Hope College Digital Commons @ Hope College

16th Annual Celebration of Undergraduate	Celebration of Undergraduate Research and
Research and Creative Performance (2017)	Creative Performance

4-21-2017

Synthesis of Ortho-Substituted Benzamides through Decarbonylative Cross-Coupling of Phthalimides

Grace Ahlgrim

Ethan Heyboer

Trey Pankratz

Follow this and additional works at: http://digitalcommons.hope.edu/curcp_16

Recommended Citation

Repository citation: Ahlgrim, Grace; Heyboer, Ethan; and Pankratz, Trey, "Synthesis of Ortho-Substituted Benzamides through Decarbonylative Cross-Coupling of Phthalimides" (2017). *16th Annual Celebration of Undergraduate Research and Creative Performance* (2017). Paper 66.

http://digitalcommons.hope.edu/curcp_16/66

April 21, 2017. Copyright © 2017 Hope College, Holland, Michigan.

This Poster is brought to you for free and open access by the Celebration of Undergraduate Research and Creative Performance at Digital Commons @ Hope College. It has been accepted for inclusion in 16th Annual Celebration of Undergraduate Research and Creative Performance (2017) by an authorized administrator of Digital Commons @ Hope College. For more information, please contact digitalcommons@hope.edu.

through column chromatography difficult.

Synthesis of Ortho-Substituted Benzamides through **Decarbonalitive Cross-Coupling of Phthalimides**

Grace C. Ahlgrim, Trey C. Pankratz, Ethan M. Heyboer, Kimberly S. DeGlopper, Mason D. Yoder, Megan Kwiatkowski, Jeffrey B. Johnson* Department of Chemistry, Hope College, Holland, MI 49423

For more information. contact: Jeffrey B. Johnson Hope College (616)395-7118 iohnson@hope.edu

Entry	Catalyst	Ligand	Base
1	Ni(COD) 2	A	K ₂ CO ₃
2	Ni(COD) 2	В	K ₂ CO ₃
3	Ni(COD) 2	С	K ₂ CO ₃
4	Ni(COD) 2	D	K ₂ CO ₃
5	Ni(COD) 2	E	K ₂ CO ₃
6	Ni(COD) 2	В	K ₂ CO ₃
7	Ni(COD) 2	С	K ₂ CO ₃
8	Ni(COD) 2	E	K ₂ CO ₃
9	Ni(COD) 2	В	K ₂ CO ₃
10	Ni(COD) 2	С	K ₂ CO ₃
11	Ni(COD) 2	E	K ₂ CO ₃

Future Work

Isolation of the ortho-substituted benzamides

Continue to explore the N-heterocyclic ligands to establish the Ni catalysis and optimize the reaction with base and solvent manipulations.

Explore alternatives to boronic acids and phthalimides

Acknowledgements

Johnson Lab Hope College Department of Chemistry NSF (CHE-1148719) NSF-REU Hope College Schaap Fellows Program

