УДК 621.314.222.6

Ю. А. Денисов, док. техн. наук, проф. А. Н. Городний Черниговский государственный технологический университет, г. Чернигов, Украина

ОЦЕНКА ЭНЕРГЕТИЧЕСКОЙ ЕФФЕКТИВНОСТИ ПАРАЛЛЕЛЬНОГО КВАЗИРЕЗОНАНСНОГО ПРЕОБРАЗОВАТЕЛЯ

Исследована работа экспериментального макета параллельного квазирезонансного импульсного преобразователя, переключаемого при нулевом токе(КРИП-ПНТ). Показаны достоинства его структурного построения. Приведены результаты экспериментальных исследований энергетической эффективности параллельного КРИП-ПНТ. Библ. 3, табл. 1, рис. 2.

Ключевые слова: электронный ключ, мощность рассеивания, импульсный преобразователь.

Досліджена робота експериментального макету паралельного квазірезонансного імпульсного перетворювача, перемиканого при нульовому струмі(КРІП-ПНТ). Показані достоїнства його структурної побудови. Приведені результати експериментальних досліджень енергетичної ефективності паралельного КРІП-ПНТ. Бібл. 3, таблиця. 1, мал. 2.

Ключові слова: електронний ключ, потужність розсіювання, імпульсний перетворювач

Введение

Повышение энергетической эффективности импульсного преобразователя (ИП) связано со снижением рассеиваемой мощности в его узлах. Это коммутационные устройства (транзисторные устройства) и, в меньшей степени, – фильтры (индуктивности и ёмкости).

В современных высокочастотных ИП применяют диоды Шоттки с очень малыми статическими и динамическими потерями. Поэтому основной путь повышения энергоеффективности ИП – связан со снижением потерь в транзиторных ключах.

Снижение потерь в электронных ключах можно обеспечивать за счёт: применения электронных ключей с малыми статическими и динамическими потерями (сопротивление канала и время переключения); перевод преобразователя в режим КРИП-ПНТ.

В работах [1], [2] исследована работа КРИП-ПНТ, приведена их классификация. Однако электронные ключи там рассматриваются как идеальные, что не позволяет оценить энергетическую эффективность преобразователя.

Основной материал

Экспериментальное исследование энергетической эффективности параллельного КРИП – ПНТ проведено на макете, функциональная схема которого показана на рис.1.

Входное переменное напряжение U_{вх} поступает на СФ, где фильтруется от импульсных помех. Это напряжение выпрямляется, сглаживается и поступает на вход параллельного КРИП-ПНТ. БП формирует низковольтные напряжение для питания ГУНа и ДР. ДР обеспечивает необходимую мощность импульсов управление электронного ключа VT1 и гальваническую развязку между управляющим сигналами и силовыми цепями.

При изменении потенциала на входе ГУНа резистором R1, меняетсячастота работы КРИП-ПНТ. энергетическая эффективность КРИП – ПНТ сравнивалась с ИП на основе широтноимпульсной модуляции (ШИМ). Мощность рассевания VT1 определялась путем измерения U_{cH} (t)и $i_k(t)$ цифровым осцилографом с последующим их перемножением (датчик тока VT1, $i_{BX}(t)$, $i_H(t)$ на рис.1 не показаны). Была исследована энергетическая эффективность обычной и улучшенной схемы КРИП-ПНТ (с диодом VD2, который устраняет колебания в паразитном контуре L_p . C_{cu} после закрывания VT1[3]).

Структурное построение экспериментального макета позволяет: проводить экспериментальные исследования в широком диапазоне выходных мощностей (от десятков ват до сотен ватта). Результаты экспериментальных исследований потерь мощности на силовых транзисторах приведены в таблице 1 и на диаграмме (рис. 2)

Структурное построение экспериментального макета позволяет: проводить экспериментальные исследования в широком диапазоне выходных мощностей (от десятков ват до сотен ватта). Результаты экспериментальных исследований потерь мощности на силовых транзисторах приведены в таблице 1 и на диаграмме (рис. 2)

		Табл	ица 1	4.0 (= D.D=
Частота,	Мощность	Мощность	Р _{ИП} /	
кГц	рассеивания в	рассеивания	Р _{КРИП-ПНТ}	0.8
	КРИП-ПНТ,Вт	в ИП,Вт		0,6+
100	0,02	0,07	3,50	þ,4
250	0,07	0,22	3,14	
500	0,1	0,41	4,10	
750	0,13	0,73	5,62	
1000	0,17	0.97	5,71	
				Рис. 2

Таблица 2				
Тпер, мкс	5	10	20	50
Rн				
17				14,78
20			16,02	14,8
30		18,63	16,15	14,89
50	27,11	18,8	16,26	14,95
70	27,53	19	16,34	14,98
100	27,96	19,15	16,37	15,03
130	28,19	19,23	16,42	15,05
150	28,33	19,31	16,45	15,06
170	28,43	19,36	16,47	15,07
200	28,63	19,42	16,5	15,08
250	28,87	19,5	16,54	15,1

			Табли	ца 3
Тпер, мкс	5	10	20	50
Rн				
17				14,82
20			16,05	14,85
30		18,64	16,15	14,92
50	27,14	18,8	16,27	14,97
70	27,58	19,02	16,34	15
100	27,97	19,16	16,38	15,04
130	28,22	19,24	16,44	15,05
150	28,36	19,32	16,46	15,06
170	28,48	19,37	16,48	15,07
200	28,63	19,42	16,51	15,09
250	28,83	19,49	16,55	15,12

Таблица 4

	ИП	КРИП	КРИП ул.
0,05	30,85	31,82	31,87
0,1	32,67	34,88	34,8
0,15	34,71	38,51	37,48
0,2	36,97	42,47	41,88
0,25	39,56	46,72	45,81
0,3	42,52	49,81	49,76
0,34	45,13	53,52	53,13

Таблица 5

Тпер, мкс	1	5	10
Rн			
100		33,93	30,93
110		33,98	30,95

55 —	30,97	34,03		120
	30,98	34,06	40,58	130
50	31	34,08	40,67	140
50	31,01	34,11	40,75	150
	31,02	34,16	40,88	170
45 +	31,05	34,24	41,04	200
	31,08	34,28	41,24	250
40 +	31,11	34,34	41,39	300
25				

1

40,41

40.51

40,58

40,71

40,86

41,07

41,23

5

33.92

33,96

34.03

34,05

34,1

34,16

34,24

34,3

34

10

30,92

30,94

30,96

30,97

30.98

30,99

31,01

31,03

31,06

31,09

Таблица 6 Тпер, мкс

Rн

100

110

120

130

140

150

170

200

250

300

В таблицах 2, 3, 5 и 6 приведены результаты измерений для построения нагрузочных характеристик (рис 3, 4, 6 и 7 соответственно) для паралельного КРИП-ПНТ (таблица 3 и рис. 3, таблица 5 рис. 6) и паралельного КРИП-ПНТ с улучшеными параметрами (таблица 3 и рис. 4, таблица 6 и рис. 7) в диапазоне рабочих частот 20 – 1000 кгц.

В таблице 4 и на рис.5 приведены результаты измерения и регулировочные характеристики КРИП-ПНТ, ИП и КРИП-ПНТ с улучшеными параметрами.

Выводы

В результате экспериментальных исследований показано, что параллельный КРИП-ПНТ по энергетическим показателям значительно превосходит ИП на основе ШИМ (в 3,5-5 раз). Разработанный экспериментальный макет позволяет исследовать статические и динамические характеристики параллельных КРИП-ПНТ и ИП, а также спектры входных и выходных токов.

Список литературы

1. *Ю. А. Денисов, А. Н. Городний*. Статические характеристики квазирезонансного импульсного преобразователя с параллельным контуром, переключаемого при нулевом токе.// Техн. Електродинаміка – Київ – 2011. – Тем. вип. «Силова електроніка та енергоефективність». – С. 20-26.

2. Ли Ф. К. Высокочастотные квазирезонансные преобразователи. ТИИЭР. Тематический выпуск. «Энергетическая электроника». Под ред. В.А. Лабунцова, М.: Мир, – Т. 76. – 1988. – №4. – с.83-97.

3. *T.Firmansyah, E. Abe, S. Shoyama, M. Tomioka, S. Ninomiya* "An active-clamped full-wave zero-current-switched quasi-resonant boost converter in power factor correction application", Applied Power Electronics Conference and Exposition (APEC), 2010, Twenty-Fifth Annual IEEE, February 25, p.30.

ENERGY EFFICIENCY ASSESSMENT OF PARALLEL QUASI-RESONANT ZERO CURRENT SWITCH CONVERTER

Y. O. Denisov, dr.sc., professor, A. N. Gorodny, Chernigiv State Technological University

The processing in experimental specimen of parallel quasi-resonant zero current switch converter (QR-ZCS) is considered. The advantages of QR-ZCS' structural design are shown. The results of experimental researches of energy efficiency of parallel QR-ZCS converter are published. References 3, tables 1, figures 2.

Keywords: semiconductor switch, dissipation power, switched-mode converter.

1. Denisov Yu.O., Gorodnii O.N. Static characteristics of quasi-resonant switched-mode converter with zero current switch parallel LC circuit. Teknichna Electrodynamika – Kyiv – 2011. – Tematichniy vipusk «Sylova Elektronika ta energoefektyvnist'». – p. 20-26. (rus)

2. Lee F.K. High-frequency quasi-resonant converters TIIYeR. Them. Red. "Power Electronics". – vol 76. – 1988. – N_{24} . – p. 83-97. (rus)

3. T.Firmansyah, E. Abe, S. Shoyama, M. Tomioka, S. Ninomiya "An active-clamped full-wave zerocurrent-switched quasi-resonant boost converter in power factor correction application", Applied Power Electronics Conference and Exposition (APEC), 2010, Twenty-Fifth Annual IEEE, February 25, p.30.