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Lie tori of rank 1 

B. Allison l , J. Faulkner, and Y. Yoshii 

This article is based on a talk presented by the first author at the conference on 
Lie and Jordan Algebras, their Representations and Applications held in Guarujá, 
Brazil in May 2004. The article surveys some recent progress by a number of 
authors in the study of extended affine Lie algebras and some closely related Lie 
algebras called Lie tori. 

Lie tori of rank 1 are coordinatized by algebras with involution called struc
turable tori. Recently the present authors have obtained a classification of struc
turable tori, and this article includes in Section 5 a description of part of that 
classification. Complete statements and proofs of our classification results will 
appear elsewhere. 

Assumptions. Throughout the article we assume that F is a field of character
istic O. We also assume that .6. is an irreducible root system (possibly nonreduced). 
Note that it is our convention that root systems contain O and so .6. x := .6. \ {O} is 
an irreducible root system in the usual sense (see for example [MP, §3.2]). From 
the classification we know that 

.6. = Ai, Be, Ce, De, E6, E7, Es, F4 or G2 (the reduced types) 

or 
.6. = BCl (the nonreduced type). 

In particular the rank one root systems are 

A1 ={-a,0,a} and BC1 ={-2a,-a,0,a,2a}, 

where a :f O. Finally we assume that A is a finitely generated free abelian group 
of rank n, and 80 A := zn. 

1 Lie tori 

We begin with the definition of aLie torus. Lie tori were defined first by Yoshii in 
[Y2]. The definition we give is an equivalent definition suggested by Neher in [N]. 
In this definition a V will denote the coroot of a for a E .6. x . That is, a V is the 
element of the dual space of span F (.6.) so that (3 1-7 (3 - ((3, a V) a is the refiection 
corresponding to a in the Weyl group of .6., where ( , ) is the natural pairing of 
spanF(.6.) with its dual space [MP, § 3.2]. 

lThe first author gratefully acknowledges the support of NSERC. 
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Definition 1.1. ALie torus is aLie algebra L over F satisfying: 

(LTI) L has two algebra gradings 

L = EB La and L = EB LÀ 
aEA ÀEA 

which are compatible in the sense that L = L:a,À L~, where L~ = La n LÀ. 
(80 we assume that [La, L.el C La+.e with La+.e interpreted as O if Q+fJ fi. .ó., 
and we assume that [L", V'l C L"+J.L.) 

(LT2) We have 

(i) L~ i- O for Q E .ó. x, ~Q fi. .ó. x. 

(ii) If Q E .ó. x , >. E A and L~ i- O, then L~ = Fe~ and L=~ = Ff~, 
where 

[[e~,J;]'x~l = (fJ,QV)x~ 

for x~ E L~, fJ E .ó., J1, E A. 

(LT3) L is generated as an algebra by the spaces La, Q E .ó. x. 

(LT4) Ais generated as a group by sUPPA (L), where sUPPA (L) := {.X E A I LÀ i
O}. 

In that case .ó. is called the type of L, the rank of .ó. is called the rank of L, and 
n (the rank of the group A) is called the nullity of L . 

Axioms (LTl) and (LT2) are of course the main axioms in this definition. In 
particular (LT2) teUs us that we have a plentiful supply af sh-triples in L. (LT3) 
and (LT4) are less important. If (LT3) does not hold we can just replace L by the 
subalgebra generated by the root spaces La, Q E .ó. x. Similarly, if (LT4) does not 
hold we can replace A by the subgroup of A generated by the support af L. 

ALie torusL will be said to be centreless if its centre Z(L) is O. We nate that 
if L is an arbitrary Lie torus, then the quotient LjZ(L) is a centreless Lie torus 
[Y2, Lemma 1.4). For the remainder of this article, we will focus on centreless Lie 
tori. 

2 Connection with EALA '8 

Yoshii and Neher were interested in Lie tori primarily because of their connection 
with extended affine Lie algebras. We now describe this connection in arder to 
motivate the study of Lie tori. For convenience of reference, we assume in this 
sj:!ction and the next that F is the field af camplex numbers. (This assumption 
can be dropped if the statements are suitably madified [N].) 
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Suppose that g is a tame extended affine Lie algebra (EALA). Thus by defi
nition g has a split toral subalgebra 1l and a nondegenerate invariant symmetric 
bilinear form satisfying certain natural axioms generalizing the properties of affine 
Kac-Moody Lie algebras [HT, AABGP]. 

Let gc be the core of gj that is, let gc be the subalgebra of g generated by the 
nonisotropic root spaces of g. Let gcc = gcjZ(Çc), the centreless core of g. Then 
gcc is a centreless Lie torus. 

Conversely, Yoshii showed that any centreless Lie torus occurs as the centre
less core of some tame EALA [Y2, Theorem 7.3]. Moreover, Neher described a 
procedure for constructing alI tame EALA's with a given centreless Lie torus as 
centreless core [N, Theorem 14]. (See also [BGK, Section 3] and [BGKN, Section 
3] in the case when 6. is of type Ai, I! 2: 2.) 

In particular, if g is an affine Kac-Moody Lie algebra (= tame EALA of nul
lity 1 [ABGP]), then gc = g' and gcc = g' jZ(Ç') is a centreless Lie torus of 
nullity 1. In this case, it is well known that g can constructed by double exten
sion from gcc' 

3 Examples 

With this connection with EALA's as motivation, we now go on to discuss the 
status of the classification problem for Lie tori. For this we need a couple of 
examples of Lie tori. 

Example 3.1. Let 9 be a finite dimensional sim pIe Lie algebra of type Ó. (and 
so Ó. is reduced). Let 

L = 9 ® F[tt1 , ... , t~l], 

where F[tt1 , ••• ,t!l] denotes the algebra of Laurent polynomials over F. L (or 
often its universal central extension) is called a toroidal Lie algebra. Then L has 
a root grading coming from the root grading of 9 (obtained by choosing a Cartan 
subalgebrafor 9), and L has a A-grading coming from the A-grading ofthe Laurent 
polynomials (obtained by choosing a basis for A). Using these gradings, L is a 
centrelessLie torus. (In fact this example is one of the explanations for the term 
Lie torus.) 

In particular, if 9 = sll+1(F), then 

L = SltH (F) ® F[tt1 , • .• ,t~l] = sltH (F[tt 1 , . .. ,t~l]) 

is a centreless Lie torus of type Ai and nullity n. 

There is an important deformation of this last example introduced by Berman, 
Gao and Krylyuk in [BGK]. 

Example 3.2. Let q = (qij) E Mn(F) be a quantum matrixj that is suppose that 
qii = 1 and % = qj/. Let Fq = Fq [tt 1 , ... , t!l] be the unital associative algebra 
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with basis consisting ofthe monomia1s t~l . . . t~, i!, . .. , in E Z, and multiplication 
determined by the relations 

tjt; = qijtitj. 

This associative algebra Fq is called the quantum torus determined by q. (A1-
ternatively, Fq is a twisted group ring of the group zn.) If we choose a basis 
B = {Ci!, . .. , Cin } for A, we can give Fq a unique A-grading, cal1ed the toral A
grading determined by B, by assigning the degree Cii to the generator ti of Fq. 
Let 

L = Sll+1(Fq):= {X E Mnxn(Fq) I tr(X) E [Fq, Fq]}. 

Then L is aLie algebra under the commutator product, L has a natural At
grading, and L has a A-grading coming from the toral A-grading of the coordinate 
algebra Fq. Once again, using these gradings, L is a centre1ess Lie torus of type 
A.~ and nullity n. (This example is another exp1anation for the term Lie torus.) 

Furthermore, Berman, Gao and Kry1yuk showed in [BGK} (although they 
didn't use this 1anguage) that any centre1ess Lie torus of type Ai , where f ~ 3, is 
isomorphic to sl(+! (Fq) for some q as in Examp1e 3.2. This then is a classification 
result for centreless Lie tori of type Ai , f ~ 3. Similar classification results have 
been proved in recent years for all types of rank ~ 2 except type BC2 • 

We do not have anything to say in this article about the type BC2 and so we 
now turn our attention to the rank 1 types. 

4 Coordinatization of rank 1 Lie tori 

Assume once again that F is an arbitrary fie1d of characteristic O. It was shown by 
Allison and Yoshii in [AY, Theorem 5.6} that the centre1ess core of any EALA of 
rank 1 is coordinatized by an algebra with involution called a structurable torus. 
This argument can be easily modified to show the same result for centreless rank 1 
Lie tori. In this section, we outline that argumento First we need two definitions. 

Definition 4.1. A structurable algebra is a pair (A, *) consisting of a unita1 (in 
general nonassociative) algebra A together with an involution * (an anti-auto
morphism of period 2) so that the following 5-linear identity ho1ds: 

{ xy{zwq}} - {zw{xyq}} = {{xyz }wq} - {z{yxw}q}, 

where 
{xyz } := (xy*) z + (zy*)x - (z x*)y. 

Definition 4.2. A structurable torus is a structurable algebra (A, *) satisfying: 

(STl) A = EEhEA AÀ is A-graded as an a1gebra with involution (so the product 
and the invo1ution are graded). 
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(ST2) If À E A and AÀ i o, then AÀ = Fx and A -À = Fx- l , where 

and 

(ST3) A is generated as a group by SUPPA (A) 

In that case the integer n (the rank of A) is called the nullity of (A, *). 

Suppose now that L is a centreless rank 1 Lie torus. Since the root system 
of type AI is contained in the root system of type BCI , we can assume that 
Do = BCI . Thus 

Do = {-2a, -a, O, a, 2a}. 

Hence the root grading of L becomes 

(1) 

That is, we have a 5-grading for L. Further, if we set 

e = e~, f = f~ and h = [e,JJ, 

then {e, h, J} is an sh-triple and the 5-grading (1) is obtained from this triple as 
the eigenspace decomposition for ad(h) (corresponding to the eigenvalues -4, -2, 
0,2,4 respectively). 

Now 5-gradings obtained from sh-triples in this way have been studied, first 
by Kantor in [KI, K2] and subsequently by Allison in [AI, A2] and Benkart and 
Smirnov in [BS]. It follows from this work that the Lie torus L can be constructed 
from a structurable algebra. 

More precisely, it follows that the vector space A = Lo. can be given a multi
plication and involution * so that (A, *) is a structurable algebra and that 

L = K(A,*), 

where K (A, *) is the 5-graded Lie algebra obtained from (A, *) by means of a 
construction called the Kantor construction [K2, A2]. 

So far this analysis has taken into account only the root graded structure of L. 
It has not exploited the existence of the A-graded structure on L or the existence 
of the plentiful supply of sh-triples described in (LT2). In fact, using these tools, 
it follows that the coordinate algebra (A, *) is a structurable torus. 

Conversely one shows easily that given a structurable torus, the Lie algebra 
K (A, *) is naturally a centreless Lie torus of rank 1. In this way, the problem 
of classifying centreless Lie tori of rank 1 becomes equivalent to the problem of 
classifying structurable tori. 



104 B. Allison, J. Faulkner, and Y . Yoshii 

5 Structurable tori 

When discussing the classification problem for structurable tori, it is natural to 
first consider the case when the involution is the identity. 

Indeed, if (A, *) is a structurable torus and * = id, then the corresponding Lie 
torus L = K (A, *) satisfies 

L 20i = L-2Oi = O, 

and so L has type A 1 . In that case A is a Jordan torus, which is defined as a 
unital Jordan algebra satisfying axioms the axioms (ST1)-(ST3) (with * = id), 
and the construction A H K(A) := K(A, id) is the classical Tits-Kantor-Koecher 
construction. 

Jordan tori, and hence centerless Lie tori of type A1 ' were classified by Yoshii 
in (Y1]. It turns out that Jordan toriare strongly prime Jordan algebras, and that 
examples of Jordan tori exist of hermitian type, Clifford type and Albert type (in 
the terminology of McCrimmon and Zelmanov [McZ]). In fact (if n ::::: 3) there is 
just one torus of Albert type, an algebra calIed the Alberl torus. 

We now turn our attention to structurable tori with nonidentity involution. 
These algebras were studied by Allison and Yoshii in [AY] , where a number ofbasic 
properties were developed resulting in a classification in nullities 1 and 2. In recent 
work by the three authors of this article, we have obtained a fulI classification of 
structurable tori with nonidentity involution. The rest of this section will discuss 
that work, beginning with an example. 

Example 5.1. Any alternative torus with involution (defined as a unital alter
native algebra with involution satisfying (ST1)-(ST3» is a structurable torus. In 
particular, suppose that n = 1,2,3, and let 

A(n) = CD(F[tt1, ... , t;l], t1, ... , tn) 

be the algebra obtained by n applications of the Cayley-Dickson process start
ing fromthe ring F[tr=I, ... , t;l] of Laurent polynomials and using the scalars 
tI, ... ,tn. These algebras were introduced by Berman, Gao, Krylyuk and Neher 
[BGKN] in their study of EALA's of type A 2 • (A(3) is called the octonion torus, 
and A(2) is called the quaternion torus. A(l) could similarly be called the binarion 
torus folIowing the terminology in [Me].) If we choose a basis B = {a!, ... , (1 n} 
for A, then A(n) has unique A-grading, called the toral A-grading determined 
by B, obtained by assigning the degrees a1, ... ,an to the canonical generators 
of A(n). AIso, A(n) has the standard involution Q which anti-fixes the canonical 
generators. In this way, (A(n), q) is a alternative torus with involution and hence 
a structurable torus for n = 1,2, 3. 

Note also that the quaternion torus A(2) has a nonstandard involution *m, 
called the main involution, that fixes the two canonical generators. Thus if n = 2, 
we obtain another important structurable torus (A(2) , *m) . 

We have just considered alternative tori with involution as examples of struc
turable tori. It is natural to ask whether any structurable torus with nontrivial 
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involution is alternative, but examples constructed from hermitian forms [AY, Ex
ample 4.6] teU us that this is not true. However one does know that skew elements 
(elements 8 so that 8* = -8) in a structurable algebra behave very much like el
ements in an alternative algebra. For example there is an analog due to Smirnov 
[S] of Artin's theorem for skew elements in a structurable algebra (any two such 
elements generate an associative algebra). It is reasonable to expect then that a 
structurable torus generated by skew elements is in some sense dose to alternative. 
This philosophy is supported by the following dassification theorem. 

Theorelll 5.2. Suppose (A, *) is a structurable torus that is generated as an alge
bra by skew-elements. Then (A, *) is the tensor product of tori from the following 
list: 

(A(1),Q), (A(2),Q), (A(3),Q) , (A(2) , *m), (F[ti'l , .. . ,t;l],id). 

More precisely 

(a) lf A is associative, then there is an internai direct sum decomposition A = 
AI EB . . . EB Ak+2 of A so that 

(2) 

as A-graded algebras, where k ~ O, (Ai , *) = (A(2) , Q) for 1 :S i :S k, 
(Ak+l , *) = (F, id) , (A(1), Q) or (A(2) , *m), (Ak+2 ' *) = (F[ti'l , ... , t;l], id) 
for some q ~ O, and (Ai, *) has a toral Ai-grading for 1 :S i :S k + 2. 

(b) lf A is not associative, then there is an internai direct sum decomposition 
A = AI EB 11..2 EB 11..3 of A so that 

(3) 

as A-graded algebras, where (A1 ,*) = (A(3),Q), (A2,*) = (A(p) , Q) for some 
p = 1,2,3, (A3 , *) = (F[ti'l, .. . , t;l], id) for some q ~ O, and (Ai, *) has a 
toral Ai-grading for i = 1, 2,3 . 

The tensor products on the right hand sides of (2) and (3) require some further 
explanation. The underlying vectors spaces for these algebras are respectively 
AI ® . .. ® Ak+2 and AI ® A 2 ® A3' In each case a product of pure tensors 
is obtained by multiplying the corresponding factors, and the involution is the 
tensor product of the involutions on the factors. Finally in each case the degree 
of a pure tensor with homogeneous factors is defined to be the sum of the degrees 
of the homogeneous factors. 

Conversely, the tensor products on the right hand sides of (2) and (3) are struc
turable tori and, with two exceptions, they are generated by skew-elements. (The 
exceptions occur in (2) when k = ° and (Ak+l,*) is either (F,id) or (A(2),*m).) 

Some features of the proof. The proof of Theorem 5.2 has some interesting fea
tures, and we now discuss some of them briefly. 
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First, using the fact that A is generated by skew elements, one can show that 
A has no homogeneous zero divisors: 

D -:fi x E A'x, D -:fi Y E A~ :=;. xy -:fi D. 

Thus >.., Jl E sUPPA (A) :=;. À + Jl E sUPPA (A). So since SUPPA (A) generates A as 
a group, sUPPA (A) = A. That is A has full support. 

If À E A, we therefore have AA = Fx, where x -:fi O. Now * stabilizes AA and 
has period 2, and so x* = (-l)Ç(,X)x, where ~(À) E {D, I}. Thus we have afunction 
~ : A -+ {D, I}. 

One next shows that ~ is constant on cosets of 2A, and so ~ induces a function 
~ : A/2A -+ {D, 1} = lF2 • We regard A/2A as a vector space over lF2 , and from now 
on we think of ç as a function defined on this vector space. 

Suppose now that A is associative. Then ~ : A/2A -+ lF2 turns out to be a 
quadratic form over lF2 • So, using the classification of quadratic forms, we obtain 
an orthogonal decomposition of ç which leads to the tensor product decomposition 
in (a). 

Suppose next that A is not associative. Then ~ is not a quadratic formo In 
fact the obstruction to ç being a quadratic form turns out to be exactly the 
obstruction to A being associative. Nonetheless we can still use the language of 
quadratic forms, and we obtain an orthogonal decomposition of ~ which leads to 
the tensor product decomposition in (b). As one might suspect, obtaining the 
appropriate orthogonal decomposition for ~ in part (b) is the most difficult part 
of the proof. O 

Theorem 5.2 gives a complete classification of structurable tori that are gen
erated by skew-elements. Very recently the authors have also obtained a clas
sification, when F is algebraically closed, of structurable tori with nonidentity 
involution that are not generated by skew-elements. These algebras are closer in 
their behavior to Jordan tori than they are to alternative tori. In particular, they 
do not in general have full support and so new techniques are needed for their 
classification. It turns out that the classification includes a family of algebras con
structed from graded hermitian forms over a quantum torus (see [AY, Example 
4.6) for a description of these). In addition there are 6 new exceptional tori that 
occur. 

6 Central c10sure 

We conclude this article with a brief discussion, based on work of Neher [N, 
Theorem 7], about the central closure of a centreless Lie torus. 

Theorem 6.1 (Neher). Suppose that L is a centreless Lie toros 01 nullity n. 
Let Z be the centroid 01 L . Then 

Z::: F[tt1 , ... , f;l) 
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for some O ::; P ::; n, and hence 

Z := quotient field of Z ~ F(tl, ... ,tp ). 

Suppose further that Lhas type =J Al. Then L is a finitely generated free Z
module, and if we set 

L:=Z®zL, 

L is a finite dimensional central simple Lie algebra over Z. 

The Lie algebra L occurring in the second part of this theorem is called the 
central closure of L. Now L embeds in its central closure. Hence (except in type 
A) a centreless Lie torus L can be regarded as a Z-form of a finite dimensional 
central simple (in general nonsplit) Lie algebra L over a rational function field Z. 

Example 6.2. Let L = K(A, *), where (A, *) = (A(3), Q) ® (A(3), Q) as in (3) 
of Theorem 5.2. Then L is a centreless Lie torus of type BCl and nullity 6. 
Moveover, Z is isomorphic to the algebra of Laurent polynomials in 6 variables 
and L is a finite dimensional nonsI2!it central sim pIe Lie algebra of ~solute type 
Es over the rational function field Z in 6 variables. This Lie algebra L is not new. 
For example Lie algebras constructed using the Kantor construction from tensor 
products of octonion algebras over fields have been studied in [A3]. Moveover, if 
the base field is extended further to the algebraic closure of Z, one obtains the 
model ofthe split simple Es described in [K2]. However, the (infinite dimensional) 
centreless Lie torus L and the corresponding tame EALA's (see §2) are new. 
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