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Chapter 5
The Prominence of Affect in Creativity: 
Expanding the Conception of Creativity 
in Mathematical Problem Solving

Eric L. Mann, Scott A. Chamberlin, and Amy K. Graefe

Abstract  Constructs such as fluency, flexibility, originality, and elaboration have 
been accepted as integral components of creativity. In this chapter, the authors dis-
cuss affect (Leder GC, Pehkonen E, Törner G (eds), Beliefs: a hidden variable in 
mathematics education? Kluwer Academic Publishers, Dordrecht, 2002; McLeod 
DB, J Res Math Educ 25:637–647, 1994; McLeod DB, Adams VM, Affect and 
mathematical problem solving: a new perspective. Springer, New York, 1989) as it 
relates to the production of creative outcomes in mathematical problem solving 
episodes. The saliency of affect in creativity cannot be underestimated, as problem 
solvers require an appropriate state of mind in order to be maximally productive in 
creative endeavors. Attention is invested in commonly accepted sub-constructs of 
affect such as anxiety, aspiration(s), attitude, interest, and locus of control, self-
efficacy, self-esteem, and value (Anderson LW, Bourke SF, Assessing affective 
characteristics in the schools. Lawrence Erlbaum Associates, Mahwah, 2000). A 
new sub-construct of creativity that is germane and instrumental to the production 
of creative outcomes is called iconoclasm and it is discussed in the context of math-
ematical problem solving episodes.

Keywords  Affect • Creativity • Iconoclasm • Mathematics • Mathematical problem 
solving
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5.1  �Introduction

Mathematics is a human endeavor. Yet, it is often portrayed in the K-12 classroom 
as a tool to communicate information or help answer questions encountered in daily 
life, overshadowing the creativity that spawned the rules and algorithms children 
work so diligently to master. Studies of the creative works of eminent mathemati-
cians often mention curiosity and a willingness to embrace challenge as necessary 
attributes of creativity. Movshovitz-Hadar and Kleiner (2009) stress the importance 
of courage as well - both the social courage needed to take a risk and the intellectual 
courage to follow a path not knowing if the end result will bring success or failure. 
Several examples offered by Movshovitz-Hadar and Kleiner include the work of 
Janos Bolyai and Nicolai Loabachevsky. Both had the intellectual courage to ask, 
“What if parallel lines do meet?” and the social courage to share their work with the 
world. Both were discouraged from pursing this line of study. Bolyai was discour-
aged by both his father and Gauss who claimed to have made the same discovery 
earlier but did not seek to publish for fear of controversy. Loabachevsky was named 
the “madman of Kazan” when his manuscript was rejected by the St. Petersburg 
Academy of Sciences. Yet their courage to persist provided the geometric basis for 
the understanding of physical time and space (Cannon et al. 1997). For a more in-
depth discussion of courage and mathematical creativity and several more examples 
of mathematical creations initially viewed as heretical see Movshovitz-Hadar and 
Kleiner.

A seminal work in mathematical creativity is Hadamard’s (1945) essay, The 
Psychology of Intervention in the Mathematical Field, in which he summarizes and 
extends the work of others seeking to understand the process of mathematical 
thought. In that work, Hadamard discusses various types of mathematical minds and 
the products that they may create. He classified these mathematical minds as either 
logical (those that follow predetermined conventions, routines, or procedures) or 
intuitive (those that are often guided by common sense). One of the challenges for 
intuitive problem solvers, according to Hadamard, is that they need to have the cour-
age to share their answers with peers and the mathematical community. As an exam-
ple, Hadamard describes a situation in which a student, “guided by common sense, 
knew the right answer to my question, but did not feel he was allowed to give it and 
did not realize that …[it] could be easily translated into a rigorous and correct 
proof” (p. 105–106). He also shares a note found in Riemann’s papers that read, 
“These properties of ς(s)…are deduced from an expression of it which, however, 
[sic] I did not succeed in simplifying enough to publish it” (p. 118). In the first 
example the student’s lack of courage resulted in a lost opportunity to develop his 
mathematical talent and understanding. In the second example, Riemann’s courage 
in sharing his work, even though he had not arrived at a publishable-ready expres-
sion, brought new insight to the study of prime numbers. For more on the search for 
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a proof for the properties of the Riemann Zeta function, see the Clay Mathematics 
Institute’s Millennium Problems.1

The difference between Hadamard’s student and Riemann or Bolyai and Gauss 
was the courage to take a risk, to ask a question, to act on intuition, and to share 
ideas. Without that courage, potentially creative mathematical ideas remain 
unknown and unexplored; students are left to follow systematic solution paths with-
out exploring the synthesis of thought that is necessary to develop mathematical 
understanding (Hadamard 1945). Hadamard refers to intuitive problem solvers 
working with almost reckless abandon in seeking solutions, and he borrows 
Poincaré’s terminology when he refers to them as “bold cavalrymen of the advance 
guard seeking conquests” (p. 106).

Conquests are rarely achieved by simply doing what has always been done. 
Rather, mathematical conquests are gained by some level of risk taking (reckless 
abandon) and the courage to pursue a line of thought or an approach that often chal-
lenges iconic (conventional or traditional) practices and beliefs, hence an iconoclas-
tic view of mathematical creativity. In this chapter the authors propose iconoclasm 
as a necessary fifth component in developing an understanding of mathematical 
creativity.

5.2  �Creativity and Mathematics

Analysis of the literature affirms the fact that creativity is multifaceted in the field 
of mathematics education (Mann 2006, 2009; Sriraman 2006). Nevertheless, four 
components that recur in nearly all creativity literature are fluency, flexibility, origi-
nality, and elaboration. In this section, these four components are discussed.

Fluency, or the number of relevant responses that can be created by any one indi-
vidual, is an indicator of creativity. Often compared to brainstorming, fluent think-
ers are able to generate many ideas, possibilities, and potential approaches to finding 
solutions to a problem. Generation of ideas is the focus here, though once com-
pleted, creativity assessment evaluations do consider the relevancy of the responses. 
For example, in scoring a stimulus response on the Torrance® Tests of Creative 
Thinking figural forms (Torrance et al. 2008), the evaluator is instructed to score 
responses based on the relevancy and meaningfulness of the response.

Flexibility in thinking (Krutetski 1976; Torrance 1966) is considered one’s abil-
ity to think about a problem solving task from more than one perspective and/or to 
reverse mental processes. It is not uncommon for problem solvers working on a task 
to be constrained by a preconceived solution path. This is especially true when the 
predominant “view of school mathematics is one of rules and procedures, memori-
zation and practice, and exactness in procedures and answers” (Linquist 1997, p. xiv). 

1 http://www.claymath.org/millenium-problems/riemann-hypothesis
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This is a limited view of mathematics in which mathematical creativity does not 
have the freedom to develop.

Ervynck (1991) outlined the development of mathematical creativity as a series 
of stages with algorithmic activity as precursors to creative activities. When produc-
ing creative solutions, it is necessary to be able to draw on the foundational knowl-
edge of the technical and computational aspects of mathematics. However, when the 
emphasis does not transition to the next stage of development, the student is stuck 
in the view of mathematics as a world of right and wrong answers (Ginsburg 1996). 
When this happens, flexibility is generally precluded and individuals are locked into 
searching for the “right” solution path rather than looking for multiple paths to a 
solution. With sufficient mathematical knowledge and experience, flexible thinkers 
can evaluate the results for appropriateness and elegance. Developing adaptive 
expertise (National Research Council 2000) is important for successful learning: 
“Adaptive experts are able to approach new situations flexibly … they don’t simply 
attempt to do the same things more efficiently; they attempt to do things better” 
(p. 48). Developing the ability to be flexible in one’s approach to problem solving is 
essential for creative development. As an example, if a mathematical problem was 
provided in which most problem solvers used number sense to solve the problem, a 
flexible thinker may revise an initial solution to find a more efficient approach or 
look for connections to other mathematical domains such as statistics and probabil-
ity or algebra. A highly flexible individual may chart new waters simply by having 
the courage asking ‘what if’ in looking for a better approach. Questioning the valid-
ity of Euclid’s fifth postulate, the parallel postulate, was a significant ‘what if’ that 
challenged centuries of mathematical study and created new discoveries in mathe-
matics with many applications in a universe much bigger than the ancient Greeks 
ever imagined. Flexible thinkers lend themselves to highly creative solutions due to 
their ability to think ‘in addition’ to the manner in which others might typically 
think.

Often the concepts of flexibility and fluency are confused. While fluency is con-
sidered the number of responses generated, flexibility is focused on the variety of 
approaches that an individual is able to use in solving a problem. From a research/
assessment perspective, blurred lines between constructs can be problematic; in 
practice, the two constructs go hand-in-hand. As an example, the National Council 
of Teachers of Mathematics (2014) position statement on procedural fluency invokes 
a focused perspective on flexibility, calling it,

…the ability to apply procedures accurately, efficiently and flexibly, to transfer procedures 
to different problems and contexts; to build or modify procedures from other procedures … 
building on familiar procedures as they create their own informal strategies and 
procedures.

Originality, the ability to create novel responses, was initially considered the 
only measure of creativity (Chassell 1916) and is likely the most regularly used 
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synonym by those not familiar with creativity research. It may be common for 
teachers to only see highly creative products in mathematics classrooms as ones that 
are original or novel. The ability to create novel products (e.g., physical models, 
mathematical models, or on-paper prototypes) serves as one piece of evidence that 
creative potential exists. Along with the aforementioned manifestations of 
originality, it is important to note that mathematical processes, procedures, and 
algorithms also can be highly original. A view of originality as something new to the 
world on par with the works of Euler, Gauss, Cantor, and da Vinci, among many 
others, is a narrow view of the construct. Attaining this level of creative recognition, 
legendary Big-C status, (Csikszentmihalyi 1999) is a complex task often not 
achieved in a creator’s lifetime. Kaufman and Beghetto (2009) offered a broader 
view in their Four C Model of Creativity that presents different dimensions of cre-
ativity and originality. In this model, the developmental progression of creativity is 
recognized as inherent in the learning process:

•	 Mini-c: Novel and personally meaningful interpretation of experiences, actions, 
and events.

•	 Little-c: Everyday expressions of novel and task appropriate behaviors, ideas, or 
products

•	 Pro-c: Expert expressions of novel and meaningful behaviors, ideas, or 
products

•	 Big-C: Legendary novel and meaningful accomplishments, which often redirect 
an entire field of study or domain

Assessments attempting to identify creative potential in individuals are focused 
on the mini-c and little-c levels of creativity. Society, however, generally assesses 
Pro-c and Big-C. As a short side conversation, some debate exists about whether a 
problem’s solution needs to be useful and utilitarian to be considered creative. On 
one hand, Amabile (1996) asserts that a solution needs to be appropriate to the task, 
and Torrance (1966, 2008) asserts that solutions need to be interpretable, meaning-
ful, and have relevant ideas. Sriraman (2006), however, argues that problem solving 
solutions can be highly theoretical and not have any immediate or direct applica-
tions. It may be the case that the application of a highly theoretical solution will 
realize its significance long after created (e.g., many decades), thus substantiating 
Sriraman’s point.

For several years, creativity in mathematics was comprised of only fluency, flex-
ibility, and originality (Haylock 1997; Kim et al. 2003; Tuli 1980). More recently, 
the notion of elaboration (Imai 2000) was connected to creativity in mathematics. 
Elaboration pertains to the ability of an individual to provide depth beyond what 
most problem solvers can provide in an explanation. Individuals with a high degree 
of elaborative skill may identify and be capable of expounding on intricacies of a 
solution that many peers may not recognize.

5  A new model of creativity in MPS



5.3  �Affect and Creativity

Positive affect (feelings, emotions, dispositions and beliefs) have been associated 
with the creative process (Eubanks et al. 2010; Leu and Chiu 2015). Much of the 
research in this area is focused on developing a work place environment to encour-
age creativity (Amabile et al. 2005; Bledow et al. 2013) and in the field of social 
psychology (Baas et al. 2008; Jauk et al. 2014; Nijstade et al. 2010). A common 
premise in these studies is that affective states play a significant role in stimulating 
creative thinking and is a factor that can be influenced.

Amabile et al. (2005) studied the relationship between an individual’s affective 
state and their daily creative activities in the work place. Their findings suggest that 
affect plays a more prominent role in organizational theories of creativity than pre-
viously thought and that these findings might extend beyond the study of creativity 
in the work place to a broader concept of the nature of creativity.

In their Dual Pathway to Creativity Model, Nijstad et al. (2010) theorized that 
creativity could be achieved via a flexibility pathway or a persistence pathway. The 
flexibility pathway acknowledges prior work in assessing flexibility, fluency, and 
originality with respect to creativity. This pathway is associated with breaking away 
from habitual thinking and the ability to switch flexibly between multiple approaches 
to a task. The persistence pathway acknowledges that creative ideas may also 
emerge as a result of hard work and systematic, in-depth explorations of a few per-
spectives. While one might infer that these two pathways are somewhat diametri-
cally opposed, Nijstad, De Dreu, Reitzschel and Baas suggest that the creative 
individual may switch between pathways over the course of solving a problem. 
Applications of this model in seeking to improve creativity in the work place are 
readily apparent as are connections to several of the Mathematical Practices in the 
Common-Core State Standards  – Mathematics (National Governors Association 
Center for Best Practices and Council of Chief State School Officers 2010).

While most of the work in this area is recent, Fiest’s 1998 meta-analysis of  
personality and creativity concluded, “that in general, a “creative personality” does 
exist and personality dispositions do regularly and predictably relate to creative 
achievement” (as cited in Runco 2014, p.  267). Seminal work done by Donald 
MacKinnon at the Institute for Personality Assessment and Research (IPAR) still 
holds true today (Runco 2014). MacKinnon identified lability as a measure of  
creativity. His colleague, Harrison Gough noted that, “though there is a facet of high 
ego strength in this scale [lability], an adventurous delighting in the new and differ-
ent and a sensitivity to all that is unusual and challenging, the main emphasis seems 
to be on an inner restlessness and inability to tolerate consistency and routine”  
(as citied in Runco 2014, p. 269).

The inability to tolerate consistency and routine is mirrored in Goldin’s (2009) 
issues of integrity and intimacy. When mathematics is taught as mainly a series of 
rules and procedures, serious issues of integrity may arise for the child. She writes, 
“at some level, I would conjecture, the child knows that something is missing…
children who have greater mathematical ability and potential for developing 
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inventiveness are likely to have the more serious integrity issues around conceptual 
understanding” (p.  190). Eventually these integrity issues result in one of three 
outcomes for the child: (1) take a risk and pose a question, (2) accept the lack of 
meaning, or (3) assume that I am not good with math. Mathematical problem solving 
is an intimate task, one in which the individual invests a significant amount of atten-
tion and energy in seeking a solution. It takes social courage to present a new 
approach or idea publicly, especially when it may challenge the accepted truth as 
conveyed by the teacher or textbook.

Goldin’s (2009) concluding thoughts connect to MacKinnon’s construct of  
lability (see Runco 2014), to Nijstad et al. (2010) Dual Pathway to Creativity Model, 
and to Movshovitz-Hadar and Kleiner (2009) discussion of courage. She writes:

Thoughtful attention [to] the affective domain can result, over many years, in a kind of 
strength of purpose in the pursuit of mathematical understanding. Then the growing child 
builds affective structures that literally last a lifetime, enabling continuing curiosity and 
mathematical persistence and perseverance, representing essential information, evoking 
powerful problem-solving heuristics and learning strategies, stimulating inventiveness and 
following out the resulting ideas, and promising the continuing thrill and long-term satis-
faction associated with the achievement of new mathematical insights (p. 193).

5.4  �Mathematical Problem Solving

In his work, Mathematics as a Creative Art, Halmos (1983) wrote:

Mathematics – this may surprise you or shock you some – is never deductive in its creation. 
The mathematician at work makes vague guesses, visualizes broad generalizations, and 
jumps to unwarranted conclusions. He arranges and rearranges his ideas, and he becomes 
convinced of their truth long before he can write down a logical proof. The conviction is not 
likely to come early – it usually comes after many attempts, many failures, many discour-
agements, and many false starts (p 256–257).

Mathematical problem solving (MPS) differs from the mathematical exercises 
on which K-16 students spend time working to develop mathematical technical 
skills, exercises often comprised of repetitive tasks in which students are asked to 
find answers to a series of short, similar exercises. MPS tasks used to develop cre-
ativity are not dissimilar from the work of mathematicians as described by Halmos. 
Indeed they “are ones for which students have no memorized rules, nor for which 
they perceive there is one right solution method. Rather, the tasks are viewed as 
opportunities to explore mathematics and come up with reasonable methods for 
solution” (Hiebert et al. 2000, p. 8).

As with the construct of mathematical creativity, MPS continues to be studied 
and the basic concept expanded. MPS simultaneously enjoys and suffers from mul-
tiple operational definitions. Chamberlin (2008) in a survey of 20 mathematics edu-
cation experts from North America, Europe, and Israel, refined the conception of 
MPS in a Delphi Study, ultimately defining it as comprised of both processes and 
characteristics. The most commonly agreed upon processes were: (1) engaging in 
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cognition, (2) seeking a solution, (3) communicating ideas, (4) engaging in iterative 
cycles, (5) defining mathematical goals, and (6) mathematizing situations to solve 
problems. Regarding characteristics, the best problem solving tasks can: (1) be 
solved with more than one tool and more than one approach, (2) be used to assess 
level of understanding, and (3) require the implementation of multiple algorithms 
for a successful solution.

5.5  �Iconoclasm

“Dare to be a radical, but don’t be a damn fool,” (Baron as cited in Runco 2014, 
p. 275). In his writing about the relationships between creativity, personality and 
motivation, Runco shares with his reader descriptors of the creative individual from 
a variety of scholars such as independent, non-conformist, rebellious, unconven-
tional, norm-doubting, and contrarian. Also in 2014, the authors2 proposed adding 
iconoclasm to flexibility, fluency, originality, and elaboration as components to 
measure creative potential. Iconoclasm differs from the four previous components 
in that they are manners through which creative products are manifested during 
mathematical problem solving episodes, while iconoclasm is an affective state that 
must be met for creativity to emerge.

Iconoclasm pertains to affect (feelings, emotions, dispositions, and beliefs) more 
than it does to cognition, though the two are intricately intertwined. In essence, if 
one perceives either restrictive policies within an educational environment (such as 
strict adherence to textbook solution methods) or the classroom teacher (with all the 
“right” answers) as the ultimate authority, then the individual’s creative abilities will 
likely be curtailed. As iconoclasm pertains to the world of psychology of mathemat-
ics, MPS, and creativity, it may be considered unthinkable to challenge conventions 
in MPS as perhaps less than efficient. As an example, a teacher of young elementary 
students may be stuck with a partial products method to multiply several digit 
numerals because the textbook expects students to learn multiplication in that man-
ner. However, a promising young  mathematician may find a more efficient and 
insightful manner to conduct multiplication and share it with the class. When this is 
done, the act of iconoclasm has occurred.

Another way in which iconoclasm varies from the previous four subcomponents 
of creativity is that it precedes creative product output rather than being manifested 
in the products. That is to say that without iconoclasm, the remaining four sub con-
structs would never be considered germane to the study of mathematical creativ-
ity because, although there would continue to be mathematical products, few would 
be creative.

Mathematical problem solvers that have substantial levels of iconoclasm are 
theoretically more likely to recognize novel solutions, possibly because they may 
not experience (or have learned to embrace) high levels of anxiety, common to 

2 Chamberlin and Mann 2014.
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many others, when solving a problem. Additionally, such problem solvers may 
choose not to employ commonly accepted algorithms simply to deviate from peer 
problem solvers, and they may do it with relatively low anxiety (a higher level of 
intellectual courage). Moreover, they may be inclined to share their solution(s) with 
peers with very little fear of how they will be perceived (high level of social 
courage).

Iconoclasm has its roots in religion and technically translates to the breaking of 
icons. The interpretation of iconoclasm from centuries ago pertains to tearing down 
or attacking cherished idols, a rebellious act viewed as dissension or heresy. More 
recently, the term iconoclast has surfaced and pertains to the person that precipitates 
or originates an act of iconoclasm. The two applications of iconoclasm, in religion 
and in the mathematical problem solving sense, converge in that in each instance, 
the commonality is courage to deviate from what is expected, while the default is to 
accept commonly held beliefs, such as algorithms, without question. In the religious 
context, courage is required to challenge cherished idols and is often undertaken at 
great risk to personal safety. Though situations in mathematical settings (e.g., a 
mathematics classroom) may not be life threatening, a problem solver also needs 
courage to deviate from the norm in order to identify potentially creative solutions 
and then to share such solutions with peers and teachers. The term potentially is 
important here – not all creative attempts at solving a problem will be successful – 
but having the courage to share an approach offers opportunities for collaboration 
and discourse that may eventually result in a successful solution (Halmos’s vague 
guesses, broad generalizations, unwarranted conclusions).

For example, if two students are solving the same problem and the student with 
the higher degree of iconoclasm is confident in sharing a highly creative problem 
solving solution (e.g., one that is particularly original/novel with respect to the 
“taught” methods or other approaches in the classroom), then the teacher's willing-
ness to listen to the solution and provide constructive feedback rewards the attempt 
and encourages further exploration. On the contrary, the student with a low degree 
of iconoclasm may be fearful that the teacher will not be receptive to an alternate 
solution, so the student may have little impetus to follow through or invest the 
energy in producing and/or sharing a highly creative response. If unsuccessful, it is 
not unreasonable to assume this student labels either the problem as too hard or his 
abilities as inadequate – both of which are unfortunate and avoidable outcomes. 
While the second student may benefit from observing the teacher’s interactions with 
the first student, encouraging a more iconoclastic approach to future mathematical 
problem solving activities, it is all too common to see students disengage with an 
“I’m just not good at math” attitude when struggling with a problem. The teacher is 
thus challenged to use all the pedagogical skills at his or her disposal to encourage 
students to “solve problems in novel ways and post new mathematical questions of 
interest to investigate” (Johnsen and Sheffield 2012, p. 16).

In short, the teacher or learning facilitator needs to create a favorable environ-
ment (Amabile et al. 2005; Bledow et al. 2013; Goldin 2009; Hiebert et al. 2000; 
Merkel et al. 1996) for individuals to manufacture creative products. In this climate, 
all students benefit. However, in situations in which the teacher does not create a 
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climate conducive to the emergence of creative products, it is likely that only  
students with a high degree of iconoclasm will be inclined to develop creative prod-
ucts, despite the fact that students with low levels of iconoclasm may have similar 
levels of creative potential. This is because individuals that are not fearful of higher 
authorities or peers likely have lower levels of anxiety, higher self-efficacy and self-
esteem, and a better attitude about mathematical problem solving.

Fluency, flexibility, originality, and elaboration are manners in which creative 
products are measured and have been investigated to a large degree. Individuals that 
study creativity in mathematics value creative output by asking whether such prod-
ucts were highly novel (original), added to the number of solutions (fluency), exhib-
ited high degrees of flexibility in thinking, or added to the depth of explanations 
(elaboration). Runco and Albert’s (1986) Threshold Theory of Creativity found a 
relationship between creativity and intelligence up to a point (~120 IQ). Feldhusen 
and Westby (2003) determined that an individual’s knowledge base is the funda-
mental source of his or her creative thought. Bern (2008), writes about his efforts to 
understand the neurological base of creativity in his non-technical book, Iconoclast: 
A Neuroscientist Reveals How To Think Differently. Bern’s book reviews the lives of 
several well-known iconoclasts and introduces the reader to the field of neuroeco-
nomics, a multi-disciplinary discipline less than two decades old, that seeks to 
understand human choice and decision making (for a brief history of neuroeconom-
ics see Glimcher et al. 2009). While Bern does mention creativity briefly, there is no 
connection made to creativity research literature. That said Sternberg (2009) finds 
merit in Bern’s work, especially the recognition of iconoclasticty as a quality that 
can be developed, a necessary condition to the study of means to develop creativity 
by encouraging iconoclasm. Combined, these various approaches to understanding 
the nature of creativity suggest that a combination of some degree of intelligence, 
knowledge, and iconoclasm are necessary for creative products to emerge from 
problem solvers. While there is a body of research to support the first two conclu-
sions, research is needed to develop the means to assess an individual’s level of 
iconoclasm in mathematical problem solving situations and to explore the relation-
ships with other contributing factors.

5.5.1  �Examples of Iconoclasm in Mathematics

It appears as though iconoclasm has always been a trait of creative mathematics 
because each novel revolutionary mathematical idea is met with skepticism, and it 
often requires significant time for the field to accept the new paradigm (Movshovitz-
Hadar and and Kleiner 2009). Negative numbers, for example, were initially thought 
to be a pointless idea and therefore not relevant to mathematics. The Chinese were 
originally credited with conceiving the idea of negative numbers, though the Greeks 
(Diophantus, specifically) used them with some degree of regularity to explore con-
cepts in what is now known as algebra some 500 years later (Rogers 2014). In 620 
CE, the Indians saw use for them in the context of fortunes and debts. Despite Greek 
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use of negative numbers, Europeans were not wholly accepting of them until around 
1400 AD (Rogers). As recent as the 1800s, only 200 years ago, some such as Carnot 
(in 1803) and Busset (in 1843) did not accept negative numbers as a workable con-
cept in mathematics (Boyé no date). In fact, Busset saw negative numbers as the 
reason that mathematics was difficult to teach. Busset went so far as to mention that 
mental aberrations, such as the concept of negative numbers, might prevent gifted 
minds from studying mathematics (Boyé). It is thus readily apparent that a signifi-
cant portion of mathematics, commonly accepted by today’s mathematicians and 
introduced to students in grade 6 (Common Core Standards Writing Team 2012), 
was, at one time, a subject of much debate.

A characteristic that mathematically creative individuals may possess is icono-
clasm. This is because they may feel more comfortable or less anxious posing solu-
tion paths to problem solving tasks that are not commonly accepted solutions than 
peers without similar levels of courage. Few have discussed the reason for the emer-
gence of creative output. In other words, why does a mathematical problem solver 
pursue highly creative solutions? This is the point at which iconoclasm, as a neces-
sary aspect of creativity, begins to take meaning. Within  the construct of icono-
clasm, individuals seek creative and innovative solutions to mathematical problems 
because they feel that the currently agreed upon solutions are not adequate or they 
are convinced that their solution can add to the body of knowledge in a particular 
mathematical content area. In some cases, iconoclastic problem solvers (i.e., those 
with high degrees of iconoclasm) may seek innovative solutions because they want 
to stand out among colleagues. Few educational psychologists have contemplated 
the reason why creative products emerge from individuals. In considering one’s 
motive to create a new solution, the psychological constructs of affect in MPS 
(McLeod and Adams 1989), such as feelings, emotions, and dispositions, are con-
sidered relative to why individuals are creative. With the commonly used con-
structs  of creativity (e.g., fluency, flexibility, originality, and elaboration), the 
discussion of why creativity emerges is rarely considered. With motivation being 
the sum-total of affect (Anderson and Bourke 2000), the theory of iconoclasm sud-
denly warrants serious consideration as a component of creativity because it explains 
why problem solvers create solutions to tasks. More specifically, problem solvers 
with high degrees of iconoclasm may be motivated to be different and/or more effi-
cient, explicit, or novel than peers.

Giftedness, like mathematical problem solving, has many conceptions. A com-
monly accepted conception of giftedness is Renzulli’s Three-Ring Conception of 
Giftedness (1978) in which he defined it as being comprised of above average 
ability, task commitment, and creativity. Regarding task commitment, Renzulli 
(1998) uses the terms perseverance, determination, dedication, high levels of 
interest, enthusiasm, and fascination, all of which are components of motivation. 
Subsequently, Renzulli added co-cognitive traits through his Operation Houndstooth 
(Renzulli 2002) research. Each of the six areas outlined by Renzulli in Operation 
Houndstooth (i.e., optimism, courage, romance with a discipline, sensitivity to 
human concerns, vision, and physical/mental energy) has a strong connection to the 
affective domain and adds fuel to the discussion of why problem solvers seek solutions. 

5  A new model of creativity in MPS



Baer and Kaufman’s Amusement Park Theory of Creativity (2005) seconds this 
notion with initial requirements for the emergence of creativity, or as they call it, the 
‘ticket into the park,’ which includes intelligence, motivation, and the environment.

5.5.2  �Relationship of Iconoclasm to Fluency, Flexibility, 
Originality, and Elaboration

Given an established relationship between iconoclasm and motivation, one may 
wonder about the interrelationship between iconoclasm and the remaining four 
components of creativity (i.e., fluency, flexibility, originality, and elaboration). The 
theory of iconoclasm as a fifth construct of creativity in mathematics helps research-
ers understand the connection of the remaining four. This is because it explains the 
motive for creativity as Forgeard and Mecklenberg (2013) attempted. Critical to 
their work was the component of intrinsic motivation in relation to the generation of 
creative products. Further, they utilized the concept of pro-social motivation (Grant 
and and Berg 2010), which Forgeard and Mecklenberg distinguish as “one’s desire 
to contribute to other peoples’ lives” (pp. 255, 257). When iconoclasm is viewed 
relative to motivational factors, for example pro-social motivation, its relationship 
to the four subcomponents of creativity is revealed; the iconoclast has an intrinsic 
need to find a better solution. Prior to realizing that iconoclasm may have this degree 
of interaction with the model of creativity, the four accepted sub-constructs were 
largely disparate facets (with the exception of flexibility and fluency in thinking).

While examples abound of iterative improvements in things that were once 
“good enough” in the our daily life (e.g. each new generation of cell phones is more 
efficient, multidimensional, smaller, and faster), often in a classroom setting finding 
the anticipated answer by a prescribed path is highly valued. The motive for indi-
viduals seeking more than one solution, or fluency, to a problem may be to identify 
the most efficient solution, thus placing themselves in a position to capitalize on the 
most sophisticated and quickest method in future situations. In many cases, the 
impetus for fluency, or a greater number of options in solution paths, pertains to 
problem solvers wanting more options than they currently have. To accomplish this 
objective, problem solvers may need to be iconoclastic and challenge the system 
(e.g., teacher or textbook) in order to identify a greater number of solution paths. In 
many cultures, be it a country, classroom, or work environment, it may be unaccept-
able to challenge a system that is already producing adequate results. Iconoclastic 
problem solvers, however, may feel that “good enough” just is not good enough and 
thus seek a more efficient solution path than what their environment accepts. 
Fluency and flexibility are intricately intertwined in the respect that individuals may 
seek novel perspectives because they feel the process may prove fruitful in a par-
ticularly original solution path. The solution path may have positive social out-
comes thus reinforcing the decision to challenge the system.
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The use of multiple representations may help develop an increased number of 
solution paths. As an example, van Dyke and Craine (1997) suggest that algebra has 
at least four representations (i.e., verbal statement or text, equation, table of values, 
and graph) that can be utilized to solve a problem. Elaboration during problem solv-
ing may provide opportunities to create new solutions because, in explaining solu-
tions, flaws may be uncovered. Ideally, through this process, novel solution paths 
are precipitated. After all, if the previous solutions were acceptable and worked 
well, the impetus to explore additional representations may only emerge if there are 
reasons to examine the processes used in depth.

In identifying such inadequacies in commonly accepted solutions or algorithms, 
creative problem solvers are intrinsically driven, or have a motivation, (Forgeard 
and and Mecklenburg 2013) to identify a more creative, sophisticated, or innovative 
solution because the need exists, if only from a pro-social perspective. They may 
also develop the solution out of pure enjoyment or aesthetic appreciation of math-
ematics as Krutetskii (1976) suggests. Csikszetentmihalyi (2014) writes, “the cre-
ative person cannot be entirely invested in the commonly accepted conceptual 
configurations of his or her domain…a creative person should be dissatisfied with 
the state of knowledge and be motivated to search for alternatives” (p. 164). This 
dissatisfaction may manifest itself in a young child inventing her own multiplication 
and division algorithms (Ambrose and et al. 2003) or in a seasoned mathematician 
questioning a long accepted “truth” in mathematics and disputing it.3 Alternatively, 
highly creative individuals in mathematics may opt not to seek alternate solutions in 
MPS situations if they perceive the problem as uninteresting, lacking challenge, and 
thus unworthy of devoting additional creative and cognitive resources or if they are 
sufficiently pleased with the solution provided. In this respect, the iconoclastic 
nature of a creative problem solver must be awakened to realize a need for a better 
solution.

5.6  �Areas for Future Research

One of the aspects of educational psychology that makes it a well-respected disci-
pline is the reluctance of the field to accept newly proposed theories without empiri-
cal evidence to substantiate them. Consequently, researchers interested in iconoclasm 
in mathematical problem solving have several options. Foremost among them is the 
development of an instrument to investigate whether iconoclasm, in the form of 
challenging commonly accepted algorithms, is something that mathematics prob-
lem solvers will embrace when faced with a relatively inefficient solution. The work 
of Leu and Chiu (2015) and Tjoe (2015) are moving the field in this direction. 
Chamberlin (2010) has developed the Chamberlin Affective Instrument for 

3 Euler’s sum of power conjecture stood for almost 200 years before a short paper (two sentences) 
was published in the Bulletin of the American Mathematical Society disproved the theory (Lander 
and and Parkin 1966).
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Mathematical Problem Solving (Chamberlin and Powers 2013), and the authors are 
now working to construct and validate an integrated assessment tool. Paper and 
pencil assessments often lack the “intimacy” needed to understand the thought pro-
cess and affective engagement involved in creative problem solving activities. 
Krutetskii’s (1976) approach of having mathematical problem solvers create solu-
tions, look at their solutions for evidence of creativity, and then interview such indi-
viduals in an attempt to understand their thought process is difficult to use with 
large sample sizes, yet offers the opportunity to explore deeply the level of icono-
clasm in individual responses. In the end, the construct of iconoclasm needs to be 
empirically tested, and while several prospective approaches appear to exist for 
such an investigation, multiple studies are needed.

Note  An earlier version of this chapter was presented as a concept paper at the 8th International 
Conference on Creativity in Mathematics and Education of Gifted Students, Denver, Colorado. 
2014.
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