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PolynomiaI Identities in T-prime AIgebras 1 

Plamen Koshlukov 

Abstract: We survey results concerning the polynornial 
identities satisfied by "important" algebras. We discuss classi­
cal and new facts about the polynomial identities satisfied by 
the matrix algebra of order two, by the Grassmann (or exte­
rior) algebra, and by its tensor square. We give details about 
two situations that are quite different. First when one con­
siders algebras over a field of characteristic 0, using methods 
from the theory of representations of the symmetric group, 
one obtains quite complete descriptions. On the other hand, 
when the base field is of positive characteristic, the picture 
is still rather unclear. We discuss ordinary, weak and graded 
polynomial identities, and give some recent results concerning 
algebras over infinite fields of positive characteristic. 

Key words: Polynomial identities, Relatively free alge­
bras, Specht problem, Graded identities. 

One of the most important classes of algebras in the PI theory is that of the 
T-prime algebras. Their importance was first revealed by the results of Kemer; 
they are the "building blocks" in the structure theory developed by Kemer for 
the T-ideals in the free associative algebra, see [22) for a detailed account. Let us 
recall some of the definitions and conventions used in the sequeI. 

Let K be a fixed infinite field, all algebras, vector spaces etc. are considered 
over this field K. Suppose that X = {Xl, X2, ... } is an infinite (countable) set, 
and let K(X) be the free associative algebra freely generated over K by the set 
X. This means that K (X) is a vector space with a basis consisting of 1 and all 
(noncommutative) monomials in the variables from X, and the multiplication is 
induced by the concatenation of monomials. If A is an algebra, the polynomial 
f(Xl, .. . , xn ) E K(X) is a polynomialidentity (abbreviated as PI), or an identity, 
for A if f(a1, . .. , an ) = O in A for every choice of a, E A. The set of all identities 
T(A) of Ais an ideal of K(X) which is called the T-ideal of A. An easy verification 
shows that an ideal 1 of K(X) is T-ideal if and only if it is closed under all 
endomorphisms of the algebra K(X). The class of all algebras that satisfy the 
identities of T(A) is the variety of algebras var A generated by A. 

The algebra A is called verbally prime (or T-prime) if its T-ideal T(A) is T­
prime i.e., prime in the class of all T-ideals of K(X). In other words T(A) is 
T-prime iffor every T-ideals 1 and J, the inclusion 1 J ç T(A) implies 1 ç; T(A) 
or J ç T(A). The T-ideal T(A) (and the algebra A, and the variety var A) 
is semiprime if 12 ç; T(A) implies 1 ç; T(A) for every T-ideal I. This means 
that there do not exist nilpotent T-ideals that contain T(A) . The quotient al­
gebra K(X)jT(A) is the relatively free algebra in the variety var A. Denote by 
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Xi (the same letters) the images of the Xi E X under the canonical homomor­
phism K(X) ---+ K(X)jT(A). It is easy to show that if B E var A and bj E B 
are arbitrary then there exists unique homomorphism K(X)jT(A) ---+ B such 
that Xi >-t bj for every i. This justifies the name "relatively free algebra" for 

K(X)jT(A). 
Now we recall the definition of some important algebras. 
Let Mn(K) be the full matrix algebra of order n over K, G the Grassmann (or 

exterior) algebra of an infinite dimensional vector space V over K. One chooses 
a basis {ej I i E N} of V such that ej ej = Jjj in G (here Jij = ° if i =1= j and 
Jjj = 1 is the Kronecker symbol), and then 1 and the monomials ei, ej, ... ejk' 

i l < i 2 < ... < ik, k > 1, form a basis of G. In this notation G = Go E& G l 

where Go is the centre ~f G and is spanned by all monomials of even length, i.e. 
the monomials such that k is even, and G 1 is spanned by the monomials of odd 
length. Set M n (G) the algebra of the n x n matrices with entries from G 

The algebra Mk,! consists of the matrices (~ ~) where A E Mk(G O), 

D E MI (Go), B and C being matrices k x I and I x k respectively, whose entries 
belong to G l . 

One of the most important ingredients in the structure theory of T-ideals 
developed by Kemer is the following theorem. 

Theorem 1 [22, Chapter 1.3, pp. 21-25] Let char K = O. Then: 
1. If V is a nontrivial variety, then V = Nk W where Nk is the variety of ali 

nilpotent of class :S k algebras, W is the largest semiprime variety contained in 
V, and the product of two varieties M N consists of ail algebras A having an ideal 
I that belongs to N, and whose quotient Aj I lies in M. 

2. The T-ideal I is semiprime if and only if 1= 11 n ... n Iq where the T-ideals 
Ij are T-prime. 

3. The only T-prime ideals are the T-ideals of the algebras Mn(K), Mn(G), 
Mk,/. 

Hence the description of the T-prime ideais is extremely important. In char­
acteristic O, the theory of Kemer gives such a description in terms of the iden­
tities satisfied by some concrete and "nice" algebras. On the other hand, when 
char K = p > 0, there is no such good description. The theory is relatively well 
developed for finitely generated algebras only. See for example [24] for future ref­
erence. The above T-prime ideais remain T-prime in positive characteristic but 
there appear new ones, the so-called irregular T-prime ideaIs. Their description 
is still far from our understanding, and the picture is quite unclear, see [25]. Note 
only that every associative algebra over a field of positive characteristic p > O 
satisfies some standard identity Sn (Xl, X2, ... , xn ) ([23]). Here the standard poly­
nomial Sn is defined as 

Sn(Xl,X2," .,xn ) = 2: (-1)"X a (I)X a (2)" ,xa(n) 

aESn 

for (1 running over the symmetric group Sn acting on {I, 2, ... , n}, and (-1)" 
standing for the sign of the permutation (1. Notice that Sn is multilinear (i.e. 
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multihomogeneous and linear in every variable), and skew symmetric. Hence 
every PI algebra over a field of positive characteristic satisfies some identities of a 
finite dimensional algebra, since Sn is an identity for every algebra of dimension 
n - 1. This fact has no analog in characteristic o. For example, the Grassmann 
algebra G of an infinite dimensional vector space over a field of characteristic O 
satisfies no standard identities. (The situation in characteristic p is different since 
G satisfies Sp+I and p + 1 is the minimal degree of a standard identity that holds 
in G. Therefore G satisfies the identity St if and only if t > p.) 

Let f and 9 be two polynomials in K (X). Then 9 follows from f (or is a 
consequence of f) as a PI if 9 E (ff, the least T-ideal that contains f. Thus 9 
follows from f if and only if in every algebra A where f is a PI, 9 also is. The system 
ofpolynomials {fi I i E I} forms a basis ofthe T-ideal T(A) ifT(A) coincides with 
the least T-ideal that contains {fi I i E I}. Such a basis is called minimal if no 
polynomial can be excluded from it. Another extremely important result of Kemer 
states that when char K = O, every nontrivial T-ideal is finitely based i.e. has a 
finite basis, see [22, Theorem 2.4]. This theorem answers in aflirmative the famous 
Specht Problem. The original problem was stated as to whether the T-ideal of 
any associative algebra over a field of characteristic O is finitely based; see below 
other (equivalent) reformulations of this problem. But one may ask an analogous 
problem for algebras over any field, or even for Lie, Jordan, alternative algebras 
etc. The answer is negative in the case of Lie algebras over a field of positive 
characteristic, as shown in [49] and [13], and positive for finitely generated Jordan 
algebras under certain restrictions [42], finitely generated alternmative algebras 
[19], and finite dimensional Lie algebras [20], over fields of characteristic O. 

It is not diflicult to show that the positive answer of the Specht problem is 
equivalent to any one of the following assertions. 

• There does not exist an infinite sequence of polynomials ft, h, ... , in the 
free associative (Lie, Jordan etc.) algebra such that for every i, fi does not 
belong to the T-ideal generated by {ft, h,· .. , fi-I}. 

• Every strictly ascending chain of T-ideals is finite. 

• Every strictly descending chain of varieties is finite. 

• Every nonempty set of T-ideals possesses a maximal elemento 

A variety (or a T-ideal) is Spechtian if every strictly ascending chain of T­
ideaIs that contain the given ideal is finite. One modifies without difliculties the 
above four assertions in this case. 

An important problem in PI theory is the description of the identities satisfied 
by "important" algebras. Such algebras include the T-prime ones due to evident 
reasons. 

The following notation wiII be used throughout. If A is an associative algebra 
then introducing the commutator product [a, b] = ab-ba one obtains aLie algebra 
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denoted by A- , and by means ofthe circle product aob = (ab+ba)j2 one obtains 
a Jordan algebra denoted by A+; here a, b E A. We suppose the commutators left­
normed i.e. , [a, b, e] = [[a, b] , eJ . If L(X) is the Lie subalgebra ofK(X)- generated 
by X then L(X) is canonically isomorphic to the free Lie algebra freely generated 

by X over K . 

1 Identities in matrix alge bras 

Here we survey results concerning the polynomial identities satisfied by the matrix 
algebras Mn = Mn (K) of order n over the field K. The first deep result about 
the T-ideals of these algebras was the famous Amitsur-Levitzki theorem (1950) . 
It states that the lowest degree of a polynomial identity satisfied by M n is 2n, and 
the standard polynomial S2n (Xl , X2, .. . , X2n) is an identity for M n . One can see . 
various proofs of this important result in [14]. We recommend the one given by S. 
Rosset in [41J . This proof is very elegant, and it requires virtualIy no knowledge 
except for some notion of tensor product and Grassmann algebras. And it has 
one further advantage, it is only two pages long (without omitting details "to the 
reader") . Probably the most general result about the identities satisfied by M n is 
given in the not less famous theorem due to Procesi [35] and Razmyslov [38], see 
[39] as well, that describes the trace identíties in Mn . Recall that the algebra of 
the polynomials with trace is defined , roughly speaking, in the folIowing manner. 
One lets some (or alI) variables appear in traces. Here the trace is a symmetric 
bilinear function that satisfies alI properties of the usual trace of matrices , see the 
above references for details . 

Notably, the only case where there exists a "good" description of the identities 
satisfied by M n is the case n = 2, and in particular, char K = O. Thus in [37] it 
was proved that when char K = O the T-ideal T(M2 ) is finitely based. In fact it 
follows from the proof that a basis of this T-ideal consists of 9 identities. Later 
in [12] it was shown that the T-ideal of M 2 (J() , char J( = O, is generated by the 
identities 

The second identity is the HalI identity. Furthermore, these two identities are 
independent, that is, neither of them implies the other. The proof of the finite 
basability of T(M2 ) in [37] depended on two facts that are of independent interest 
and deserve attention. First it was shown in [37] that the identities of the Lie 
algebra sl2 = sl2 (K) of alI traceless matrices of order two are finitely based. 
In fact it was shown that these folIow from 3 identities. Furthermore, a basis 
consisting of single identity, namely [x 1 o X2 , X3], of the weak polynomial identities 
for the pair (M2 , 812 ) over a field of characteristic O, was obtained as wel!. 

Let us recalI whata weak identity is. Suppose A is an associative algebra 
and L is aLie subalgebra of A-. The polynomial f(Xl , X2,""Xn ) E K(X) is 
a weak identity for the pair (A , L) if f(b l , b2 , . . . ,bn } = O in A for every bi E L. 
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The weak identítíes of (A, L) form an ideal in K (X) that is closed under Lie 
substitutions, and is called weak T-ideal. One defines analogously varieties of 
pairs, consequences etc. for weak identities. The weak identities were introduced 
by Razmyslov (see for example [39]) and are an important tool in the study of 
identities in associative, Lie and Jordan algebras. See for generalisations and 
further reference [26, 27]. We note only that sometimes the weak identíties are 
called identities of representations of Lie algebras. 

The T-ideal of M2(K) was tightly described in characteristic O, see for example 
[36], and [14] for further reference. At least in the case of characteristic O it is 
known almost anything concerning the identities satisfied by M". When the base 
field is of positive characteristic, the situation is 1ess satisfactory but still we know 
something about the T-ideals T(Mn ). Thus for example, in the papers[32, 16, 17] 
finite bases for the identitíes of the matrix algebra Mn (K) over a finíte field K 
were described for n = 2, 3, 4, respectívely. Note that the methods of proof 
when K is finite differ sígníficantly from those used in characteristic O. When 
char K = O one may consíder multilínear polynomíal identítíes, and employing 
methods of the representation theory of the symmetric and of the general línear 
group and/or invariant theory one obtains quite complete results. In the case of 
a finite field neither of these works but group theoretical methods, combinatorics 
and structure theory of rings work fine. The case of an infinite field K of positive 
characteristic falls somewhere among these two "extreme" cases. We shall survey 
the known results in this direction, when the characteristic of the field K is an 
odd prime p. 

In [8, 7] it was developed the invariant theory of the classícal groups in a 
characteristíc-free way. The results of [8, 7] yíelded various descriptíons of the 
invaríants of the T-ídeal of M2, some of them characteristíc-independent, see for 
example [36], [15]. In [45], S. Vasilovsky proved the followíng remarkable resuIt, 
using essentially methods of the invariant theory of the orthogonal group. 

Theorem 2 Let K be an infinite field of characteristic p # 2. Then the identities 
of the Lie algebra Sl2 (K) follow from the identity 

V5 = [Xl, Xz, [X3, X4], X4] + [X!, x4, [X2, X4], X3]. 

Furthermore, in [26] it was shown that the weak identities for the pair (M2, Sl2) 
follow from the identity [Xl OX2, X3] whenever K is an infinite field of characteristic 
p # 2. The methods employed in [26] were based again on the invariants of the 
orthogonal group. See [27] for further generalisations and applications of these 
methods. 

In this way all the "prerequisites" were obtained, and in [28] it was established 
the following theorem. 

Theorem 3 Let K be an infinite field of characteristic # 2. Then the polynomial 
identities for the algebra M 2 (K) admit basis consisting of the identities 
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h5 [Xl, X2, X3] O [X4 , X5] + [Xl, X2] O [X4, X5, X3] 

v~ [Xl> X2, [X3 , X4]] O [X5, X6] + [Xl, X2 , [X3, X5]] O [X4, X6] 
+ [Xl , X4, [X2, X5]] O [X3 , X6] + [Xl, X5, [X2, X4]] O [X3 , X6] 

r6 [Xl, X2] o ([X3, X4] O [X5, X6]) - (1/8)([Xl, [X3, X4], [X5, X6], X2] 
[Xl, [X5, X6], [X3, X4], X2] - [X2, [X3, X4], Xl, [X5, X6]] 

[X2, [X5, X6], Xl, [X3 , X4]]) 

Ftlrthermore, 
(i) When char K 2: 7 the identities S4 and h5 form a minimal basis; 
(ii) When char K = 3 the identities S4, h5 and r6 are independent. 

Note that the form of the identity h5 here is different from the one defined earlier; 
an easy verification shows that these two forms are equivalent. 

This means that when char K = 3 one needs at least three identities for gen­
erators of the T-ideal T(M2 ). The last fact was established in [18] where it gave a 
negative answer to a conjecture due to A. Kemer. The conject.ure asked whether 
t.he infinite dimensional Grassmann algebra G over a field K of characteristic 3 
satisfies all identities of M2 (K). (Observe that it does satisfy 84 and the Hall 
identity h5 .) Of course there still remain open questions concerning the T-ideal 
T(M2 (K)) . Some of them follow. 

1. Describe minimal bases of the identities for M 2 in t.he cases of char K = 3 
and 5. 

2. Describe basis of the identities for M 2 in the case char K = 2. 

3. Describe the central polynomials for M 2 (K) when char K = p > 2. 

4. Describe the numerical invariants of T(M2 (K)) when char K = p > 2. 

5. Describe the subvarieties ofthe variety generated by M 2(K) when char K = 
p> 2. In particular, is it true that every proper subvariety lies in the variety 
NkA of all nilpotent of class k-by-commutative algebras, for some k? (This 
is the case in characteristic O.) 

We conjecture that when char K = 3 the minimal basis of identities for M 2 

should consist of the identities 84, h5 and r6. The case char K = 5 should yield 
the same basis as that when char K > 5 (and char K = O). Note that the standard 
identity 84 implies the identity V5 hence all Lie identities of 812 are (associative) 
consequences of 84. The proof of this fact is quite straightforward but lengthy 
and technical, see for example [28] . Probably some computer algebra methods 
would help in obtaining, in the cases of characteristic 3 and 5, minimal bases of 
the identities of M2 (K). 

Concerning the second question it seems difficult to make any guess. The Lie 
algebra 812 in this case is nilpotent (as Lie algebra), and the identity matrix is 



Polynomial ldentities in T-prime AIgebras 97 

traceless as welJ. We mention that the Lie algebra M 2 (I<)- has no finite basis of 
its identities, see for example [49]. 

A partial answer to the fourth question is announced in [6], where a finite set 
of generators of the T-space of the central polynomials for M 2 (I<) was described 
(over an infinite field of characteristic p > 2; in characteristic O the same was done 
in [33]). 

It seems plausible that using results and methods from [45, 26, 27, 28, 6] one 
may describe the numerical invariants of the T-ideal T(M2 (I<)) when char I< = 
p> 2. Some results in this direction can be found in [36]. 

A natural question arises. We know quite a lot about the identities satisfied 
by M2, what about these of Mn, n > 2? Unfortunately it is known very little 
about them. There arise technical difticulties that seem formidable. But there 
exist problems of principal nature. It seems that the main one is that for Mn, 
n > 2, one lacks the good structure of the subvarieties of the variety generated 
by M 2 • But it is still unclear which identities in addition to 86 can participate in 
a finite basis of T(M3 ) even in characteristic O. It is only known that 86 and the 
identity of algebraicity (see [14], Chapter 7) do not generate the T-ideal T(M3 ). 

This means that one needs more identities in order to generate T(M3 ). 

That is why one is led to consider other types of polynomials and somewhat 
"weaker" kinds of identities. We already mentioned the Procesi-Razmyslov theo­
rem that describes the trace identities in M n . Later we consider graded polynomial 
identities in matrix and other T-prime algebras. 

2 Finite bases of identities in concrete algebras 

We considered in detail the identities satisfied by the matrix algebra of order 
two. Here we give a brief account about the identities in some other important 
algebras such as the upper triangular matrices, the Grassmann algebra and it,s 
tensor square. In fact little is known about the concrete identities satisfied by 
other algebras. 

Suppose K is an infinite field. The polynomiaI identities of the Grassmann 
algebra follow from the identity [Xl, X2, X3] as it was shown in [31] when char I< = 
O. In fact , in [31] it was obtained detailed information about the structure of the 
T-ideal of G . The identities in G are described in every characteristic and even 
over finite fields, see [5, 50]. (If the latter are not available, see for very brief 
account [18].) 

Another class of algebras where the polynomial identities are described in 
detail are the algebras of upper triangular matrices of any order. See for example 
[14, Chapter 5] for reference and further information. 

Concerning the T-prime algebras, in [34] it was obtained an explicit basis of 
the identities satisfied by the algebra G (9 G over a field of characteristic O. It 
follows from the structure theory of Kemer that this algebra satisfies the same 
polynomial identities as M1, l, see [22, p. 26]. We shall discuss this fact later. 
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In the case of Lie algebras , we already mentioned the result of Vasilovsky [45] 
about the identities for s12 ' No idea how the identities even of sl3 look like. In 
[51] the Lie T-ideals containing [[Xl, X2, X3), [X4 , X5, X6]) in characterist.ic O were 
described. Note that such T-ideals played a crucial role in the paper [49]. See for 
example [2 , 39] for the current situation in the case of Lie algebras. Note that 
knowing the identities in certain Lie algebras yields a lot of information about the 
identities in related associative algebras, see various examples in [39]. 

That is why one is led to study other kinds of identical relations. We already 
discussed some applications of the weak identities. Another kind of identities are 
these with involution , trace identities, and most important , graded identities. 

3 Graded identities 

Let H be an additive abelian group (or semigroup), and A an algebra. Suppose 
that A = Ef7gEH Ag is a direct sum of vector subspaces such that AgAh ç Ag+h 
for every g, h E H. Then A is H-graded algebra. When H = 'Z,/2'Z, = 'Z,2 is 
the cyclic group of order 2 we call it simply graded algebra, and when H is the 
cyclic group of order n we speak about n-graded algebras. Let X = UgEH X g be 
a disjoint union of infinite sets, then one defines in a standard way H-grading on 
the free associative algebra K(X). A polynomial f E K(X) is H-graded identity 
for the H-graded algebra A if f vanishes whenever one substitutes the variables 
of X g for elements of the component Ag of A . The simplest (and one of the most 
important) example of a graded algebra is the Grassmann algebra G = GoEf7G t . If 
X = Y U Z, Y n Z = 0 for Y and Z being the even and odd variables , respectively, 
then the polynomial [Vt , V2] is a graded identity of G, Zl o Z2 is another. Here 
Y = {Vt,V2 , " '} and Z = {Zt , Z2, .. . }. The Grassmann algebra is involved in the 
structure theory of T-ideals in the following way. 

Suppose that K is a field of characteristic O. If A = Ao Ef7 At is graded algebra 
then G(A) = Ao 18) Go Ef7 At 18) G t is the Grassmann bulI of A . It is known that 
every nontrivial T-ideal coincides with the T-ideal of the Grassmann hulI of some 
finitely generated graded algebra, see [22, Chapter 1], [4]. Furthermore the T­
ideal of a finitely generated superalgebra coincides with the T-ideal of some finite 
dimensional superalgebra. Hence every nontrivial T-ideal equals the T-ideal of 
some finite dimensional superalgebra, considered as an ordinary algebra. This 
extremely important result of Kemer (see [22, Chapter 2]) leads directly to the 
positive solution of the Specht problem in characteristic O. All this comes to show 
that graded identities are of interest . That is why they have become object of 
independent study. A good deal of new results and reference concerning graded 
(and H-graded) identities can be found in the survey [3] . 

We mention some important results about various graded identities related to 
T-prime algebras, and their applications. In [9] the ideaIs of graded identities of 
the algebras M2 (K) , Ml , l and G 18) G were described when the base field is of 
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characteristic O. The gradings on these algebras are the standard ones, namely 

M 2 (K) = Ao EBAI' Ao = {( ~ ~) }, AI = {(~ ~) }, 
for a, b, c, dE K; 

MI,I = Bo EB BI, Bo = {( ~ ~) }, BI = {( ~ ~) }, 

for a, dE Go, b, c E GI ; 

Di Vincenzo used these descriptions in order to obtain, in t-he same paper, a new 
proof of the coincidence of the T-ideals of M I I and G @ G. It was mentioned 
earlier that this coincidence follows from the theory of Kemer. Another proof of 
it was given by Regev in [40]. Note that the proof in [9] makes use, to certain 
extent, of the structure theory of T-ideals , and the proof of Regev in [40) is direct 
one. In [29] the three algebras M2 (K), MI,I' and G @ G were considered over 
infinite fields K of characteristic p i 2. It was proved that the graded identities 
of M2 (K) have exactly the same basis as in the case char K = O, namely the 
polynomials [YI, Y2] and ZlZ2Z3 - Z3Z2ZI· Furthermore, constructing appropriate 
models for the corresponding relatively free graded algebras it was shown in [29] 
that the graded identities of MI,1 admit a basis oftwo identities. These are [YI, Y2) 

and ZlZ2Z3 + Z3Z2ZI. Here and in the sequeI Yi and Zi are even, respectively odd 
variables. Note that these two identities are exactly the same as in characteristic 
O. Still further it was proved that the graded identities of G @ G follow from the 
two from the basis of MI,I' and if char K = p > 2 then one adds the identity 
[yf, zd. Observe that the last is not a graded identity for MI,1 since for a 

(~ ~) E MI,I' the matrix aP is not central. Hence one obtains once again 

Theorem 4 1f char K = O then T(MI,t} = T(G@ G). 

We notice that the proof of this theorem in [29] is completely elementary one. 
It uses an appropriate explicit construction for the relatively free graded algebra. 
In addition, one needs a version of the so-called Specht reduction to commutator 
polynomials that we discuss shortly. 

It is welI known fact that every T-ideal over an infinite field is generated by its 
multihomogeneous (i.e. homogeneous in every variable) polynomials. If char K = 
O one may consider multilinear polynomials only. Suppose IKI = 00, and denote 
as B(X) the subalgebra of K(X) generated by alI commutators [Xi}, Xi" . . · , XiJ, 

n = 2,3, . . . Hence [Xl, X2 , xd E B(X) and [XIX2 , X3] rt. B(X) . 
This means that B(X) is generated as an algebra by all homogeneous elements 

of the free Lie algebra L(X) whose degrees are at least 2. Another well known 
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fact states that every T-ideal T is generated by its polynomials from B(X) i.e. 
by the intersection T n B(X), as long as one considers unitary algebras. See 
for proofs of these basic assertions, for example [14, Chapter 4] . The proof of 
the first assertion uses the standard Vandermonde argument, while the second is 
based on the Poincaré, Birkhoff and Witt theorem for the universal enveloping of 
aLie algebra. Note that the universal enveloping of L(X) is exactly K(X). The 
polynomials of B(X) are called proper 01' commutator polynomials. Their usage 
may simplify quite a lot the computations, and may even turn them "realistic". In 
the case of graded identities one uses somewhat weaker version of this reduction. 
Namely it can be proved that every ideal of graded identities over an infinite 
field is generated by its polynomials such that every even variable Yi appears in 
commutators only. 

Furthermore, in order to prove the above theorem one needs some elementary 
combinatorics. The centre of the algebra G 0 G equals Go 0 Go. Since one 
may consider only the graded identities where every even variable appears in 
commutator, the elements from G o 0 Go make the commutators vanish. Hence it 
is sufficient to substitute the variables in a polynomial for elements of GI 0 GI 

(for the even variables), and of Go 0 GI $ GI 0 Go (for the odd variables). But the 
elements of Go 0 GI anticommute, and the same holds for those of GI 0 Go. On 
the other hand every element of Go 0 G I commutes with the elements of G1 0 Go. 
Hence one is led to consider two groups of odd variables such that variables in 
any group anticommute, and variables of different groups commute. Given the set 
{I, 2, ... , TI} , suppose it being partitioned into two disjoint subsets (colours) A and 
B. Let i = (i l , i2, . .. , in) be a permutation of (I, 2, ... , TI) and let 1 ~ a < f3 ~ TI. 
The entries ia and i{3 of i form a coloured inversion in i if ia > i{3 and either ia, 
i{3 E A 01' ia , i{3 E B . The coIoured sign of i is (-1)3(;) where s(i) is the number 
of coloured inversions in i. In other words we "forget" the inversions formed by 
two entries of different colours. The following fact is used to prove the theorem 
about the coincidence of T(MI,I) and T(G 0 G). 

Proposition 5 5uppose that i is fixed permutation of (I, 2, .. . , TI) and let (A, B) 
run over ali possible 2n colourings of (1, 2, .. . , TI). Then the coloured sign of i is 
either always 1, oralways -1, or is 1 for 2n - 1 colourings, and -1 for the rest 
2n - 1 colourings. 

The proof if this proposition consists of an elementary induction on TI . 
We note that one may use this fact in order to obtain an alternative description 

of the linear structure of the so-called meson algebras, see [21, pp . 115, 264-272] . 
Modifying accordingly the proof one can establish the coincidence of the T­

ideaIs T(MI ,I) and T(G 0 G) over any infinite field K , char K ::j:. 2 when one 
considers nonunitary aIgebras. 

Lots of open questions remain in this area, especially when the base field is of 
positive characteristic. Note that the graded identities of M 2 (K) when K is finite 
were described in [30], for all possible gradings. It turns out that there exist, up 
to graded isomorphism, only two nontrivial gradings, and their graded identities 
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are different. Here we list some open problems that we think are of importance 
for the theory. 

1. Determine the ordinary identities satisfied by the algebras M 1 1 and G @ G 
over an infinite field of characteristic p > 2. Or (weaker): determine the 
difference between the T-ideals of these two algebras. 

2. Probably the determination ofthe weak identities for the algebra MI,I would 
help in finding a basis of the identities for this algebra. (Recall that f E 
K(X) is weak identity for MI,I if it vanishes under substitutions of matrices 
/;(ell + e22) + gi e I2 + hi e2I where fi E Go and gi, hi E G1. Sometimes 
these are called matrices with supertrace zero.) In a recent paper [11] it 
was shown that the weak identities of M I ,l follow from [Xl, X2, X3] = ° and 
[Xl, X2][Xl, X3][XI, X4] = ° if char K = O. 

3. Another interesting problem related to the algebras considered here is the 
following. Describe the possible 2-gradings of the algebras M2' MI ,I, G li) G 
in terms of the polynomial identities they satisfy. Note that this could help 
in describing the T-ideal T(M1 ,J) and T(G li) G) in positive characteristic. 

4. What further information about the identities (ordinary and 2-graded) of 
MI,1 and G li) G can be deduced? In this direction, what information the 
codimension sequences and more important, the Hilbert series of the corre­
sponding relatively free algebras, can yield? Note that computing the graded 
codimensions and Hilbert series of these relatively free algebras should be a 
sim pIe technical question since we know linear bases of these algebras [29]. 

Now let us turn to more general graded identities. The algebra Mn (K) pos­
sesses a natural Zn-grading. It is defined as follows: M n (K) = Ao$AI $ .. . $An-I 
where Ai is the span of the matrix units {er • I Ir - si = i}, ° :S i :S n -1. In [48], a 
finite basis of the Zn-graded identities of Mn (K) was described when char K = 0, 
and in [1] this result was extended to an infinite field. The case of the Z-graded 
identities for Mn{K) (again in characteristic O) was dealt with in [47]. In [43] the 
2-graded identities of the upper triangular matrices of order two were described 
when char K = 0, and in [44], a basis for the Zn-graded identities in the upper 
triangular matrices of order n was described as well as some numerical invariants 
of the respective ideal of n-graded identities were computed. 

There are lots of open questions in this direction. Let us state some of them. 

1. Determine the Zn-gradings on the Lie algebra sln (K) of the traceless n x 
n matrices. Determine in any one of the gradings the graded identities 
they satisfy. Or weaker: determine the gradings that satisfy different Zn­
identities. 

2. The same question(s) about the other classical Lie algebras. 
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3. It follows from the theory of Kemer that the algebras Mk,l @ Mp ,q and Mr,s, 

where r = kp + lq and s = kq + lp satisfy the same polynomial identities; the 
algebras Mk ,l Q9 G and Mk+l (G) also satisfy the same identities (supposing 
the base field J{ is of characteristic O). A direct proof of these results can 
be found in [40]. What about the coincidence of the above T-ideals when 
char J{ i8 an odd prime and J{ is infinite? It seems to us that there is 
no such coincidence in positive characteristic. Note that in a recent paper 
[10] the authors described the ~n X ~2"identities of the algebras Mn (G) . 
As a corollary they obtained a new proof of the coincidence T(M2 (G)) = 
T(Mt ,t @ G) over a field of characteristic O. Can this result be transferred 
to infinite fields of positive characteristic? Is it possible to establish the 
coincidence of the above T-ideals by using graded identities? That is , can 
one obtain the results of [10] proceeding in the spirit of [9, 29]? 

4. Describe the subvarieties of the varieties of graded algebras determined by 
the above algebras. 
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