or low levels of human occupancy. Using 

prokaryotic 16S primers for amplification, the Illumina MiSeq sequencing platform was 

implemented to provide insight into genetic relatedness to qualitatively and quantitatively 
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describe microorganisms of indoor air. The bioinformatics software Quantitative Insights Into 

Microbial Ecology (QIIME) was utilized for generating genera abundances to assess question 1. 

For question 2, genera richness and evenness were calculated for each air sample as an alpha 

diversity metric. Beta diversity, question 3, was assessed by comparing total sequence counts and 

identifying shared genera across sampling conditions.  

It was hypothesized that the greatest quantity of sequences and highest biodiversity of 

microorganisms (richness and evenness) would be present in air samples collected during periods 

of high human activity over carpeting. Higher rates of activity are correlated to an increased rate 

of resuspension (Qian et al., 2008) and carpeting is known to facilitate particle release (Adams et 

al., 2015). In contrast, samples collected during low activity times over linoleum were 

hypothesized to be less taxonomically diverse in terms of number of sequences, richness, and 

evenness when compared to high activity samples. Lastly, it was predicted that a unique indoor 

microbiome would be present and contain taxonomic groups associated with both the human 

microbiome and the external environment. Overall, the present study sought to integrate the role 

of anthropogenic disturbance events and building structure on indoor microbial community 

diversity. 

 

Materials and Methods 

Study Location and Layout 

All air samples were collected from a single spatial sampling location within Nicarry 

Hall, an academic building at Elizabethtown College in Elizabethtown, PA. High human traffic 

and the symmetrical nature of hallway structure within Nicarry Hall made it conducive for the 

present study. The sampled zone was a 2.5 m wide x 2.54 m tall hallway segment within the 

building, as shown in the first floor blueprint (Figure 2). The linoleum flooring treatment was 
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represented by the inherent flooring surface present in the building. The carpeting treatment was 

a used “StaticStopper” commercial mat measuring 5.9 m by 1.07 m x 0.07 m (Certified Carpet, 

Inc., Lancaster, PA). Analytical test filter funnels (Thermo Fischer Scientific, Inc., Waltham, 

MA) were placed 4.06 m apart and approx. 1 m above the floor on either end of the hallway zone 

via attachment to the wall (see schematic in Figure 3). The two funnels were each connected via 

flexible plastic tubing of 1.2 cm in diameter to a Leland Legacy air pump (SKC, Inc., Eighty 

Four, PA) as shown in Figure 4. 

 

 

 

Figure 2. Blueprint for first floor of Nicarry Hall. Area outlined is the hallway sampling location.  
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Figure 3. Hallway sampling schematic and image. Blue circles are the analytical test filter funnels connected via 

tubing to the air samplers placed above the ceiling tiles. 4.06 m is the distance between samplers, 1.0 m is the height 

above the floor, and 0.92 m is the distance from the sampler to the edge of the carpet. The carpet was removed for 

the linoleum sampling periods.   

 

  

Figure 4. Air sampler wall attachment.   

 

Sample Collection 

A total of 24 samples were collected over a 4-week period from October 19, 2015 to 

November 16, 2015. Prior to sampling, the carpet was cleaned with detergent via an industrial 

washer, and the linoleum was cleaned by custodial staff. On October 30, 2015, the halfway point 

for sampling, the carpet and linoleum floor were vacuumed. All samples were collected under a 
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flow rate of 7 liters per minute (LPM) for 10 hours. Each sample consisted of two filter 

membranes that were subsequently pooled during PCR. At this flow rate and duration, approx. 

4.2 m3
 of air passed through each funnel containing a separate nitrocellulose filter membrane 

with a 47 mm diameter and 0.45 m pore size (Thermo Fischer Scientific, Inc., Waltham, MA). 

The high human activity samples were collected during weekdays (M-Th) between 8 AM and 6 

PM. The low human activity samples were collected during weeknights (M-Th) between 9:30 

PM and 7:30 AM. Human activity was approximated based upon average building occupancy 

data during a Fall 2015 week from a campus scheduling service (Table 1). There were no 

formally listed occupancy data for low activity sampling times.  

 

Table 1. Estimated occupancy data for first floor academic classrooms in Nicarry Hall during a 

daytime sampling period 

Day of the Week  Estimated Number of Individuals 

Monday  208 

Tuesday 368 

Wednesday 203 

Thursday 279 

  

Out of the 24 samples, 6 were collected each during the high activity carpeting treatment, 

low activity carpeting treatment, high activity linoleum treatment, and low activity linoleum 

treatment. The distribution of samples across days of the week is shown in Table 2.  Following a 

10-hour runtime, both membranes were removed from their respective analytical test funnels and 

stored in 5 mL transport vials (Stockwell Scientific, Scottsdale, AZ) also containing 

approximately 1.8 g of 0.70 mm garnet beads in preparation for DNA extraction (MO BIO 

Laboratories, Inc., Carlsbad, CA). Membranes were folded inward and inserted via forceps so 
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that the exposure surface faced inward to maximize extraction potential. All membrane-

containing vials were refrigerated at ~4C.  

 

Table 2. Air samples collected for all four treatments across the four possible 

weekdays/weeknights  

Day of the Week HA Carpet 

(n=6) 

LA Carpet 

(n=6) 

HA Linoleum 

(n=6) 

LA Linoleum 

(n=6) 

Monday 4 4 1  

Tuesday 2 2   

Wednesday   2 3 

Thursday   3 3 

HA= High Activity (Day); LA=Low Activity (Night) 

 

DNA Extraction and Quantification 

DNA was extracted in accordance with a modified version of the protocols used from 

both the UltraClean Microbial DNA Isolation Kit and the PowerWater DNA Isolation Kit (MO 

BIO Laboratories, Inc., Carlsbad, CA). Reagents were utilized from the UltraClean Kit while 

volumes and centrifugation times were taken from the PowerWater Kit. First, 1 mL of MD1 was 

added to the 5 mL transport vial containing the filter membrane and the garnet beads. Tubes 

were attached horizontally to a Vortex Adaptor (MO BIO Laboratories, Inc., Carlsbad, CA) on a 

Vortex-Genie 2 (Scientific Industries, Inc., Bohemia, NY) to mechanically disrupt the 

membranes. Then, the vial was centrifuged via a Sorvall RC-5C Plus (Kendro Laboratory 

Products, Newtown, CT) at 4,000 x g for 1 minute at ~21C. The supernatant was transferred to 

a 2 mL collection tube and centrifuged via an ALC micro Centrifugette 4212 (ALC International, 

Cologno Monzese, Italy) for 13,000 x g for 1 minute at room temperature. All subsequent 

centrifugations were performed using this instrument at the same temperature and rpm. The 
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supernatant was again transferred to a 2 mL collection tube and 200 L of MD2 was added. The 

tube was vortexed to mix and incubated at ~4C for 5 minutes.  

The tube was then centrifuged for 1 minute. The supernatant was transferred to a new 2 

mL collection tube and 650 L of MD3 was added with subsequent vortexing for 10 seconds. 

Then, 650 L of the total tube volume was delivered to a spin filter tube and centrifuged for 1 

minute. The flow-through was removed, and the remaining volume in the initial collecting tube 

was added to the spin filter tube, which was then centrifuged for 1 minute. The spin filter 

(containing DNA to be isolated) was transferred to a new 2 mL collection tube, and 650 L of 

MD4 was added to the spin filter. The tube was centrifuged for 1 minute, and the flow through 

was removed. The spin filter tube was centrifuged again for 2 minutes, and then, the spin filter 

was placed into a new collection tube. Finally, 50 L of deionized H2O was added to the spin 

filter within the tube, which was centrifuged for 1 minute. The spin filter was discarded, and 

isolated DNA in the collection tube was stored at -22C. Two extraction controls using sterile 

filter membranes were also performed using the above protocol. Following extraction, some 

selected sample DNA concentrations were quantified using a Qubit 3.0 Fluorometer following 

the manufacturer’s protocol (Thermo Fischer Scientific, Inc., Waltham, MA).  

 

DNA Amplification  

For polymerase chain reaction (PCR) amplification, isolated DNA was amplified via 16S 

rRNA gene Illumina tag PCR in accordance with the protocols from the Earth Microbiome 

Project. All PCR reactions were performed in duplicate for each of the two filter membranes 

acquired per each sampling condition (four total reactions per 10-hour sampling interval). One 

unique barcoded reverse primer was used for all four PCR reactions for each sampling condition. 
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Primers were of the 2015 HHMI set from Juniata College. The PCR master mix for each reaction 

was composed of 0.13 L of Ex Taq polymerase (final concentration: 0.65 U/rxn), 2.5 L of Ex 

Taq Buffer (final concentration: 1X ), and 2 L of dNTP mixture (final concentration: 0.2 mM) 

from TAKARA BIO, Inc., Shiga, Japan as well as 1 L of non-barcoded forward primer, 515f, at 

a final concentration of 0.2 M (Integrated DNA Technologies, Inc., Coralville, IA). Each 25.0 

L PCR reaction tube contained 5.63 L of the master mix, 18.37 L of template DNA, and 1 

L of barcoded reverse primer, 806r, at a final concentration of 0.2 M (Integrated DNA 

Technologies, Inc., Coralville, IA). Three PCR control reactions were performed under identical 

conditions except that 18.37 L of PCR-grade deionized H2O was substituted for DNA. 

Thermocycling was conducted in a PTC-200 Peltier Thermal Cycler (Bio-Rad Laboratories, Inc., 

Hercules, CA). The cycling conditions were 94C for 3 minutes to denature DNA, 94C for 45 

seconds, 50C for 60 seconds, and 72C for 90 seconds. The latter three temperature cycles were 

repeated 35 times. Then, the final extension was conducted at 72C for 10 minutes, and samples 

were held at 4C. Amplicons were then stored at -22C.     

 

DNA Sequencing 

 Next-generation sequencing of the 28 unique barcoded PCR amplicons (24 air samples, 

one extraction control, and three PCR controls) was performed at Juniata College in Huntington, 

PA using the Illumina MiSeq platform (Illumina, Inc., San Diego, CA). Initial sequence library 

assembly was performed there as well.  
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Sequence Analysis 

 Computation analysis was performed using the Quantitative Insights into Microbial 

Ecology (QIIME) statistical package. Access to a compute cluster (Nor-Tech, Burnsville, MN) 

was provided by Juniata College in Huntington, PA. Sequencing data were processed in 

accordance with the Metagenomics Workshop Instructional Booklet (Lamendella et al., 2015). 

To start, multiplexed sequences were paired to merge forward and reverse reads for the target V4 

region of the 16S rRNA gene. During quality filtering, reads beyond 253 base pairs or with an 

average expected error of 0.5% or greater (base assignment error for every 1 out of 200 bases) 

were discarded.  

Then, operational taxonomic units (OTUs) were selected in accordance with the open 

reference model. Briefly, reads were first compared to the Greengenes 16S rRNA reference 

database. Sequences that did not match the library were clustered internally among other 

unmatched sequences in a de novo format. After clustering, chimeras and other DNA artifacts 

were removed from the sequences. Data were then converted into the BIOM table format, 

taxonomy was assigned, and a phylogenetic tree was constructed. Using QIIME 1.9.0, the OTU 

table was filtered by OTU abundance to remove rare taxa present at 0.005% or less. Then, taxa 

were summarized at levels ranging from phylum to genus.   

In terms of statistical analysis, one-tailed Student’s T-tests were calculated to ascertain 

significant differences between total sequence counts across sampling conditions using Excel 

(Microsoft, Redmond, WA). Genera richness was calculated as the number of genera present in 

each sample. Shannon’s equitability for genera evenness, or relative abundance, was calculated 

using the equation in Figure 5. A one-way analysis of variance (ANOVA) was performed for 
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selected sampling conditions versus mean richness and evenness calculations using SPSS 

Statistics 22 (IBM, Armonk, NY).  

 

Sample Evenness = -  P*ln(P) 

              Ln(R)  

P=genus proportion within sample R=genera richness for that sample 

 

Figure 5: Equation for calculation of genera evenness. Ln is the natural logarithm.  

 

Results 

 Quantitative and qualitative results were obtained from the analysis of indoor microbial 

communities. Initially, Qubit DNA concentration values obtained following DNA extraction but 

prior to PCR were assessed for a select number of samples and are displayed in Table 3.   

 

Table 3. Selected DNA concentrations prior to PCR for two sampling conditions  

Sample (date and condition) Concentration in ng/L 

10/20/2015 HA carpet 0.107 (L); 0.038 (R) 

10/20/2015 LA carpet 0.125 (L); 0.04 (R) 

Note: L/R refers to left or right positions of the analytical test filter funnel membranes. 

 

Across 14 samples and one control, 227 sequences were obtained with a mean length of 151 

bases. The 227 value refers to sequences that had undergone some initial quality filtering but had 

not yet been paired. Of the original 28 PCR reactions (24 samples, three PCR controls, and one 

extraction control), 13 yielded no sequenceable DNA. The distribution of sequences across 

samples is shown in Table 4. From this sequence per sample data, sequence counts across 

sampling conditions were generated, and a Student’s t-test was conducted to ascertain if the 

differences between the number of sequences generated in each condition were significant 
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(Figure 6 and 7). In comparing the number of sequences for high activity (163) versus low 

activity (54) samples, a statistically significant difference was obtained (P=0.0315). However, 

there was no significant difference between the number of sequences obtained for carpet (96) 

verses linoleum (121) as P=0.4471.  

 

Table 4. Distribution of sequences across varying activity levels and flooring types 

Sampling Condition Activity Level Flooring # Seqs 

10/22, Thurs. High Linoleum 44 

11/16, Mon. High Carpet 34 

10/26, Mon. High Carpet 25 

11/4, Wed. Low Linoleum 18 

11/12, Thurs. High Linoleum 16 

10/20, Tue. High Carpet 13 

10/28, Wed. High Linoleum 11 

11/9, Mon. High Linoleum 11 

10/20, Tue. Low Carpet 11 

Extraction control  N/A 10 

10/27, Tue. High Carpet 9 

11/11, Wed. Low Linoleum 8 

10/28, Wed. Low Linoleum 7 

10/22, Thurs. Low Linoleum 6 

10/27, Tue. Low Carpet 4 
Note: Counts for post-initial quality filtering, unpaired sequence data. 
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Figure 6. Sequence counts for all samples based upon activity level. Asterisk indicates a significant difference 

(P<0.05).  

 

Figure 7. Sequence counts for all samples based upon flooring type. No significant difference between flooring 

types was found. 

 

Once forward and reverse reads were merged to yield combined reads of ~250 bases, 

sequence quality was assessed. A Phred quality score and an average expected error value were 

assigned to each nucleotide position across reads. The Phred score distribution, also known as 

average Q, is shown in Figure 8. It indicates the mean accuracy of the sequencing at every single 
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nucleotide in all reads. All nucleotide identity assignments were above a score 30, though the 

score for nucleotides between position 100-150 was elevated above 40. Since average Q is 

logarithmic, a score of 30 means 99.9% accuracy, and a score of 40 means 99.99% accuracy. 

The average expected error was also calculated and is shown in Figure 9. Average expected error 

is the cumulative error of base identification across a read. Except for one outlier beyond 250 

bases, all assigned nucleotides had an error below 0.4%, or an error rate of 1 per every 250 bases 

(Figure 9). Given this sequence quality data, reads with an average expected error beyond 0.5% 

and possessing more than 250 bases were subsequently discarded, which left 84.26% of the 216 

sequences obtained post-merge pairs for downstream analyses. After this step, 12 samples and 

the control extraction remained containing sequences of sufficient quality. 

 

Figure 8. Average Phred quality score at each nucleotide position across all sequences. 
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Figure 9. Average expected error at each nucleotide position across all sequences. Note that error compounds as 

nucleotide position advances.   

 

OTU picking for the remaining sequences yielded taxonomic group distributions across 

various phylogenetic resolutions. Summaries were generated using the summarize_taxa.py 

command. Figure 10 depicts the distribution of genera across the samples containing sequences 

and the extraction control. Figure 11 is a quantitative interpretation of Figure 10, indicating the 

number of genera and unique genera present across the sampling conditions. Genera that were 

shared across two or more sampling conditions are shown in Table 5.  
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Figure 10. Fractional abundances for genera across sampling conditions and control. HA=high activity, LA=low 

activity. Note that in the legend, some genera were not specified as sufficient taxonomic data were not available to 

classify at that particular phylogenetic rank. 
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Figure 11. Total genera and unique genera across sampling conditions. 

  

Table 5. Genera shared across two or more sampling conditions.  

Genus (Phylum) LA Linoleum HA Linoleum LA Carpeting HA 

Carpeting 

Control 

Acidovorax 

(Proteobacteria) 

X X  X  

Arcobacter 

(Proteobacteria) 

 X  X X 

Flavobacterium 

(Bacteriodetes) 

X   X  

Methylobacterium 

(Proteobacteria) 

X   X  

Pseudomonas 

(Proteobacteria) 

 X  X  

Note: X marks genus presence in any of the sampling conditions. 

 

Genera distribution data were also used to calculate genera richness and evenness across 

sampling conditions. Genera richness is displayed in Figure 12. A one-way ANOVA was 

conducted for genera richness comparing the three sampling conditions containing at least one 

replicate: low activity linoleum, high activity linoleum, and high activity carpeting. Means are 

0
1
2
3
4
5
6
7
8
9

10

LA Linoleum
(n=4)

HA Linoleum
(n=4)

HA Carpet
(n=3)

LA Carpet
(n=1)

Extraction
Control

N
u

m
b

er
 o

f 
G

en
er

a

# Total Genera

# Unique Genera



 29 

shown in Table 6, and the results of the ANOVA are in Table 7. The ANOVA yielded F=1.296 

and P=0.325, indicating no statistically significant difference for genera richness across the 

samples.  

 

 

Figure 12. Genera richness across each sampling condition and control.  

 

Table 6. Genera richness means and standard deviations for low activity linoleum, high activity 

linoleum, and high activity carpet.  

 

N Mean Std. Deviation 

LA Linoleum 4 1.5 0.58 

HA Linoleum 4 2.8 1.5 

HA Carpet 3 2.0 1.0 

Total 11 2.1 1.1 

 

Table 7. Results from ANOVA test for the three conditions of low activity linoleum, high 

activity linoleum, and high activity carpet versus genera richness. P value was not statistically 

significant.  

 
Sum of Squares df 

Mean 
Square F Sig. 

Between Groups 3.159 2 1.580 1.296 0.325 

Within Groups 9.750 8 1.219     

Total 12.909 10       
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Genera evenness was determined for each sample. Shannon’s equitability or evenness is 

given on a 0 to 1 scale, with 1 being perfectly even and 0 being perfectly uneven. Evenness was 

calculated using the equation shown in Figure 5. Evenness values for each sample are displayed 

in Figure 13. A one-way ANOVA was conducted for genera evenness comparing the three 

sampling conditions containing at least one replicate: low activity linoleum, high activity 

linoleum, and high activity carpeting. Means are shown in Table 8, and the results of the 

ANOVA are in Table 9. The ANOVA yielded F=0.119 and P=0.89, indicating no statistically 

significant difference for genera evenness across the samples.  

 

 

Figure 13. Genera evenness across sampling conditions. Samples without a bar indicate a sample where evenness 

was mathematically undefined given that richness was 1.   

 

Table 8. Genera evenness means and standard deviations for low activity linoleum, high activity 

linoleum, and high activity carpet. 

 

N Mean Std. Deviation 

LA Linoleum 3 0.89 0.046 

HA Linoleum 4 0.92 0.079 

HA Carpet 2 0.92 0.11 

Total 9 0.91 0.068 
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Table 9. Results from ANOVA test for the three conditions of low activity linoleum, high 

activity linoleum, and high activity carpet versus genera evenness. P value acquired was not 

statistically significant.   

 Sum of 
Squares df Mean Square F Sig. 

Between Groups .001 2 .001 .119 0.890 

Within Groups .036 6 .006     

Total .037 8       

 

Discussion 

 Air samples were collected under varying levels of activity and flooring types in a college 

academic building. Extracted DNA from membrane filters was amplified and sequenced via the 

Illumina method. Sequence data were processed using QIIME and analyzed both quantitatively 

qualitatively.  

 

General Sequence Analysis 

 The first initial data point to be considered are the sample DNA concentrations from filter 

membrane extracts prior to PCR. These values served as a nonspecific indicator of the biotic 

content of indoor air. As shown in Table 3, DNA concentrations were assayed using QuBit for 

the left and right filter membranes in two different sampling conditions on a range of 0.038-

0.125 ng/L. Furthermore, DNA levels were undetectable in some instances (data not shown).  

Given that there are only two data points, no substantial conclusions can be drawn. In 

comparison to other phylogenetic studies, such as those for blood samples, DNA extraction 

concentrations were typically in the 50-200 ng/L range (Psifidi et al., 2015), which are several 

orders of magnitude greater than what was observed in the present study. However, there is 

evidence that indoor microbial DNA concentrations are typically far lower than those from other 

sampling locations. One protocol review using much larger filters and higher flow rates yielded 



 32 

concentrations on a range of 0.073-0.632 ng/L, which are comparable with the present study 

(Jiang et al., 2015). Therefore, there is some weak evidence that obtained DNA concentrations 

may be consistent with the literature.   

 Total sequence counts and distribution across sampling conditions served as a pre-QIIME 

analysis metric for the biotic content of indoor air. Prior to merging the forward and reverse 

reads, 227 initial sequences were yielded for one extraction control and 14 of the 24 

experimental samples. In comparison, a phylogenetic study of indoor air within a hospital 

environment reported 179,146 initial sequences (Kembel et al., 2012), and a study of a university 

classroom using next-generation sequencing yielded 10,675 sequences after some quality 

filtering/chimera removal (Hospodsky et al., 2012). Thus, the number of sequences yielded in the 

present study was substantially lower than the numbers found in other studies.  

As shown in Table 4, samples that did yield sequences were distributed across all four 

treatment combinations. The maximum number of sequences in any one sample was 44 (high 

activity linoleum) while the minimum was 4 (low activity carpet). Interestingly, the extraction 

control yielded 10 sequences, a substantial percentage of the total sequence number. Had 

sequence counts been several orders of magnitude larger, the taxonomic data yielded from the 

extraction control could have been subtracted out from the rest of the experimental samples. 

Additionally, 10 samples of the original 24 did not yield any detectable sequences, suggesting 

methodological difficulties associated with sample collection or DNA extraction.   

While the 227 total count is not reflective of the final number of sequences to be used for  

taxonomic analysis (the analyzed sequence counts were actually lower), it can be used to 

illustrate comparative differences in microbial diversity for indoor air. As shown in Figure 6, the 

number of sequences yielded from high activity samples was significantly elevated in 
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comparison to those in low activity samples. This is consistent with expectations, given the 

evidence that human occupancy is a primary contributor of taxa via resuspension and particulate 

shedding in indoor environments (Adams et al., 2015; Hospodsky et al., 2012). During lower 

activity levels (nighttime sampling periods), fewer disturbance events would reduce the biotic 

content of indoor air. Thus, there is some limited empirical support for the original hypothesis 

predicting a greater number of sequences for high activity samples. 

However, for the total sequence count comparison between flooring types (Figure 7), 

there was no significant difference apparent for carpeting versus linoleum sample sequence 

quantities. This is contrary to the original hypothesis, which predicted elevated sequences counts 

for carpeting versus linoleum. Prior research showed that carpet facilitated particulate 

resuspension in comparison to more regular, solid surfaces (Adams et al., 2015; Mukai et al., 

2009) and also demonstrated that particle release at larger size ranges was elevated for human 

traffic in a carpeting condition versus a plastic sheeting condition (Hospodsky et al., 2012). 

Nevertheless, sequence counts were much lower than expected and likely grossly underestimated 

microbial diversity, which could account for the surprising results. Given the low sequence 

yields, it would be imprudent to draw any substantial conclusions from the data set. 

 Sequence quantity is just one metric to assess the reliability of Illumina sequencing data. 

Accuracy of nucleotide identification is another means to evaluate sequencing reads prior to 

phylogenetic analysis. As shown in Figures 8 and 9, the average Phred quality score and the 

average expected error illustrated that though sequence counts were low overall, they met the 

quality benchmarks established by the literature. For average Q, a score of 30 or greater is 

considered to be of sufficient quality for inclusion in a data set (Jalali et al., 2015). As shown in 

Figure 8, average Q was consistently above the threshold, indicating that the vast majority of the 
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sequences were high quality. The only slight depression below 30 occurred near the 250 base 

pair point, which is logical given that 253 bp is the maximum length threshold for the read. 

Interestingly, quality was elevated beyond 40 for nucleotides at positions between 100 and 150 

bp within a read. When forward and reverse reads (approx. 150 bases each) of the V4 region 

were merged, there is some overlap at the midpoint region. Hence, the nucleotide repetition helps 

to corroborate base assignment accuracy, elevating the Phred score for that interval.  

 Average expected error is another quality metric indicating the percentage chance that a 

nucleotide’s identity was incorrectly assigned (Figure 9). In general, sequences with an expected 

error beyond 0.5% are excluded from a data set (Puente-Sanchez et al., 2015). Again, given that 

the vast majority of the nucleotides in the reads had an error below 0.5%, the sequence data were 

of high quality despite a paucity of overall sequence counts.  

 

Phylogenetic Analysis 

Progression through the QIIME analysis pipeline in accordance with the protocol by 

Lamendella et al. (2015) generated summaries of taxonomic abundances across samples for 

quality filtered, chimera-free sequences. Across 12 samples and one control, 15 distinct genera 

(or families/orders if genera identification could not be resolved) were reported (Figure 10). 

Qualitatively, there appears to be some evidence that the high activity linoleum samples were 

more diverse (contained more total taxa) than low activity linoleum samples. This finding was 

corroborated by quantitative enumeration of total genera and unique genera present across 

sampling conditions (Figure 11). High activity linoleum had 10 total genera and 7 unique genera, 

which in both cases exceeded the values for the other three conditions and the control. No 
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comparisons between high and low activity carpet were possible due to the absence of any 

replicates with measureable sequences beyond a single sample for low activity carpeting.    

Just as total sequence counts were used as a beta diversity metric to evaluate the validity 

of the original hypotheses, genera abundances can also be considered in light of those 

predictions. These data provide some evidence, at least for samples collected over linoleum, 

supporting the original hypothesis that higher activity samples would be more diverse than lower 

activity samples (Figure 10), corroborating sequence count data of Figure 6. However, there was 

not sufficient evidence to suggest that samples collected over carpeting were more or less 

taxonomically diverse than those collected over linoleum given the statistical power limitations 

for low activity carpet. Once again, methodological shortcomings precluded the generation of 

any scientifically valid generalizations.  

Computation beta diversity could not be calculated through QIIME due to sampling 

limitations. However, qualitative comparisons were conducted to assess which taxonomic groups 

were shared across samples. As shown in Table 5, only five genera were shared across two or 

more conditions, and no genera were shared across all four conditions. Acidovorax was shared 

across three conditions, and the genus includes several species that act as plant pathogens 

(Giordano et al., 2012). Arcobacter was shared across two conditions and the control. This genus 

has been found in human fecal samples, and a subset of species has been classified as 

enteropathogens (Collado & Figueras, 2011). Flavobacterium and Methylobacterium were 

shared across the same two conditions, LA linoleum and HA carpeting. Flavobacterium has been 

linked to diverse outdoor locations, including soil and water (Bernardet et al., 1996), while 

Methylobacterium is a prolific airborne organism in indoor and outdoor environments (Brenner 

& Krieg, 2006). Pseudomonas, shared across both high activity conditions, is a highly 
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heterogeneous genus classified in aquatic as well as terrestrial locations. Some species are 

pathogenic to plants and animals (Moore et al., 2006).  

However, there is empirical evidence that many of the genera positively identified in 

samples, such as Acidovorax, Flavobacterium, Methylobacterium, and Pseudomonas, are 

common contaminants of DNA extraction kits (Salter et al., 2014). Though Arcobacter was not 

listed in the study by Salter and colleagues (2014), it was found in the control extraction and may 

likely be a contaminant as well. While these data were unable to implicate any genera in forming 

a core microbiome, meaning that the original hypothesis was not supported, it does present a 

constrained view of some potential microbial homology among indoor air samples.   

 

Ecological Diversity Analysis 

 Independent of the QIIME pipeline, the alpha diversity metrics of genera richness and 

evenness were calculated from the genera abundances presented in Figure 10. In terms of the 

genera richness in Figure 12, no clear trends were readily discernable. Consequently, an 

ANOVA for a portion of the data set (low activity linoleum, high activity linoleum, and high 

activity carpet) was performed. The mean richness for high activity linoleum was slightly 

elevated in comparison to the other treatments (Table 6), but the ANOVA found no significant 

differences among richness data for the three selected sampling conditions of low activity 

linoleum, high activity linoleum, and high activity carpet (Table 7).  

Genera evenness, graphically displayed in Figure 13, appeared similar across sampling 

conditions upon initial qualitative analysis. Given that “1” represents complete genera evenness, 

there is evidence that all indoor sampling conditions were relatively even, as evidenced by the 

overall mean evenness of 0.91 for low activity linoleum, high activity linoleum, and high activity 
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carpet (Table 8). Thus, indoor environments as a whole may have elevated general microbial 

biodiversity, at least in terms of evenness. As with richness, the ANOVA was not significant for 

differences in genera evenness across the three sampling conditions (Table 9). Taken together in 

the context of the present study’s limitations, the richness and evenness data suggest that the 

diversity of indoor air in a college academic building was not affected by variations in flooring 

type and human activity levels. This evidence runs counter to literature studies, as other 

investigators have recorded a 100% increase in OTU richness with elevated human occupancy in 

an indoor environment (Adams et al., 2015). Other computation alpha diversity metrics, such as 

PD_whole_tree and chao1, were attempted but could not be completed due to insufficient 

sequence counts across samples.    

 

Limitations 

 Many limitations for the present study have already been discussed, namely in terms of 

few total sequence counts and the low fraction of samples possessing detectable sequences. The 

reasons for this deficit are numerous. One postulated explanation is that the DNA extraction 

protocol was faulty and consequently a substantial percentage of DNA in each sample was not 

isolated. Since this was an adapted protocol, rather than one identical to a manufacturer’s 

specifications, the likelihood of errors was increased. Nevertheless, the extraction concentrations 

were consistent with a literature source (Jiang et al., 2015), and there is evidence that pre-PCR 

DNA concentrations can often be undetectable (Dr. Ann Klein, personal communication, April 9, 

2015). Therefore, other mechanisms could potentially be implicated to explain the low sequence 

yields across samples.  
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 Another possible outcome, which would still involve a deficit in the extraction protocol, 

is that isolated DNA was of poor quality. In theory, poor quality DNA would still be quantified 

by the Qubit assay, which is selective for dsDNA only. However, the Qubit metric provided no 

information as to the quality of the V4 region to be amplified within the DNA isolates. Thus, 

perhaps there was minimal PCR amplification within isolated DNA due to deficits in reaction 

kinetics or the presence of small molecule PCR inhibitors (Dr. Ann Klein, personal 

communication, November 16, 2015). An additional potential error mechanism may have been 

with the PCR cycling conditions. As shown in Jiang et al. (2015), there is evidence that PCR 

conducted with isolated airborne genetic material requires greater than 34 cycles for minimal 

amplification and that maximum amplification could be achieved with 48-56 cycles. Hospodsky 

et al. (2012) used 45 cycles for their amplification of air sample DNA. In contrast, the present 

experiment used 35 cycles, which was suggested in the Earth Microbiome Project protocols. 

However, that recommended cycling value may not have been sufficient for DNA originating 

from air samples. Future manipulations of the present study are required to more closely 

elucidate the effect of PCR cycle elongation on DNA amplification. 

  The conditions used for sampling collection, namely sampling duration and flow rate, 

may have contributed to experimental error. A flow rate of 7 LPM and a sampling period of 10 

hours were utilized to achieve a total air volume of 4.2 m3
 per sample. This is above the 

approximately 3 m3
 volume minimum for indoor air studies (Dr. James Meadow, personal 

communication, January 16, 2015). However, implementation of a more powerful air sampler 

would have increased the flow rate and therefore the deposition of biotic and abiotic materials 

onto the filter membranes. Other indoor air studies have used a 10 LPM flow rate over 22 hours 

(Hospodsky et al., 2012) or 28.3 LPM for an unspecified interval (Qian et al., 2012). Therefore, 
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the flow rate and sampling interval will need to be optimized in future studies. Also, a less 

porous filter could have been implemented to be more selective than the 0.45 m one used in the 

present study to increase cell retention on the membrane filter. Adams and colleagues (2015) 

utilized a 0.2 m filter membrane for sampling. They also placed air samplers at 1.5 m from the 

ground and positioned them upside down. This differs from the present study that placed filters 

at a height of 1 m and positioned them approximately horizontally. Future studies will have to 

examine the affect of altered filter placement on bioaerosol collection. 

 

Conclusion 

 Air samples over two different flooring types and activity levels were collected in a 

college academic building in Fall 2015. Following DNA isolation, 16S rRNA gene 

amplification, and Illumina sequencing, 227 unpaired sequences were generated initially for 14 

samples and one extraction control. Though limited sequence counts precluded extensive 

analysis, several metrics were utilized to assess alpha (within sample) and beta (between sample) 

diversity. In terms of alpha diversity, statistical analysis of species richness and evenness found 

no significant differences across low activity linoleum, high activity linoleum, and high activity 

carpet conditions. For beta diversity, samples collected under high activity levels had a 

statistically greater number of sequences than those collected under low activity. No significant 

difference was apparent for sequences yielded from carpeting versus linoleum samples. Five 

total genera were shared across at least two or more sampling conditions. Phylogenetically, 

samples collected over high activity periods and linoleum flooring had the greatest number of 

total genera and unique genera in comparison to the other three conditions and controls.  
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These results are both supported and refuted by numerous literature studies. More 

importantly, the statistical power limitations of the present study, both in terms of total number 

of sequences and total number of samples containing sequences, prevented the postulation of any 

conclusions from the data set. Future investigations will seek to reevaluate the DNA extraction 

and PCR protocol to improve pre-sequencing DNA quality and concentration. Revisions to 

sampling flow rate, duration, and means of collection are also necessary to sample indoor 

environments at a more comprehensive depth. Therefore, despite methodological and analytical 

challenges, this study provides a limited perspective on how the variables of anthropogenic 

traffic and flooring type may be affecting microbial diversity in the indoor built environment.   
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