Hope College
Digital Commons @ Hope College

The Validity of VO2max Testing Modalities in Running, Cycling and Swimming Populations

Dana Almarez
Michael Fries

Kaylee Kiogima

Follow this and additional works at: http://digitalcommons.hope.edu/curcp_13

Recommended Citation

Repository citation: Almarez, Dana; Fries, Michael; and Kiogima, Kaylee, "The Validity of VO2max Testing Modalities in Running, Cycling and Swimming Populations" (2014). 13th Annual Celebration for Undergraduate Research and Creative Performance (2014). Paper 114.
http://digitalcommons.hope.edu/curcp_13/114
April 11, 2014. Copyright © 2014 Hope College, Holland, Michigan.

The Validity of VO_{2} max Testing Modalities in Running, Cycling and Swimming Populations

Dana Almaraz, Michael Fries, Kaylee Kiogima, Department of Kinesiology
Faculty Mentor: Professor Kyle Morrison

Abstract

While it is generally accepted that the treadmill and cycle ergometer are equally valid modalities of testing maximal oxygen uptake ($\mathrm{VO}_{2} \mathrm{max}$) in athletes, the reasoning behind this assumption is largely unknown. Numerous studies have to the demands of their sport and training habits. As a result of these variances, the question has been raised as to how valid testing results are for different modalities in various athletic populations. Therefore, the purpose of the research project will be to determine the validity of two VO_{2} max testing modalities (treadmill and cycle ergometer) in swimming, running, and cycling populations. The main question this project aims to answer is which modality will provide a better measure of $\mathrm{VO}_{2} \max$ for swimmers based on the differences between a whole body workout (treadmill) and a region specific workout (cycling). Fifteen healthy, untrained, college aged participants with experience in running, cycling or swimming took part in the study. Participants were randomized and completed two VO_{2} max tests (treadmill and cycle ergometer) on separate occasions. Results from individual participants testing will be analyzed to determine differences between modalities. Participants will be grouped by history of running, cycling or swimming and then results wil be analyzed to determine significant differences between groups. Results from testing are forthcoming

Introduction

While cycle ergometer and treadmill testing are widely utilized and are generally accepted as valid means of measuring VO_{2} max it remains unknown which cyclists, and swimmers. VO_{2} max is the ability of the working tissues in the body cyclists, and swimmers. VO_{2} max is the ability of the working tissues in the bod
to utilize oxygen during maximal exercise for energy production. While it is reasonable to infer that runners will be more proficient on the treadmill and cyclists on the cycle ergometer, it is unclear which modality is better suited for athletes such as swimmers when the option of swim testing is unavailable; as is often the case.

Previous studies, such as that of Sousa et al. (5) and Roels et al (6), have used specialized equipment for testing swimmers that is not widely available and therefore has limited application.
Other studies have also shown that estimating VO_{2} max using generalized prediction equations can be largely inaccurate (1,2).
The studies of Schembre et al (3) and Spackman et al (4) have displayed that large differences in recording VO_{2} max can also be caused by differences in procedures and protocols.

As a result of these studies we hypothesize that swimmers will produce more accurate measurements of VO_{2} max on the treadmill due to the whole-body nature of swimming compared to cycling and running.

Purpose

The purpose of this study is to determine which modality of exercise, running or cycling, would be the best predictor of $\mathbf{V O}_{2}$ max for running, cycling, and swimming populations.

Methods

Subject Selection

15 male participants ($18-22$ yrs.) were recruited from Hope College Health Dynamics classes through email or in person. Participants were placed into either runner, biker, or swimmer groups based on the results of a questionnaire that examined previous athletic experience and preferred modality of exercise.

Experimental Tests:
Cycle Ergometer VO_{2} max test
Treadmill VO_{2} max test
Experimental Design
The participants reported to the lab on a total of three occasions. The first time was for a familiarization trial which allowed them to become familiar with the testing equipment and maximal test procedures. Participants returned on two separate occasions to perform maximal testing. Each participant performed one test on the cycle ergometer and one on the treadmill. The order of the testing was randomized for each participant. Participants were instructed to refrain from strenuous exercise 24 hours prior to testing and eat a light carbohydrate meal at least 3 hours prior to testing. Following the completion of all testing, mean scores from each group of $\mathrm{VO}_{2} \max$ tests were compared using a 2×3 (time x group) repeated measures ANOVA. Differences between p
actual means within individual groups and modalities were compared using paired t -tests.

Table 1. Study Design. Participants performed this sequence one time over the course of four weeks

Familiarization Trial	First Test	${ }^{10}$ Day Break	Second Test

Procedure:
Cycle:
Start at resistance of 50 Watts at a speed of 80-100 RPMS for two minutes Test starts at 100 Watts at a speed of 80-100 RPMS

- Once participant reaches fatigue, HR within 5 BPM of max, or RER exceeds 1.1 the test is terminated
A five minute cool down period at a resistance of 50 Watts at a comfortable speed Treadmill:

Start at a comfortable jogging speed for two minutes
Test starts and speed increases by 1 MPH every two minutes
Once max speed is reached, grade increased by 1% every two minutes
Once participant reaches fatigue, HR within 5 BPM of max, or RER
exceeds 1.1 the test is terminated
A five minute cool down period at a walking speed
Results
Table 2: Actual VO_{2} max means vs. Predicted VO_{2} max means by modality

	Prècited Treadmill	Actual Treadmill	Pređicted Cyce Ergometer	Actual Cycle Ergometer
Rumners	52.39^{*}	45.34	41.06	41.20
Cyclists	43.49	39.92	36.68	35.28
Swimmers	50.50	46.32	42.28	40.28
Total Participant Means	48.80^{*}	44.03	40.00	38.92

- Predicted values calculated using ACSM's VO_{2} max prediction equations from ACSM's Guidelines for Exercise Testing and Prescription (9 ${ }^{\text {th }}$ Edition)

Conclusions

There is a significant difference between the two testing modalities (Fig. 2) but not between the three testing groups. This suggests that treadmill testing elicits a more accurate VO_{2} max due to the fact that it is a full body, weight bearing exercise.

- Swimmers had a significantly different VO_{2} max response on the treadmill than on the cycle ergometer. This supports our hypothesis, suggesting that swimmers will produce more accurate ergometer. This supports our hypothe
test data on the treadmill (Table 2).
- There was a significant difference between the values produced by the prediction equations and the recorded results for treadmill testing, but not on the cycle ergometer.
It can be concluded that the prediction equation for the cycle ergometer is more accurate ta equation for the treadmill. Therefore, using the treadmill prediction equation to estimate a
- participant's running VO_{2} max may not reliable enough to be used alone.
-There is a significant difference between the VO_{2} max values yiedded from the cycle ergometer and the treadmill testing (Fig. 2). We can conclude that the treadmill test provides a more accurate representation of a participant's VO_{2} max regardless of their athletic history.㲘 conclude that swimmers produced a greater VO_{2} max when using the treadmill test.

Limitations

Little background on comparing modalities of testing VO_{2} max
Measurement error
Measurement erro
Scheduling 2 participants back to back days instead of typical 10 day protocol

Bibliography

Malek M, Berger D, Hous T, Coburn J, Beck T. Validity of Vozmax equations for aerobicaly tained males ad
females. Med. Sci. Sports Exerc. 2004 Marr; 36 (8): 1427 -1432. Moris M, Lamb KL, Hayton J, Coterrell D, Buckley J. The validity and reliability of predicicting maximal oxygen
uptake from a treadmill-based sub-maximal perceptually regulated execrise test. Eur J Appl Physiol. 2010 ; 109 : 983-988
Schembre S, Riebe D. Non-exerciss estimation of VO, max using the interation
Measurement in Physical Education and Exercise Science. 2001; 15: 168-181.
Spackman M . Individualized maximal CXT is preferred over standardized Buce protocol in relatively fit
colleges suduents. Microfom Publications Bulleitin Health. Physical Education and Regetion college students. Microform Publications Bulletin: Health, Physical Education and Recreation. Exercise and S_{p}
Sciences. 2000: 13 (1): 1-12.
5. Sousa A, Figueiredo P, Oliverar N, Oliveira J, Keskinen K. Comparison between swimming VO2peak and
VO2max a d different time intervals. Open Sports Sci. J. 2010 March; $3: 22$ 2-24.

VO2 max at different time ineval. O. .

