
Hydrol. Earth Syst. Sci., 18, 273–285, 2014
www.hydrol-earth-syst-sci.net/18/273/2014/
doi:10.5194/hess-18-273-2014
© Author(s) 2014. CC Attribution 3.0 License.

Hydrology and 
Earth System

Sciences
O

pen A
ccess

Characterizing hydrologic change through catchment classification

K. A. Sawicz1, C. Kelleher1, T. Wagener1,2, P. Troch3, M. Sivapalan4, and G. Carrillo 3

1Department of Civil and Environmental Engineering, The Pennsylvania State University, Pennsylvania, USA
2Department of Civil Engineering, University of Bristol, Bristol, UK
3Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona, USA
4Department of Civil and Environmental Engineering and Department of Geography, University of Illinois-Urbana
Champaign, Illinois, USA

Correspondence to:K. A. Sawicz (kas666@psu.edu)

Received: 30 April 2013 – Published in Hydrol. Earth Syst. Sci. Discuss.: 28 May 2013
Revised: 29 October 2013 – Accepted: 5 December 2013 – Published: 22 January 2014

Abstract. There has been an intensive search in recent years
for suitable strategies to organize and classify the very het-
erogeneous group of catchments that characterize our land-
scape. One strand of this work has focused on testing the
value of hydrological signatures derived from widely avail-
able hydro-meteorological observations for this catchment
classification effort. Here we extend this effort by organiz-
ing 314 catchments across the contiguous US into 12 dis-
tinct clusters using six signature characteristics for a baseline
decade (1948–1958, period 1). We subsequently develop a
regression tree and utilize it to classify these catchments for
three subsequent decades (periods 2–4). This analysis allows
us to assess the movement of catchments between clusters
over time, and therefore to assess whether their hydrologic
similarity/dissimilarity changes. We find examples in which
catchments initially assigned to a single class diverge into
multiple classes (e.g., midwestern catchments between peri-
ods 1 and 2), but also cases where catchments from different
classes would converge into a single class (e.g., midwestern
catchments between periods 2 and 3). We attempt to interpret
the observed changes for causes of this temporal variability
in hydrologic behavior. Generally, the changes in both direc-
tions were most strongly controlled by changes in the water
balance of catchments characterized by an aridity index close
to one. Changes to climate characteristics of catchments –
mean annual precipitation, length of cold season or the sea-
sonality of precipitation throughout the year – seem to ex-
plain most of the observed class transitions between slightly
water-limited and slightly energy-limited states. Inadequate

temporal information on other time-varying aspects, such
as land use change, limits our ability to further disentangle
causes for change.

1 Introduction

The topic of catchment classification has garnered increas-
ing attention in recent years, suggesting that there is signif-
icant interest in increasing our understanding of how and
why catchments are similar or dissimilar to one another
(McDonnell and Woods, 2004; Wagener et al., 2007). Ap-
proaches to catchment classification can be based on phys-
ical catchment characteristics (Winter, 2001; Wolock et al.,
2004; Gharari et al., 2011; Cheng et al., 2012; Haines et al.,
1988), on streamflow characteristics (Olden et al., 2011; Ley
et al., 2011; Corduas, 2011; Sawicz et al., 2011; Moliere et
al., 2009; Pegg and Pierce, 2002), or on environmental trac-
ers (Flury and Wai, 2003; Tetzlaff et al., 2009). These differ-
ent strategies each have advantages and disadvantages. En-
vironmental tracers (chemical and isotopic) provide greater
insight into dominant hydrologic processes, but measure-
ments of these tracers are generally not widely available.
Data required to capture physical characteristics of a catch-
ment are (essentially) available worldwide, however assump-
tions about the connection between these data to hydrologic
behavior need to be formulated and there is a general lack of
suitable subsurface descriptors (Winter, 2001). Streamflow
observations are readily accessible in developed countries

Published by Copernicus Publications on behalf of the European Geosciences Union.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26838418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


274 K. A. Sawicz et al.: Characterizing hydrologic change through catchment classification

where dense observational networks exist, though their in-
formation content regarding catchment functions is limited
to the decomposition of these observations (Carrillo et al.,
2011).

Our own objective is to enable a mapping between climate,
physical characteristics and hydrological behavior through
classification, while being widely applicable (Wagener et al.,
2007). The classification strategy applied in this study was
first introduced in Sawicz et al. (2011), who established sim-
ilarity between catchments on the basis of hydrologic signa-
tures derived from widely available observations of stream-
flow, air temperature and precipitation. In the previous study,
we used a Bayesian clustering algorithm to understand hy-
drologic similarity and dissimilarity across 280 catchments
located in the eastern half of the US. Hydrologic similar-
ity was defined by proximity in a six-dimensional signature
space.

One reason for such a three-dimensional (climate, physical
characteristics, hydrologic behavior) mapping is the growing
recognition of the increasing nonstationarity of the hydrolog-
ical cycle, primarily due to climate and land use change (e.g.,
Milly et al., 2008). Therefore, incorporating change into a
framework for catchment classification is vital to understand
and potentially predict future hydrologic response. Land use
changes occur due to urbanization (Martin et al., 2012),
forest clearance (Andreassian, 2004), and agricultural de-
mands/practices (Parton et al., 2005; Mahmood et al., 2006).
These changes alter the functional behavior of catchments in
terms of how these systems partition, store and release water
(Wagener et al., 2007; He et al., 2011). Climate change will
increasingly create new boundary conditions in which catch-
ments will evolve (Troch et al., 2013). Recent work suggests
that climate change can alter the interaction and influence
between hydrologic processes within a catchment, and thus
behavior of catchments, in intricate ways (e.g., Rosero et al.,
2010; Merz et al., 2011). Land use change will potentially
have a more immediate impact in many cases, though our
predictive ability of its manifestation altered in hydrologi-
cal characteristics is still questionable (Wagener, 2007). Any
catchment classification system therefore has to account for
these changes, or more generally, any classification frame-
work should help to inform how and why catchments are
changing (Wagener et al., 2010).

In this paper, we combine the concepts of catchment clas-
sification and environmental change to investigate in how far
a signature-based classification can provide insight into the
consequences of and the reasons for the changing behav-
ior of catchments over time. To achieve this objective we
classify 314 catchments across the US over four consecu-
tive decades. We assume that a decade is both required and
sufficient to reasonably estimate signature values for classi-
fication. Cluster analysis and decision tree models used are
based on six different hydrologic signatures. We attempt to
(1) identify how catchment classification, and therefore hy-
drologic similarity, changes through time and (2) provide

mechanistic explanations for the change identified in our
study region.

2 Data and study catchments

The 314 catchments selected for this study are a subset
of the MOPEX (Model Parameter Estimation Experiment)
database (Duan et al., 2005). Only catchments with at least
95 % data availability across all four selected periods (1948–
1958; 1958–1968; 1968–1978; 1978–1988) were included in
the investigation. Catchments that were already heavily im-
pacted by human activity during the baseline decade were
excluded from the analysis a priori through visual inspec-
tion. The spatial density of catchments available through
the MOPEX initiative is much higher in the eastern US
than in the western US. The MOPEX database includes
daily streamflow data from USGS hydro-climatic data net-
work, daily precipitation and temperature data from the Nat-
ural Resources Conservation Service SNOTEL (snowpack
telemetry) and the National Climate Data Center, soil tex-
ture data from STATSGO (State Soil Geographic database),
and vegetation classification information from the University
of Maryland. Further details on the MOPEX data set can be
found in our previous study (Sawicz et al., 2011). Other data
sets of land cover and watershed characteristics were also
used to interpret possible causes of changes in catchment be-
havior. Land cover (agriculture, impervious area, forest) data
was available from the USDA at 5 yr intervals at the state
level (Nickerson et al., 2011). Our analysis also made use
of stream network characteristics, geology, number of dams,
soil, and topography data collated to USGS stream gages by
Falcone et al. (2010).

3 Methods

3.1 Signatures

Six signatures were calculated from long-term records of
daily streamflow, air temperature, and precipitation observa-
tions per catchment for four decadal periods: (1) 1948–1958
(baseline), (2) 1958–1968, (3) 1968–1978, and (4) 1978–
1988. The hydrologic year was used rather than the calendar
year to remove the impacts of carry-over of water storage as
snow between calendar years. The US hydrologic year spans
from 1 October of a given year to 30 September of the follow-
ing year. Signatures were chosen to capture independent in-
formation about catchment behavior at annual, seasonal and
daily timescales, and to capture average as well as extreme
hydrological behavior (Ssegane et al., 2012a, b). For a more
detailed discussion of four of these signatures see Sawicz et
al. (2011). Two signatures from our previous study, stream-
flow elasticity and rising limb density, were replaced with
Q90 and normalizedQ10 in this study. The reasons for doing
so were two-fold. Firstly, rising limb density was shown to
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have the least influence on the previous classification result,
and secondly, we found it difficult to relate streamflow elas-
ticity to other characteristics, which would limit our ability
to find mechanistic explanations in this this study. The com-
plete list of signatures used in this study is the following.

– Runoff ratio (RQP, [−]), the long-term water balance
represented by the ratio of long-term average stream-
flow (Q) to long-term average precipitation (P ).

– Baseflow index (BFI, [−]), the portion of streamflow
classified as baseflow, which represents a measure of
the volume of water taking longer flow paths through
the catchment. In this study we use the one-parameter
single-pass digital filter method based on previous
studies as reported by Arnold et al. (1995) and Lim
et al. (2005).

– Slope of the flow duration curve (SFDC, [−]), the
slope between the 66 % and the 33 % flow ex-
ceedance percentiles, which is an indicator of stream-
flow variability.

– Ratio of snow days (RSD, [−]), the ratio of precipita-
tion events that occur when mean daily temperature is
below 2◦C to the total number of precipitation events.
This signature is a proxy for flow seasonality, length of
the winter period, and the general significance of snow
storage.

– 10th prcentile streamflow (Q10, [−]) is the ratio of
daily streamflow that is exceeded 10 % of the time nor-
malized by the mean streamflow. This signature is a
measure of high flows.

– 90th percentile streamflow (Q90, [mm]) is purely the
value of daily streamflow that is exceeded 90 % of the
time. This signature is a measure of very low flows.

One primary requirement for these signatures was that they
each provide independent information (Table 1). This was
difficult to achieve in case of the flow percentiles and the
slope of the flow duration curve. We therefore leftQ90 with-
out normalization, whileQ10 was normalized, which, as
shown later, had no impact on the regression tree.

3.2 Clustering algorithm

The method chosen for this study is a fuzzy partitioning
Bayesian mixture-clustering algorithm implemented in the
AutoClass C software package (version 3.3.4) (Stutz and
Cheeseman, 1995; Cheeseman and Stutz, 1996; Archcar et
al., 2009; Kennard et al., 2010). Bayesian mixture modeling
is a probabilistic approach in which marginal likelihoods for
different classification realizations are estimated and ranked
against all other realizations. While a range of different clus-
tering algorithms is available, the chosen algorithm has been
shown to be effective with respect to its use in environmental

Table 1.Linear correlation values of the six signatures used in this
study from the first time period.

RQP BFI SFDC RSD Q10 Q90

RQP 1.00 0.31 −0.17 0.37 0.28 0.61
BFI 0.31 1.00 0.62 0.35 0.09 0.53
SFDC −0.17 −0.62 1.00 −0.13 0.33 −0.50
RSD 0.37 0.35 −0.13 1.00 0.28 0.19
Q10 0.28 0.09 0.33 0.28 1.00 −0.20
Q90 0.61 0.53 0.50 0.19 −0.20 1.00

studies (Reidy Liermann et al., 2011; Kennard et al., 2010;
Sawicz et al., 2011). In the AutoClass algorithm, the classi-
fication with the highest posterior probability is ultimately
chosen as the most likely realization (Webb et al., 2007).
Each catchment is assigned to a specific class with a defined
probability of membership, which is called the probability of
class assignment. A catchment can be assigned to different
classes due to the probabilistic nature of the algorithm, and
it is only the primary (i.e., highest probability) class assign-
ment that is listed. The number of classes is automatically
decided during the clustering process. The input variables
characterizing the catchments, i.e., the signatures, were log
transformed and modeled as normally distributed continu-
ous variables with an associated degree of uncertainty. Ad-
ditionally, these variables are scaled such that the magnitude
differences between signatures do not cause any additional
weighting in the calculation of the distance metric.

Due to the probabilistic nature of the AutoClass-C algo-
rithm, classification realizations will slightly change over
multiple runs. A value of 4 % was assumed to represent the
uncertainty in signature values that were used in the Auto-
Class run (Sawicz et al., 2011). We used the adjusted Rand
index to test the stability of the results across these dif-
ferent realizations (ARI, Rand, 1971; Hubert and Arabie,
1985). The ARI takes a value of 0 if the agreement between
two classification outcomes is no better than mere chance
and 1 if there is perfect agreement between the two classifi-
cation results. The realization that was considered “represen-
tative” from these multiple runs had an ARI value of no less
than 0.85 from any other algorithm run. Approximately 90 %
of catchments have a probability of membership of greater
than 0.8 for their primary class, and 95 % of catchments have
a probability of membership for their primary class greater
than 0.7. The clustering algorithm offers no predictive model
in which we can classify catchments that were not included
during the clustering step. A decision tree can be used for
this purpose.

3.3 Decision tree

A classification and regression tree (CART) analysis of
the results for the baseline time period (1948–1958) was
performed using all six signatures to predict the class
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Fig. 1.Results of cluster analysis based on 6 hydrological signatures.

assignment generated from the AutoClass clustering result
(Banjeree et al., 2008). The stopping criteria used to prune
the tree was 10-fold cross validation. Limitations to the
CART analysis, resulting from simplistic splits and a small
number of catchments in two of the classes (C11 and C12),
were adjusted manually to improve accuracy and value of the
analysis.

4 Results and discussion

4.1 Catchment classification for baseline decade
(1948–1958)

The AutoClass cluster analysis produced 12 classes as shown
in Fig. 1. The normalized influence measure discussed in the
Methods section quantifies the importance of a signature for
the clustering result. The signatures influenced the cluster
analysis in descending order [Signature (Normalized Influ-
ence Measure)]:RQP (1.00),RSD (0.807),SFDC (0.626),BFI
(0.626),Q90 (0.626), andQ10 (0.501). The spatial patterns
found are generally similar to the ones identified in Sawicz
et al. (2011), though some differences are present due to the
changes in signatures and catchments, i.e., we use a larger
and more diverse set of catchments in this study. First we
briefly discuss the classification for the baseline period in
detail, and subsequently focus on class changes for the other
decades. Qualitative statements regarding whether signature
values and physical/climatic characteristics are high or low
are only made in relation to other catchments within our data
set (Fig. 2 and Supplement).

The classes exhibit strong spatial patterns in most cases
(Fig. 1). A collection of small catchments in the northeast and
along the north-facing side of the Appalachians form a sin-
gle cluster, which are characterized by their energy-limited
hydrology (class C1). In contrast to C1, class C2 consists
of large agricultural catchments that experience both signifi-
cant snow storage during the winter and have very dry sum-
mers. The next cluster of catchments, with a relatively wide
spatial spread, is found along the southeast coast of the US
and is characterized by the permeable geology of this region,
which is reflected in their flat flow duration curves (FDC)
and relatively high baseflow (class C3) (Bloomfield et al.,
2009). These catchments experience short duration precipi-
tation events and dry summers that result in significant low
flow periods. Directly south of class C3, we identify a cluster
of catchments on the south-facing slopes of the Appalachi-
ans with low high flows (Q10) and high low flows (Q90;
class C4), and hence flat FDCs similar to C3, but with dif-
ferent precipitation characteristics. Catchments of class C5
are located further inland and at lower elevations from C4,
thus having low aridity, highly variable streamflow and little
baseflow due to fairly impermeable soils. Class C6 is a clus-
ter of catchments located on the southern side of the Great
Lakes. The Great Lakes play a major role in the climate of
the region and the catchments experience very low values of
SFDC as well as the highest values ofBFI. Catchments lo-
cated in the coastal region of the western US are small, steep
and have permeable soils (class C7). C7 catchments display
the highestP–PE differences (P : precipitation, PE: poten-
tial evapotranspiration) of the data set along with the highest
topographic slopes and elevation differences. Catchments in
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Fig. 2.Box–whisker plots of signature characteristics for the different clusters.

C7 are also snow dominated and exhibit the highest runoff ra-
tios. Class C8 shows an interesting separation between a few
catchments located in the western US and a bigger cluster lo-
cated in the central US. Catchments in C8 are characterized
by impermeable soils, which cause a flashy response, while
their aridity indices are close to 1. Class C9 consists of
mountainous catchments with the highest elevations in the
northern US. These are heavily snow-dominated catchments
(highest ratio of snow days) with a very damped (highest per-
centage sand in soils) and delayed response to precipitation
input. The largest catchments by area are part of class C10.
Catchments in C10 are located in the central and southwest-
ern US and have an ET-dominated climate (lowest precip-
itation) (ET: evapotranspiration). Class C11 is made up of
catchments found at the lowest elevations within the data
set, which experience the highest temperatures and exhibit
very low summertime flows. The final cluster of catchments
(class C12) experiences the highest aridity indices (lowest
runoff ratio), the lowest high flows (Q10) and lowest base-
flow indices. This hydrologic behavior is caused by high air
temperature, low precipitation amounts and low permeability
soils.

4.2 CART analysis to understand class separations

Figure 3 shows the decision tree resulting from a CART anal-
ysis of the clustering for the baseline decade discussed above.
A total of 285 catchments (91 %) could be correctly assigned

via the decision tree for the original AutoClass classifica-
tion (Fig. 4), which resulted in 21 different end nodes (some
classes have more than one end node). The presence of more
end nodes than classes is an artifact of the CART analysis
itself and the method in which it organizes information.

The thresholds within the decision tree mark key transi-
tions between different classes. The runoff ratio threshold
of 0.295 represents a primary separation between wet and dry
catchments within the classification. The Pike–Turc equation
that can be used to estimateRQP from estimates ofP /PE is
defined as follows:

RQP = 1 −
1(

1 +
(

P
PE

)2
) 1

2

. (1)

Interestingly, when applying this Turc–Pike relationship, a
RQP value of 0.295 represents an expected aridity index
(P /PE) of 1 (Pike, 1964; Gerrits et al., 2009). This threshold
can therefore be interpreted as the separation between wa-
ter limited (RQP< 0.295) and energy limited (RQP> 0.295)
catchments. This threshold value was achieved purely as a
result of the empirical Autoclass cluster and CART analyses.

For the slope of the FDC (SFDC) the primary separa-
tions, at 0.045 and 0.049, are virtually the same on both
branches of the classification system.SFDC values less than
this threshold value correspond to a more “filtered or damped
response” whereas larger values correspond to a more “flashy
response”.SFDC represents the distribution of flow values of
different magnitudes, and will be influenced by any changes
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Fig. 3. The CART decision tree shows the classification tree based on the values of signatures used in this study. This structure is utilized to
model the results of the AutoClass clustering algorithm for predicative capability.
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Fig. 4. Analysis of CART analysis results with respect to the per-
centage of classes that have been assigned (correct assignment: min
is 76 %; avg. is 91 %). Colors are used to show misclassification
through CART.

in the distribution of precipitation events or by land use
change that can alter how a catchment partitions water at the
land surface.

The ratio of snow days,RSD, with a threshold of 0.225,
can be interpreted as the length of winter conditions. With
the exception of the catchments in the western US, which ex-
perience a dramatically different distribution of precipitation
(dominant winter precipitation), there is a clear relationship
betweenRSD and the length of time between the first day
of freezing and first day of thawing. ARSD value of 0.225
equals approximately 4 months of snow conditions (less
than 0.225 can be considered to be a short winter, and greater
than 0.225 can be considered a long winter). Unlike the other
signature thresholds, there is more than oneRSD threshold
present in the regression tree. A threshold of 0.125 corre-
sponds to a duration of about 3 months, while a threshold
of 0.465 corresponds to 5–6 months of winter conditions.

The low flow characteristicQ90 only appears in the re-
gression tree to separate catchments that have zero flow peri-
ods from those that show perennial streamflow, at a threshold
of 0.005. This corresponds to a separation between perennial
or near perennial catchments (Q90> 0.005) and intermittent
streams (Q90< 0.005), i.e., those that experience streamflow
less than 90 % of the time (Laaha and Bloschl, 2006). The
second flow percentile,Q10, does not appear in the CART
tree.
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Table 2.Minimum, mean, and maximum values for the six signature classes across each of the four periods.

Period RQP [−] BFI [−] SFDC [−]

min mean max min mean max min mean max

1 0.02 0.37 1.00 0.29 0.64 0.96 0.01 0.037 0.103
2 0.01 0.36 1.00 0.28 0.65 0.95 0 0.033 0.088
3 0 0.40 0.99 0.31 0.66 0.96 0 0.031 0.073
4 0 0.39 0.90 0.31 0.66 0.96 0.01 0.031 0.080

Period RSD[−] Q0 [−] Q90 [mm]

min mean max min mean max min mean max

1 0 0.26 0.64 0.44 2.24 3.53 0 0.17 1.71
2 0 0.27 0.61 0.65 2.21 3.43 0 0.19 1.97
3 0 0.28 0.66 0.44 1.79 3.9 0 0.23 1.97
4 0 0.27 0.64 0.45 1.88 4.1 0 0.20 1.43

4.3 Signature values during the four decades

A wide range of climatic and physical catchment character-
istics impacts hydrologic signature values (Wagener et al.,
2007). Disentangling these influences simultaneously for a
large number of catchments is likely to be very difficult
given the lack of time series describing land use patterns
such as urbanization (e.g., Martin et al., 2012) and due to
the heterogeneity of characteristics found within a catch-
ment (especially those that are poorly described, such as
subsurface characteristics). Nonetheless we characterize the
changes observed, and make an attempt here to explain some
of the identified changes. We focus on how some of these
shortcomings of empirical studies can be overcome by phys-
ically based modeling in a parallel study (Troch et al., 2013).

The potential impact of both climate and land use change
on hydrologic signatures is briefly discussed before we iden-
tify the signature value (and class) changes in our data set.
Many studies have generally reported an increase in stream-
flow in the US during the latter half of the 20th century
in both gradual and sudden (step) changes (McCabe and
Wolock, 2002). Between 1948 and 1988, regions across the
US experienced varied changes in land use, including ur-
banization, deforestation and vegetation clearance (south-
ern US), forest and vegetation regrowth (southern and east-
ern US), and expanding agricultural cover (midwestern US)
(Woodbury et al., 2006; Allan, 2004; Garbrecht et al.,
2004; Drummond and Loveland, 2010; Mitchell and Dun-
can, 2009). These changes have altered catchment behavior
by impacting the primary hydrologic functions of partition-
ing, storage and release of water. As an example, deforesta-
tion can increase soil water storage while simultaneously de-
creasing the amount of water leaving a catchment through
the extraction of soil moisture from vegetative transpiration
(Fohrer et al., 2001). In the midwest, agriculture has tran-
sitioned from mixed perennial and annual cropping systems
to primarily annual crops (Schilling et al., 2008). Increasing

agricultural activity has been found to increase evapotranspi-
ration and to change soil water retention and the length and
distribution of flow paths (Garbrecht et al., 2004; Schilling et
al., 2008).

Changes to both average and extreme climate conditions
will also alter catchment behavior. Streamflow has gener-
ally increased across the contiguous US in large part due
to changes in average climatic conditions (Lins and Slack,
1999; McCabe and Wolock, 1997; Sun et al., 2008). The flow
duration curve is partly influenced by the frequency, inten-
sity, or distribution of precipitation events, as these charac-
teristics impact the overall distribution of streamflow events
(Wang and Wu, 2013; Coopersmith et al., 2012; Ye et al.,
2012). Yaeger et al. (2012) found lower flow duration curve
slope values when the precipitation regime of a catchment
becomes more evenly distributed intra-annually. Generally,
warmer winter air temperatures will reduce snow storage, re-
sulting in an earlier and less severe spring-melt contribution
to streamflow response and removing the presence of large
spring-melt events in the streamflow time series. This is more
likely to be observed in western catchments because the ma-
jority of precipitation for these catchments falls during the
winter months (Groisman et al., 2001; Stewart et al., 2005;
Hidalgo et al., 2009).

Examination of how the six signatures vary across the four
decades (Table 2) informs us of general trends. As an aver-
age across all catchments,RQP shows little variation across
the four decades, though some catchments experience large
changes between periods (±15 % of the total range). If we
examine the degree of change between decades, we find that
delta values (change of signature values between decades)
are more or less normally distributed between each period,
with mean values slightly below zero from the first to sec-
ond and third to fourth periods, and slightly positive be-
tween the second and third periods.RSD is similarly invari-
ant on average, but some catchments change by±13 % be-
tween periods and with a noticeable negative skew for the

www.hydrol-earth-syst-sci.net/18/273/2014/ Hydrol. Earth Syst. Sci., 18, 273–285, 2014



280 K. A. Sawicz et al.: Characterizing hydrologic change through catchment classification

delta values between periods 1 and 2 (the remaining differ-
ences show normal distributions).BFI changes are normal
distributed with consistently positive means between each
of the four decades (with a maximum mean of 1.3 % found
between periods 2 and 3). Change values forBFI are greater
than forRQP andRSD with maximum interperiod variability
reaching 25–30 % of the range over time.SFDC change val-
ues exhibit a slightly negative skew between each period and
show consistently negative means (most extreme mean value
of −4 % between periods 1 and 2). The largest value ofSFDC
change reaches−47 % of the total range. The distribution of
changes forQ90 is positively skewed. However, catchments
that have the highest values also show the greatest variabil-
ity (∼ 30 %).Q10, which is not present in the decision tree,
shows the highest variability through time, with mean values
of −1, −11, and 2 % between periods 1 and 2, 2 and 3, and
3 and 4, respectively.Q90 andQ10 are expected to exhibit
the most interperiod variability because they refer to the tails
of the distributions whereas the other four signatures either
capture flow conditions that are more common (e.g.,SFDC fo-
cuses on central low flows), or capture longer time averages
(BFI, RQP, RSD). RQP, BFI, andSFDC all show the least vari-
ability during the final transition phase, whereasRSD, Q90,
andQ10 show the least variability between period 1 and 2.
RQP, BFI, RSD, Q10, andQ90 exhibit the highest variability
between periods 2 and 3, while we found the highest vari-
ability for SFDC between periods 1 and 2. The considerable
difference between the mean of the changes and the changes
occurring in individual catchments suggests that it is sensible
to break the analysis up by geographic region.

4.4 Interpretation of change by region

Change in catchment class assignment is organized as three
transition phases between each of the four decades studied.
We identify groups of catchments that change class assign-
ment between decades, rather than focusing on individual
catchments in isolation, to better understand broader patterns
of change. Trying to explain the change occurring in each in-
dividual catchment would be infeasible. During the first tran-
sition phase (between period 1 and 2), four spatially inter-
esting class changes occur. The second and third transition
phases both exhibit two spatially interesting class changes.
The groups of catchments that we emphasized, along with
the remaining changing catchments are shown in Fig. 5a–c.
The inner color of each marker on the maps describes the ini-
tial class (see Fig. 1 for color scheme legend) and the border
color describes the new class in which catchments transition
during the decade under study.

4.4.1 Transition phase 1 (1948–1958 to 1958–1968)

The first group of catchments we analyze is located in the
midwest/Great Lakes area. Its members transition from a
number of different classes (C1, C4, C5, C6, C8) to a single

class, (C2, indicated by the dark green marker border; Figs. 5
and 1a). These changes in hydrologic similarity can be ex-
plained by changes to runoff ratio,RQP (C1, C4, and C5),
and to low flows,Q90 (C8). For the latter, a small increase
in average precipitation (5 %) changes C8 (shown as blue in-
side of the marker) catchments to C2 catchments due to a
slight increase inQ90. The intra-annual variability of pre-
cipitation on average does not change during this transition
period, so it is a general increase of precipitation that seems
to explain the increase inQ90. These catchments are located
across Missouri, Oklahoma, and Kansas and exhibit high per-
centages of agricultural land use (57.5 % for Kansas, 42.5 %
in Missouri, and 34 % in Oklahoma) (Nickerson et al., 2011).
However, the change inQ90 does not seem to be affected by
the change of land use as changes to agricultural cover be-
tween these two periods of time are inconsistent across these
three states, with Missouri agricultural land showing an in-
crease, Oklahoma cover a decrease, and the Kansas cover re-
maining constant (Nickerson et al., 2011). The primary rea-
sons for this shift appear to be the increase in precipitation in
general (from period 1 to period 2) and an increase in sum-
mer rainfall specifically (Pryor and Schoof, 2008).

Shifts in catchments from one class to many or from many
classes to one between phases often seem to be tied to shifts
between water and energy limited conditions. Initially, the
catchments during the first transition separate into classes
C1, C4, C5, and C6 due to the difference in values ofSFDC,
BFI, andRSD. The energy-limited catchments are further sep-
arated from the water-limited catchments belonging to C2
(dark green marker border) during the baseline period. How-
ever, the dissimilarity inSFDC, BFI, andRSD values became
secondary to the common shift of the aridity index to a water-
limited state, and the corresponding change in runoff ratio,
RQP, resulting in catchments from many classes shifting to a
single class. The primary cause of this decrease inRQP val-
ues was a decrease in total annual precipitation (mean annual
decrease of about 8 %).

Catchments located in Virginia diverge from class C4
(cyan) into classes C2 and C1 (Figs. 5, 1b). The shift from
C4 to C2, caused by a decrease inRQP values, is most likely
driven by an average 9 % decrease in precipitation across
these catchments. In contrast, catchments that transition from
C4 to C1 do so due to higher values of ratio of snow days
(RSD) (increasing past the 0.225 threshold), which corre-
sponds to a two week increase in winter length. The increase
in RSD values is caused by a decrease in air temperature by
an average of 0.7◦C. All catchments transitioning from class
C4 to C2 and C1 experience the same mean increase in their
RSD values (average of 0.03). However, the initialRSD values
vary from 0.14 to 0.22. This increase results in a divergence
of classes as theRSD values for the second period (range
of 0.17–0.25) now fall on either side of the CART threshold
of 0.225. In this case, the catchments transitioning to C1 are
located directly on the Appalachian mountain range (higher
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1a Intermittent flow to perennial flow 
regime; energy limited to water limited 

1b Energy 
limited to 
water 
limited; 
shorter 
winter to 
longer winter 

1d Flashy to 
filtered response; 
short winter to 
longer winter 1c Flashy to filtered 

response; energy limited 
to water limited 

1a 

1b 

1d 

1c 

(a) Class Changes from Decade 1 to 2 (1948-58 to 1958-68) 

Red: >10% change 
Yellow: 5-10% change 
White: 0-5% change 

2a Water-
limited to 
energy limited  

2b Flashy 
to filtered 
response 

2c Water 
limited to 
energy 
limited 

2a 

2b 

2c 

(b) Class Changes from Decade 2 to 3 (1958-68 to 1968-78) 

Red: >10% change 
Yellow: 5-10% change 
White: 0-5% change 

3a Water limited 
to energy limited 

3b Energy limited 
to water limited 

3a 

3b 

(c) Class Changes from Decade 3 to 4 (1968-78 to 1978-88) 

Red: >10% change 
Yellow: 5-10% change 
White: 0-5% change 

Fig. 5. Maps highlighting those catchments that change class assignment from one decade to the next, including interpretation of change.
The inner color of each marker describes the initial class (see Fig. 1 for color scheme legend) and the border color describes the new class in
which catchments transition during the decade under study. A catchment with a key change inSFDC is visualized as a triangle, inRSD as a
pentagon, inRQP as a square, andQ90 as a circle.
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elevations) whereas the catchments transitioning to C2 are
found directly east of the mountain range (lower elevations).

Southeastern US catchments, originally part of class C5
(orange), transition to C3 mainly due to a change inSFDC
(four catchments) (Figs. 5, 1c). The behavioral distinction
between these classes isSFDC, which shows a more damped
response in these catchments during the second period, as
opposed to a more flashy response in the baseline period
(three of the four catchments experience a decrease of over
10 % of the observed range). These catchments also expe-
rience a mean precipitation seasonality index (PSI [−]), a
measure of seasonality of precipitation) across all catchments
of 0.21 during the first period and 0.19 during the second
period (Pryor and Schoof, 2008). This represents a 2.4 % de-
crease in the seasonality of precipitation throughout the year,
which may contribute, as a minor part, to the more damped
response observed.

The last observed shift during the first transition phase oc-
curs through parts of Arkansas, Mississippi, and Alabama,
where catchments in classes C3 and C5 transition to class
C4 (Figs. 5, 1d). Catchments transitioning from C5 show a
decrease inSFDC (which again indicates a more damped re-
sponse as was seen in area 1c). These catchments experience
a decrease in PSI, from an average of 0.19 in the first pe-
riod to 0.165 to the next period. However, even though the
mean values of these catchments are decreasing, two of the
four catchments do not experience any change in PSI imply-
ing that there must be other causes for the decrease inSFDC,
which we cannot identify from our database. They do not
transition to C3, as they experience a higher value ofRSD
than those in 1c. Catchments, which transition from C3 to
C4, experience an increase inRSD due to a two-week aver-
age lengthening of the winter season per year.

4.4.2 Transition phase 2 (1958–1968 to 1968–1978)

A reversal of some of the observed changes from transition
period 1 occurs. Catchments belonging to C2 (dark green)
in the second period experience transitions to a number of
classes (C1, C4, C5, and C6; Fig. 5b, groups 2a and 2c), shift-
ing back from water to energy-limited conditions due to an
increase inRQP. The cause of this shift can be attributed to an
average increase of annual precipitation of 0.24 mm day−1.
This transition is seen both in areas 2a and 2c, which cover
the midwest/Great Lakes region and the eastern slopes of the
Appalachian Mountains.

Catchments located in West Virginia and Kentucky be-
longing to class C5 (orange) show a shift from a flashy re-
sponse in the second period to a more damped response in
the third period, quantified by a decrease in theSFDC values
for these catchments (Figs. 5b, 2b). Catchments transition to
C1 (yellow) and C4 (cyan), depending on whether the value
of RSD for each of these catchments is above (C4) or below
(C1) the 0.225 regression tree threshold. These catchments
experience a relatively large decrease in PSI (0.20 in period 2

vs. 0.14 in period 3), which suggests that the cause of the de-
crease inSFDC is a less seasonal precipitation regime.

4.4.3 Transition phase 3 (1968–1978 to 1978–1988)

Changes occurring between the third and fourth periods are
again dominated by shifts between water and energy limited
conditions across the midwest. Despite close spatial proxim-
ity, the northern portions of Iowa experience a slight increase
in precipitation (2 % from the prior period), while the south-
ern portion of Iowa, the eastern portion of Illinois, and all
catchments in Missouri and Arkansas experience a decrease
(3 % from the prior period) in precipitation. These changes
result in proportional shifts inRQP values and hence in class
transitions. Catchments located in central to northern Iowa
(Figs. 5, 3a) transition from C1 (yellow) to C6 (dark red),
while the remaining catchments of interest transition from
C4 (cyan) to C2 (dark green). Changes inRQP values that
cause these transitions are much smaller than those found in
other phases though (±1 to 2 %). These transitions therefore
highlight how even small changes in climate can result in
different shifts in behavior for neighboring catchments. Al-
though land use in this general area is dominated by agricul-
ture, there is no substantial change in agricultural land use at
the state level during the third transition period (Nickerson et
al., 2011), and no general trends were found that suggested
agriculture had an effect onRQP.

Strong spatial patterns were found for groups of catch-
ments that transition between classes for similar reasons, al-
beit the magnitudes of those changes differ in relation to the
catchments’ proximity to thresholds in the signature space.
As described above, changes to climatic forcing are primar-
ily responsible for spatial patterns of shifts in catchment be-
havior. However, there are a number of catchments that did
not experience behavioral shifts found in other similar catch-
ments. These catchments have experienced changes in sig-
nature values for reasons that we were unable to quantify
at present. Catchments along the western coast experience
a high climatic gradient as well as variable local physical
features. In order to interpret the control of class transition
in these catchments over time, we require additional tempo-
ral information quantifying changes in how vegetation, land
use, and human activity change.

5 Conclusions and open questions

Catchment classification can be a valuable tool for under-
standing hydrological change if it allows for the mapping be-
tween hydrologic behavior and physical and climatic charac-
teristics. It can be used to characterize temporal and spatial
changes in similarity and dissimilarity between catchments,
and to provide a general indicator of the sensitivity of catch-
ments to change. In this study, we utilize six streamflow-
based signatures of hydrologic behavior at annual, seasonal,
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and daily timescales to classify catchment behavior across
the US. We find that catchments experienced changes to all
six signatures to differing degrees at different times.

The initial classification for the baseline decade (1948–
1958) resulted in 12 clusters that are distinctly separated
due to differences in hydrological behavior as expressed by
the signature values. We subsequently analyzed how much
other decades deviate from this initial classification by re-
classifying the catchments using a decision-tree established
for the baseline period. The first transition phase, taking
place between 1948–1958 and 1958–1968, showed just over
40 of the 314 catchments changing class, geographically
ranging from Oklahoma/Nebraska to Virginia. The second
transition phase, between 1958–1968 and 1968–1978, has a
similar number of class changing catchments, mostly experi-
encing large changes (5–10 %) in values ofRQP andSFDC.
During the last transition phase, between 1968–1978 and
1978–1988, only about half as many catchments changed
class, and they were located solely in the midwest.

Generally, climate was found to be a primary control
on catchment behavior when comparing catchments at the
decadal scale. Change in climatic characteristics – mean
annual precipitation, length of winter period, intra-annual
seasonality of precipitation – had the strongest impact on
changes in catchment behavior. While we were able to ex-
plain some of the changes found, e.g., the regular switch be-
tween energy- and water-controlled regimes for catchments
close to an aridity index of one, other temporal variability
could not be explained as well with the information avail-
able. For example, changes to the flow duration curve slope,
SFDC, could be caused by a multitude of different factors and
we could not shed light on which one dominates. Land use,
although likely to be important in how a catchment filters
water, was not found to provide valuable information in de-
scribing the change in hydrologic behavior (most likely due
to limited information available at the catchment scale). The
difficulty in explaining some of the changes based on an
empirical analysis alone, as attempted here, might also par-
tially relate the rather moderate changes observed. Martin et
al. (2012), for example, showed that urbanization in the or-
der of 15 % of the total catchment area could be required
to produce a significant change in signature characteristics.
This might explain why we mainly find climatic character-
istics to matter, which, by definition, occur across the whole
catchment rather than a small part of it as often the case for
land use change. It leads us again to the conclusion, simi-
larly as in Sawicz et al. (2011), that an empirical analysis of
the type shown here is a nice first step to understanding con-
trols (and therefore change). However, it is likely that a sub-
sequent analysis using a mechanistic model is required given
the limits of data available for describing the heterogeneity
of catchment characteristics in space and time.

Supplementary material related to this article is
available online athttp://www.hydrol-earth-syst-sci.net/
18/273/2014/hess-18-273-2014-supplement.pdf.
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