Hope College Hope College Digital Commons

18th Annual Celebration of Undergraduate	Celebration of Undergraduate Research and
Research and Creative Activity (2019)	Creative Activity

4-12-2019

Analysis of Photoreceptor Development in Pekin Duck

Zoe A. Gum *Hope College*

Anna S. Vostrizansky *Hope College*

Follow this and additional works at: https://digitalcommons.hope.edu/curca_18 Part of the <u>Biology Commons</u>

Recommended Citation

Repository citation: Gum, Zoe A. and Vostrizansky, Anna S., "Analysis of Photoreceptor Development in Pekin Duck" (2019). 18th Annual Celebration of Undergraduate Research and Creative Activity (2019). Paper 12. https://digitalcommons.hope.edu/curca_18/12 April 12, 2019. Copyright © 2019 Hope College, Holland, Michigan.

This Poster is brought to you for free and open access by the Celebration of Undergraduate Research and Creative Activity at Hope College Digital Commons. It has been accepted for inclusion in 18th Annual Celebration of Undergraduate Research and Creative Activity (2019) by an authorized administrator of Hope College Digital Commons. For more information, please contact digitalcommons@hope.edu.

Analysis of photoreceptor development in Pekin duck

Abstract

The Pekin duck is a valuable agricultural commodity in the U.S. Pekin ducks are seasonal breeders; they are sensitive to light and thus, research on the neuroendocrine and behavioral responses are needed to overcome technological limitations. There is compelling evidence that specific wavelengths of light are required to improve the growth and welfare of meat (grow out) ducks. For example, blue light may not be ideal for grow out ducks due to considerably increased motor activity, significantly decreased body weight and increased serum corticosterone (cort) levels. Therefore, our objective is to determine the role of both deep brain photoreceptors (DBPs) and retina photoreceptors (RPs) during duck development. Two groups of ducks were raised with and without light over 21 days from egg laying, embryonic day zero. We then collected brain and retinal tissues of ducks at embryonic days 3, 7, 11, 16, and 21. To examine DBPs, we designed and created primers for 3 genes: OPN4, VAL-opsin, and OPN5. For RPs, we designed and created primers for genes responsible for both cones (RH2, SWS1, SWS2, LWS opsins) and rods (rhodopsin, MAFA, IRBP) in duck eye development. qRT-PCR was performed utilizing listed primers for DBP, RP rods, RP cones and reference gene, using 10 samples each for ducks raised in both light and dark conditions. The housekeeping genes GAPDH, RPS13, and SDHA were used to normalize all gRT-PCR data. RNA was then extracted from the tissue collected and qRT-PCR was performed. Understanding when these specific genes are upregulated across development will help the husbandry of duck by providing an ideal time for light usage during duck development. Future directions will determine which wavelength of light, at a specific time of development, is most suitable for grow out ducks.

Why is this important?

- In the Midwestern United States, leading companies contract Amish farmers to produce approximately 80% of U.S. ducks.
- Pekin ducks are seasonal breeders and as such, very sensitive to artificial and natural light. Technological limitations of the lack of electric lights on traditional, nonelectric Amish duck farms can lead to a 10-30% reduction in fertility of Pekin ducks during shorter day lengths.
- Determining the neuroendocrine and reproductive development responses to specific wavelengths of light will allow us to utilize this information to enhance lighting systems on Midwestern Amish farms that will work within their technological limitations.
- An increase in fertility and reproductive development in size of the ducks could result in more meat, therefore benefitting producers and consumers in the poultry industry.

Zoe A. Gum, Anna S. Vostrizansky, Greg Fraley, Phillip D. Rivera

Biology Department, Hope College

Hypothesis

Removing light during development of visual perception will decrease the amount of muscle produced in the adult Pekin duck.

What is qPCR?

Quantitative Polymerase Chain Reaction (qPCR) is a technique that can be used to amplify specific target regions of mRNA.

original DNA to be replicated nucleotid

What is a primer?

Primers are segments of either RNA or DNA nucleotides that can be used as templates required for replication. Primers act as targeting sequences, helping to determine which part of the RNA strand gets amplified.

Our Primer Design

CTCCTG -0.46 -40.61 -4.64

 STGAGTCTGTGGGTCGT
 1.01
 -35.63
 -5.38

 STGCCACTTGTTGTCC
 0.59
 -38.38
 -3.61

3' CAGGGGGAGAGGGAGTAGTA

	1						
on	Examples						
Bad	Good	Good					
Most - Δ G	≥-1		≥-1		≥-1		
Most -∆G	≥-41 / ≥-5		≥-41/≥-5		≥-41/≥-5		
Biggest %	≤12%						
Most -∆G	≥-41/≥	-8					
Biggest %	<12%						
AGACACTGGATG	5' CGGATGGGAGACACTGGATG						
	3' TAAAG	: GGGGTA	ACCAGTGGG				
ion	Figure 3: Hetero-dimerization						
Bad Primer							
.05 18.4 .02 12.0 .02 12.0							
.02 12.0 .02 12.0 .02 12.0	structure	Image	ΔG (Kcal.mole ⁻¹)				
.14 7.7 .62 11.3	1	Sec. J. ala	-2.04				
.38 14.8 .64 11.4	T	-37) G	-2.00				
28 23.2							

Delta G: -6.59 kcal/mole Base Pairs: 4

3' TATCTAGGACCTTAAAAGGG

|||| ::::

GGGAAAATTCCAGGATCTAT

r					
Developmental T					
	10%	20%	30%		
			Rods Identifie		
J.		Х	Х		
% = percer	nt of deve	lopment	from fe		
			Th		
light -			Er		
			/		

May

Vs.

Apri

RNA

Extraction

Dark

This project was supported by Agriculture and Food Research Initiative Competitive Grant no. 2018-67016-27616 from the USDA National Institute of Food and Agriculture.

me Course of Visual Perception							
40%	50%	60%	70%	80%	90%	100%	
Rhod- opsins	TULP gene expressed	Cone layers and rod somas			Cones and rods forming axons		
				Cones and rods forming axons			
	Rhod- opsins forming cells						
Rods form? X	Х	Cones form?	Х	Axons?	Axons? X		

ertilization (0%) to eye opening (100%); Ex: 80%= Embryonic Day 10

