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Abstract: In this paper we discuss invariant prediction 
in finite populations. It is assumed that the distribution of the 
observable quantities is invariant under an orthogonal group 
of transformations. The quantities of interest are introduced 
as operational parameters, which depend only on observable 
quantities. Interest centers on the population total and on the 
finite population regression coefficient although predictors for 
the finite population variance are also considered. An opera­
tional likelihood function is defined which is a function of the 
operational parameters. Bayes estimators for the operational 
parameters are obtained by using the operational likelihood 
under noninformative and informative prior distributions. As 
shown, the Pearson type II distributions plays an important 
role on deriving the main results. 
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1 Introduction 

Inference in finite populations deals with the problem of gaining information about 
certain quantities that describe the behavior of one or a set of variables in a finite 
population of individuals or subjects, by using information on a subset (sample) 
of the population. In opinion pools, for example, one problem of great interest 
is to infer on the total of supporters of a certain candidate in a certain city or 
the total of smokers in a certain region. In others, the interest is on studying 
the relationship between two quantities of interest as, for example, expenditure 
and income. In situations like the ones described, there is a finite population of 
N identifiable units denoted by P = {I, ... , N} where N, the population size, 
is known. We consider that associated with unit k of P there is a p-dimensional 
vector X k , of known quantities and the unknown value of the characteristic of 
interest that we shall denote by Yk, k = 1, ... , N. 

In matrix notation, we consider 

y=CJ and X = (~ ~~), 
1 Xlv 

of dimension N x m with m = p + 1, of rank m and where Y is the vector of 
unknown quantities associated with the finite population P. For example, the 
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vector Y may correspond to expenditure of the N families and the elements of 
Xj to salary, size of the family, and social indicators, among others. To obtain 
information on an unknown quantity O(Y, X), a sample s of size n of P is selected 
according to some specified sampling plan. 

There are several approaches for treating this type of problem. One approach, 
known as the classical approach to sampling theory (see Cochran, 1973; Godambe, 
1966; Basu, 1969, 1971) is based on the fact that the sampling plan used to select 
the sample s is the unique probability structure used for making inference on O. 
Actually, it is a distribution free component of the general theory, as, for example, 
randomization tests and bootstrapping in infinite populations. Another approach 
is known as the superpopulation approach to the prediction problem in finite pop­
ulations (Bolfarine and Zacks, 1992) where it is considered that the population 
is a random sample generated from an infinite population. Typically, the super­
population model is represented in a parametric form, with the distribution of Y 
being partially or totally specified, for example, by considering that Y is normally 
distributed. According to this approach, the superpopulation model establishes 
the main relations between observed and unobserved units of Y. Moreover, an 
intermediate step in making inference on the finite population quantity 0 is to 
deal with the unknown parameters (typically termed as superparameters) of the 
superpopulation model. Making inference on 0 becomes then a prediction prob­
lem. Within the ordinary Bayesian formulation, it is necessary to assign priors for 
the superparameters as can be seen in Bolfarine and Zacks (1992). An alternative 
formulation for the finite population problem is the operational (predictivistic) 
Bayesian approach which has recently been considered in Iglesias (1993), Barlow 
and Mendel (1993) and Mendel (1994), among others. The main idea is to de­
fine a family of distributions for the vector of unknown population quantities Y 
and then find an statistics O(Y, X), which is also a sufficient statistics for this 
family. This statistics is termed by Mendel (1994) (see also Barlow and Mendel, 
1993) as the operational parameter for the family of distributions. Thus, once a 
prior distribution is specified for O(Y, X), inference for this quantity is based on 
the posterior distribution. The family of distributions for Y is usually specified 
in terms of invariance conditions on its arguments. In this paper, distributions 
which are invariant under subgroups of the group of orthogonal transformations 
are considered in connection with finite populations when auxiliary variables are 
present. 

Quantities O(Y, X) like the population total T = 2:~1 Y; or the finite popu­
lation regression coefficient BN = (X/X)-l X'V have been the subject of a great 
attention in the recent statistical literature. Comprehensive reviews can be found 
in Cassel et al. (1977) and Bolfarine and Zacks (1992). Most of the literature 
associated with the subject consider that the quantities Yk and Xk are related 
through the linear relation 

(1.1 ) 

k = 1, ... , N, where f3 = Uh, ... , (3p)', a p-dimensional vector of fixed and un-
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known parameters and E = ((1, ... , (N)' is a vector of random errors, typically 
satisfying E[E] = 0 and Var[E] = (12IN' with (12 unknown and IN the identity 
matrix of dimension N. To obtain information on quantities B(Y, X) like T or 
B N , a sample s is selected from P according to some specified sampling plan. 
The unobserved part of P is denoted by r = P - s. Given s, we denote by 
Y s = (Y1 , ... , Yn )' and Y r = (Yn+1 , ... , YN )', the observed and unobserved parts 
of Y , respectively, with the corresponding partition 

_ (~ X~+l) and Xr - : : ' 

1 X N 
of the matrix X. As pointed out above, the superpopulation (or model based) 
approach to the prediction problem consider the model (or superpopulation) pa­
rameters (f3o,{3, (12) as the main connection between sand r, no matter which 
sampling plan is used and inference should only be based on the superpopula­
tion model (1.1). Thus, under the perspective of the superpopulation approach, 
according to the conditionality principle (Basu, 1975), the sampling plan is not 
relevant for inference. The design-model based approach utilizes model (1.1) only 
in the definition of estimators and to propose convenient sampling plans. How­
ever, the merits of an estimator is totally judged by its performance with respect 
to the sampling plan. 

In this paper, we focus on the prediction of the population quantities B(Y, X) 
from a pure predictivistic approach. The main assumption is that the distribution 
of Y is ON(M) invariant , that is, Y and ry are identically distributed for all r 
in ON(M), where 

where ON is the compact subgroup of orthogonal N x N matrices and M is the 
space generated by the columns of the matrix X. A consequence of the invariance 
assumption is the Pearson type II representation of the marginal distributions of 
Y given in Corollary 2.1 and Example 2.2. One important consequence of the 
assumptions is that Y , and X, are related through the linear model 

(1.2) 

with B N as above and the distribution of e, = (e 1, ... , en)' given B Nand 
S = Y'QM Y is the Pearson type II distribution M P 1 1(0, S(In -X. (X~X.)-l X~, 
N-m;n-2). We call attention to the fact that the invariance condition determines 
all the elements of the Bayesian model, the parameters, however, being func­
tions only of observable quantities. The marginal distribution of Y then becomes 
completely specified as soon as prior distributions are specified for the (finite pop­
ulation) model parameters. Another important aspect of the development is that 
it provides justification for the fact that the normal distribution is typically asso­
ciated with the distribution of the error vector E. Operational Bayesian approach 
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is the nomenclature typically associated with such approach (Mendel, 1994) and 
the finite population parameters (quantities of interest) are termed operational pa­
rameters. This approach was considered by Mendel(1992) and Barlow and Mendel 
(1993) in reliability theory. 

The paper is organized as follows. Section 2 discusses the construction of 
ON(M)-invariant distributions in finite populations and presents also some rep­
resentation theorems for the distribution of the observed part of the population, 
represented as projected measures of ON (M)-invariant distributions. In Section 3 
a systematic approach is considered for proposing operational parameters in finite 
populations. As a consequence, operational likelihood and operational prior are 
formulated allowing the development of an operational prediction Bayesian theory 
in finite populations. Finally, Bayesian inference solutions are presented for the 
operational parameters in Section 4. 

2 ON(M)-invariant distributions in finite popula­
tions 

We consider the distribution of the population vector Y to be ON(M)-invariant . 
Consequences of this assumption including characterizations in terms of maxi­
mal invariants and representation of such distributions as mixtures of uniform 
distributions defined on the orbits induced by the maximal invariants under the 
groups considered are studied. Moreover, following some results in Diaconis et al. 
(1992), stochastic representations of such distributions in terms of the Pearson 
type II distributions are considered. These results will be used in Section 3 to 
obtain operational likelihoods for the prediction problem in finite populations. 

2.1 Construction of ON(M)-invariant distributions 

Let M denote an m-dimensional subspace of ~N . Moreover, let's denote by ON 
the compact subgroup of all real orthogonal NxN matrices and by ON(M) = 
{r EON; rx = x, x EM}. Let C N be the set of all N-dimensional real vectors, 
and Y a N-dimensional random vector taking values in CN . The random vector 
Y is said to be ON(M)-invariant if Y and ry are identically distributed for 
all r E ON(M). The main interest is on representing such ON(M)-invariant 
distributions (and marginals) as a mixture of appropriate uniform (or marginals 
of uniform) distributions. 

Definition 2.1. Let U be a random matrix with values in ON(M). Then U is 
uniformly distributed on ON(M) provided U is distributed according to the prob­
ability measure l/, which is the unique invariant probability measure on ON (M). 

Existence and uniqueness of the probability measure l/ is guaranteed by the 



The Operational Baysean Approach for Finite Populations 277 

fact that ON(M) is a compact subgroup (Nachbin, 1965). Furthermore, using 
results in Diaconis et al. (1992), it can be shown that 

(2.1) E[U] = PM and 
1 

Var[U] = N _ m QM 0 QM, 

where PM is the orthogonal projection matrix on M, QM = IN - PM is the 
projection matrix on M1. and A 0 B denotes the Kroenecker product of the 
matrices A and B. The action of ON(M) on eN yields a partition of eN into 
orbits as follows. If y E eN then the orbit of y, Oy, is the set 

An alternative way of characterizing the orbits of eN is by using maximal in­
variants corresponding to the action of the group ON(M). Denoting by t(.) such 
maximal invariant, it follows that 

Oy = {z E eN; t(z) = t(y)}. 

We call attention to the fact that the orbits of eN are indexed by the maximal 
invariant statistics t (.). 

In the special case of the group ON(M), where M = span(lN), namely, the 
space generated by the N-dimensional vector of ones, the orbits Oy corresponding 
to y E ?RN are 

(2.2) 

which geometrically represent spheres in M 1. centered in P MY and with radius 
y'QMY· 

Now, the main purpose is to build the uniform distribution on Oy, the orbit 
of y generated by the action of ON(M). Since Oy is compact in eN (a locally 
compact Hausdorff space with an enumerable basis for the Euclidean topology 
in ?RN) and ON(M) acts transitively on Oy it follows that there exists a unique 
ON(M)-invariant probability measure, v , defined on the orbit Oy (Nachbin, 1965). 
However, if U is a random matrix uniformly distributed over ON(M) and y E eN 
then Uy is a random matrix with values in Oy and with a ON(M)-invariant 
distribution generated by v, which we denote by vy . Thus, uniqueness of this 
measure implies that it is the corresponding invariant probability measure on 
the orbit Oy . In this sense, it is said that the random matrix Uy has uniform 
distribution on Oy, which is the surface of an (N - m)-dimensional sphere as 
in (2.2). Note from (2.1) that E[Uy] = PMY and Var[Uy] = Sy2QM' with 
S~ = y'QMy/(N - m). Consequently, if P denotes the probability measure of a 
N -dimensional random vector Y with 

(2.3) P = J vyP(dy), 
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then Y has a ON(M)-invariant distribution. The converse also holds. A simple 
situation is illustrated in this context in the following examples. 

Example 2.1. ON (M)-invariance. As before, let M denotes am-dimensional 
subspace of iRN and ON(M), the compact set of N x N orthogonal matrices leaving 
invariant the elements of M and PM the orthogonal projection matrix onto M. 
Moreover, let Y a N-dimensional random vector with a ON-invariant distribution 
P. In this case, t(Y) = (PMY,IIY - PMYW) with Y = (Y1,oo.,YN)', is a 
maximal invariant under the action of ON(M). As a consequence, the conditional 
distribution of Y given PM Y = c and IIY - PM YW = 1'2 is uniform over the set 
SN(c,r) = {Y E iRN;PMY = c, IIY - PMYW = r2}, c E M and l' > O. Thus, 
the distribution P can be represented as a center-radial mixture of these uniform 
distributions. The measure in the mixture is the P-Iaw of t(Y) = (PM, IIY­
PMYI1 2) . For example, if Y '" NN(m, IN), then PMY and IIY - PMYII2 are 
independent with PMY '" NN(PMm,PM) and IIY - PMYW '" X7v-m' If M 
is the column space generated by IN, then the measure P can be represented 
as a mixture of uniform distributions over the set SN(a ,r) = {Y E iRN;y = 
a, L:~l (Y; - y)2 = r2}, a, l' E iR, l' > 0, where Y = L:7=1 Y;/n. Similarly, if M 
is the column space generated by a Nxp matrix X with rank p (p < N), then P 
can be represented as a mixture of uniform distributions over the set 

where EN is the finite population regression coefficient and b E iRp . 

2.2 Marginal distributions 

In the section, we consider the problem characterizing the distribution of the 
observed part Y. of the unobserved Y given that the distribution ofY is ON(M)­
invariant . Let Y be a Nxp-dimensional random matrix with a ON(M)-invariant 
distribution P and IT denotes a n x N matrix such that IT IT' = In. The matrix 
IT is a projection matrix and ITP is called the projected measure. For example, if 
p(n), n < N is the marginal law of the Nxp random matrix Y, then p(n) = ITP, 
with IT = [In 0]' which is of dimension nxN . Because P is a ON(M)-invariant 
measure, it follows from representation (2.3) that 

(2.4) ITP = J ITvyP(dy). 

That is, the projected measure of a ON(M)-invariant measure can be represented 
as a mixture of projected uniform measures on spheres generated by a maximal 
invariant associated with ON(M). A general result presented in Diaconis et al. 
(1992) can be used to obtain marginal distributions from uniform distributions 
over such spheres. It describes how to obtain the distribution of V = AVE', 
where V is a NxN random matrix with uniform distribution over ON(M), and 
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A and B are arbitrary matrices of dimensions rxN and sxN, respectively, with 
max{ r, s} < N - m and m = dim( M), the dimension of M. Following Diaconis 
et al. (1992) we introduce the two non-negative definite matrices, C = AQM A' 
and S = BQMB', where QM = IN - PM, as well as their unique non-negative 
definite square roots C 1/ 2 and Dl/2. Also, in this section as well as in the ones 
that follow, C(X) denotes the "law of X". 

Proposition 2.1. (Diaconis et aI., 1992) Let U be the random matrix with uni­
form distribution on ON(M) and let Z be the rxs upper left corner block of U·, 
where U· is a random matrix with uniform distribution on ON-m Then, the 
law of V = AUB' is such that C(V) = C(C1/ 2 ZS 1/ 2 + APMB'). Further, if 
r + s ::s; N - m and s ::s; r then Z has a density function (with respect to the 
Lebesgue measure) concentrated on the set where Is - Z'Z and Z'Z are positive 
definite matrices. Moreover, the density of Z is given by 

where W (., .) is the Wishart constant defined by 

(2.6) [W(t,p)t 1 = 7r~2tP/2 IT r(t - ~ + \ 
j=l 

In the density (2.5), p is a positive integer and t is a real number with t > 
P - 1. When r ::s; s, the density of Z is obtained by interchanging l' and s in the 
Wishart constant defined in (2.6). Moreover, the notation IAI is used to denote 
the determinant of the matrix A. 

As a direct consequence of the previous result, Diaconis et al. (1992) show 
that if r + s ::s; N - m and C and D are full rank matrices , then V has a density 
given by 

where f(.I1', s) is as given in (2 .5 ). In the special case of s = 1, r = k (k < N - m) 
it follows from (2.5) that the density of V is given by 
(2 .7) 

f(vl1' s)= r(¥) Ir2CI-1/2{1- (v-AE)'C-1(v-AE)}N-m;k-2 
, r(N-;'-k)7rk/2 r2 ' 

provided (v - AE)'C-1(v - AE) ::s; 1'2 with E = PMB' and 1'2 = BQMB'. The 
distribution of V in this case is known in the literature as the k-variate Pearson 
type II distribution with location vector II = PM B' and scale matrix :E = r2 C. 
It follows from (2.1) that E[V] = AE and Va1'[V] = (N - m)-l1'2 C. A formal 
definition of the k-variate Pearson type II distribution is presented next. 
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Definition 2.2. A k-dimensional random vector Y is said to have a symmetric 
k-variate Pearson type II distribution with parameters 1', which is N-dimensional, 
and 1: , a positive definite N x N matrix and shape parameter r, r ~ 1, if its density 
is given by 

f(y) = r(~ + r + 1) 11:1- 1/ 2(1_ (y _ JJ)'1:- 1(y - JJ)Y 
r(r + I)JTk / 2 ' 

which we denote byY....." MPlh(JJ,1:,r) provided 0 :S (Y-JJ)'1:- 1 (Y-JJ):S 1, 
r > -1. Moreover, 

E[Y] = I' and 
1 

Var[Y] = k + 2r + 21:· 

As a direct consequence of Proposition 2.1 we have that if the k-dimensional 
random vector Y is such that Y ....." M P I h (1',1:, r) and C is a mx k matrix of 
known constants, then W = CY ....." M PI h (CJJ, C1:C', r). 

Detailed discussions of the properties of the Pearson type II distribution can 
be found in Fang et al. (1990). See also Gasco (1997). In the following we provide 
representations for projections of probability measures which are ON-invariant on 
mN . Let Y be a N-dimensional random vector which is ON(M)-invariant and II 
is a n x N projection matrix, with n < N. As before, denote by P the law of Y 
and by p(n) the law of Y 3 = IIY. 

Corollary 2.1.Let P and p(n) be as defined above. Then, for each n < N - m, 

(2 .8) p(n)= r MPlh(IIc,vQ1,r)J1n(dc,dv), 
JMX[O,oo) 

where J.ln is the P-law oft(Y) = (PMY,Y'QMY), r = (N -m-n-2)!2 and 
Ql = IIQMII'. 

Proof. The result follows directly from representation (2.4) and Proposition 2.1 
with s = 1 and r = n. 

We present next an example to illustrate the results derived previously. 

ExaIllple 2.2. ON(M) - invariance. We consider now the case where M is the 
column space generated by the columns of the N x p-dimensional matrix X , where 
p is the rank ofX. We assume that the N-dimensional random vector Y is ON(M) 
invariant and consider Y 3 = IIY and X3 = IIX, with rank p. Thus, it follows that 
IIPMY = X3BN, IIQMII' = Xs(X'X)-1X~, where BN = (X'X)-lX'Y, as 
defined in the Introduction. Hence, using Corollary 2.1 it follows for 1 :S n < N-p 
that 
(2.9) 

(n) 1 « , )-1 ,N-n- p -2) ( ) P = MPIIn X 3b,vX.XX X" J.lNdb,dv, 
~px[O,oo) 2 
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where fJ,N is the P-law of the maximal invariant t(Y) = (BN, (Y - XBN )'(Y -
XBN), as seen in Example 2.1. The conditional model for Y. which is implied 
by the invariance condition is traditionally represented in the form 

where e s is a n-dimensional random vector with distribution 

MPII (0 vX (X'X)-lX' N-n- p -2) n ,. ., 2 . 

Moreover, ifB. = (X~Xs)-lX~ Y s , then conditional on BN = b, (Y -XBN)'(Y­
XBN) = v, the distribution of B. is 

M PII (b v(X'X)-l n - 2p - 2) 
p , '2' 

and (Bs - b)'X'X(Bs - b) has the same distribution as the random variable vW, 
where W ,...., Beta(p/1, (n - p)/2). 

Corollary 2.1 provides an exact representation for marginal distri bu tions of 
ON(M)-invariant distributions for finite populations. Proximity (in terms of the 
variation distance) of such representation to a mixture of ON (M) invariant normal 
distributions has been studied in Diaconis et al. (1992) in the case M = {O} and 
in general by Eaton (1989). Such results are known in the literature as finite forms 
of de Finetti type theorems and are extended within a general context in Diaconis 
et al. (1992). The results considered previously and the multivariate extension of 
Smith (1981) are actually special cases of those general results. 

3 The operational structure for finite populations 

A systematic approach for proposing operational parameters is considered in Igle­
sias (1993), Mendel (1994) and Mendel and Kempthorne (1996) and is used in the 
formulation that follows. 

3.1 Preliminary definitions 

Let URN, BN, p} the statistical space where BN is the Borel sigma-field of 3iN and 
p the class ON (M)-invariant probability measures defined on (3iN , BN), where M 
is a subspace of 3iN . Moreover, let :Fa the sub-field of BN, the measurable sets in 
3iN , which are invariant under the action of ON(M), that is, A E :Fa ¢} A E :F 
and r- 1 A = A, 'vT E ON(M) . It follows from the topological and algebraic 
properties of ON(M) that the sigma-field :Fa is sufficient for the class p, that is , 

if A E BN, P(AI:Fo) is the same VP E p, 
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which follows from Theorem 3 in Farrell (1966). A formal definition of operational 
parameter is stated next. 

Definition 3.1. Let (?J(N , BN ' p) as before, (y,F) a measurable space and e : 
?J(N ~ Y, a measurable mapping. Then, e is said to be an operational parameter 
f01' P if Bo, the sigma-field generated by e is sufficient for the class p, that is, 

VA E BN, P(AIBo) is the same VP E p . 

Recall that Bo , is the sub-field generated bye, that is, Bo = {A E BNIA = 
()-l(B),B E F} . Thus, if the distribution P of the vector Y is ON(M)-invariant 
(that is, PEp), then e(y) is an operational parameter provided the sub-field Bo 
is sufficient for p. In particular, as seen in Section 2, t(Y) = (PMY, Y'QMY) is 
a maximal invariant under the action of ON(M) and then a measurable mapping 
from (?J(n,BN,p) to (M x (O ,oo),Bt,Pt), where Bt is the sub-field of measurable 
sets in M x (0 ,00) and Pt the class of probability measures Q induced by t(Y) . 
Moreover, being t(Y) a measurable and invariant mapping under the action of 
ON(M), it follows that r- 1(r 1 (A)) = r1(A), VA E Bt , vr E ON(M) . Thus, 
i- 1 (A) E Fo (following from the definition of Fa), which implies that the sub-field 
generated by the maximal invariant ICY) is Fa and then t(Y) is an operational 
parameter for the class p of ON (M)-invariant distributions on (?J(N, BN)' Conse­
quently, as seen in Example 2.5, if M is the subspace spanned be the columns of 
the matrix X then t(Y) = (BN,O'J,.) is an operational parameter. 

Now, if P = .c(y) is ON(M)-invariant, then we can write 

(3 .1) , .c(y) = [ V(e ,r)Q(dc, dr) 
JMX(O, oo) 

where v(e,r) is the uniform distribution on the orbit Oy with Y such that PMy = C, 

Y' PMY = 1'2 and Q the law of t M = (P MY, Y' Q MY), which is the operational pa­
rameter. Hence, the operational parameter provides an indexation of the uniform 
distributions Vt (y) , which is involved in the representation of P = .c(Y). Moreover, 
the uniform distribution is common for representing any ON (M)-invariant distri­
bution P. What makes the representation unique (make models distinguishable) 
is the mixing measure Q in (3.1), the measure associated with the operational 
parameter t(Y) = (PM Y, Y'QM Y) and induced by the particular distribution 
P = .c(y) under consideration. We define now what is understood by an opera­
tional statistical model for the observed part Y s of Y. 

Definition 3.2. An operational statistical model for Y s under the class p with 
respect to the operational parameter e is given by the statistical space (?J(n, Bn , Pc) , 
where Pc is the family of conditional distributions of Y~ given e. 

Hence, with respect to the operational parameter e(Y) = (e1 (Y), e2 (Y)) = 
(PMY, Y'QMY)' the operational statistical model for the class of the ON(M)­
invariant distributions is given by Pc = {I1V(Ol,O,) , (e1 , ( 2 ) EM x (0, oo)}, where 
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I1 is the projection matrix such that I1Y = Y s and V(Ol,02) is the uniform distri­
bution on 

SN(fh,B2 ) = {y E ~N;PMY = fit,y'QMY = B2 }. 

Thus, it follows from Corollary 2.1 that the operational statistical model corre­
sponding to the observed part Y 6 of Y is formed by the Pearson type II distri­
butions with parameters (I1Bl' B2Ql, N -m;n-2) . This, implies the operational 
likelihood function for (Bl' (2). 

Note that the predictive law pen) = .c(Y.) can be represented as 

1 ( N-m-n-2) 
.c(Ys) = MPJIn I1B1 ,B2Ql, 2 Q(dB1,dB2), 

Mx(O,oo) 

where Q E Q, with Q being the family of probability measures on M x (0,00) 
induced by the operational parameter B(y). The measure Q corresponds to the 
prior distribution in the Bayesian operational structure. Here, the parameter is a 
quantity with a very precise meaning like the maximal invariant under the action 
of ON(M). Moreover, as pointed out above, difference among ON(M)-invariant 
models is captured by the measure Q of the maximal invariant t(Y) . 

Definition 3.3. Considering the statistical space (~N, Bif1N, p), B the operational 
parameteT fOT the class P and Po the probability measures family induced by B I 
then Q E &'JO , is the prior distribution for B. 

Being B(Y) = (PM Y, Y'QM Y) the operational parameter and P = .c(y) then 
the probability measure Q E Po induced by P on (M x (O,oo),Bo), is the prior 
distribution for the operational parameter B(Y). That is, since there is a unique 
Q associated with each P, we have a linear operator 

L* : Po -+ P 

such that 
Q -+ L*(Q) = P 

which maps each distribution Q E Po with a probability distribution PEp. 

3.2 The operational parameter and the likelihood function 

Here, we describe in detail the operational parameter and the likelihood function 
for the finite population model when the subspace M which describes the group 
ON(M) is generated by the columns of the N x m- dimensional matrix X . 

• The operational parameter 

After obtaining the projection of Y on the space M which is generated by 
the columns of the matrix X, it follows that (see also Example 2.2) B(Y, X) = 
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is a maximal invariant with respect to the class p. Moreover, since the sub-field 
B6 generated by B(Y, X) is sufficient for p (see Farrell, 1966), it follows, according 
to Definition 3.1, that B(Y, X) is an operational parameter for the class p . 

Note that the operational parameter BN corresponds to the (unobserved) least 
square estimator in the finite population and ulv to the (unobserved) mean square 
error . 

• The operational likelihood fun ction 

As defined before, Y. is the observed part of the vector Y and being n < 
N - m - 1 and V. = llQMll' = In - X.(X/X)-IX~, it follows from Corollary 
2.1 that the marginal distribution of Y. is 

p(s) = £(Y.) = r M PIIn (X.BN' (N - m)ulv V., _N_-_1n-::--_n_-_2) 
J'!RNx(O,oo) 2 

where the support of the n-variate Pearson type II distribution is 

with Q being the P-law of (BN,ulv) . Thus, it follows from Definition 3.2, that 
the corresponding density of Y., which is the operational likelihood function, is 
given by 

(3 .2) 

x [l-(y. -X.BN )'[(N -m)u;" V.]-I(y. -X.BN W IF(Y.), 

with r = (N-m;n-2) , a Pearson type II density with location vector X.BN and 
dispersion matrix ~ = (N - m) ulv v •. 

Using the observed sample Y., which is of size n, we define 

B - (X V-IX )-IX'V- I d 2 _ (Ys - X.B.)'V;I(ys - X.Bs), 
s - " • •• y. an Sn- n-m 

and we can write the operational likelihood function (3.2) as 
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where 

h(BN) = N ~m [(n-m)s~ + (BN - B.)/C(BN - B.)], 

In the next section the Bayesian inference is developed for the operational 
parameters and functions of them. 

4 Inference for the operational parameters in fi­
nite populations 

In finite population sampling, the quantities of interest can he linear functions 
of Y such as 0/ = e'Y, with e a vector of dimension N, or quadratic, such as 
OQ = Y' AY , where A is a matrix of dimension N x N. Important linear functions 
are the populational total, T = IN Y , or the finite population regression coefficient 
BN = (X/X)-lX/Y. Straightforward algebraic manipulations show that we can 
write T = e/BN with e = (N, N Xl"'" N Xp)', where Xi = 2::.7=1 Xij/n , is the 
i-th column mean of the matrix X . By considering a prior density 7r for (B N, 17;') 
we have from (3.2), that the posterior density is given by 
( 4.1) 

7r(BN,(J~/ys) <X ((Jt) ~ [1- h~{)] N-m;n-2 I[h(BN),oo)((J~)7r(BN,(J~), 

with h(BN) and C as in (3.2). 

To obtain the posterior distribution of (B N, (J~) which we denote by 7r(B N, (J~ /Y s 
the following prior distributions are considered: 

and 

(2) 7r(BN,(J~) <X «(1t)§+,I(mo,oo)((J~). 

That is, in case (2), (J~ '" Pareto(a,ma), where a > 0, 0 < ma < h(BN), 
with h(B N) in (3.3). We call attention to the fact that the above prior distribu­
tions may not yield proper ON (M)-invariant probability measures. Thus, from 
(3.3) and (1) and (2) above, the following (proper) posterior results: 

( 4.2) 
2 1 ~+b h(BN) N-m;n-2 2 

7r(BN,(JN/YS) <X ((J~) [1-~] I[h(BN),oo) ((IN), 

with b = 1, in case (1), and b = a + 1, in case (2). 



286 Bolfarine. Gasco and Iglesias 

The main interest. is on predicting the populational total T and the finite 
population regression coefficient B N. We consider the squared error loss function 
which yields the the posterior mean as the predictor of B N. Credibility intervals 
are also considered . 

• Marginal posterior densities for BN and T 

We can compute the marginal density of BN, by integrating the joint posteriori 
(4.2) with respect to u'iv, yielding 

(4.3) 

n-rn-2c±m 

[ ( )IIV;l(n-m-2c)X,( )]- 2 

ex (n - m - 2c) + BN - B. X. s2(n _ m) BN - B, , 

where c = 0, in case (1), c = -a, in case (2), and n-;,~;;,2Cx,(s;V,)-lX~ is posi­
tive definite. In (4.3)' it can be recognized the kernel of a multivariate Student-t 

distribution with parameters (B" X. V~IX. ,n - m,m), in case (1) and a multi-
'n 

• • .• n-m±2. X'V-IX. . 
varIate truncated Student-t dIstrIbutIOn (B" "-m ,.. ,n - m, m + 2a), III 

'" case (2). Thus, explicit results can be obtained in the case (1). In fact, being 

n-m-2c x: V~lX. a positive definite matrix, then there exists the unique mode 
n-m 8 

BN = B" Wilich is also a posterior mean (when defined) since the posterior dis­
tribution is symmetric around BN = B,. Thus, the predictor of BN minimizing 
the risk under the squared error loss is given by 

( 4.4) 

with the corresponding Bayes risk given by 

V [B I ]= n-m (X~V;-IX.)-I = n-m (XlV-IX )-12 
ar NY. n-m-2 s2 n-m-2 s s • sn· 

n 

The study presented above generalizes results in Bolfarine and Zacks (1992) where 
it is considered Bayes estimation of BN under normality. Moreover, Bolfarine et 
al. (1992) show that the predictor B. in (4.4) is the optimal predictor in the class 
of all linear unbiased predictors of B N. Thus, the predictor of the population 
total under squared error loss is given by 

(4.5) 

with c = (N, N Xl, ... , N Xp)' an m x I-dimensional vector, so that TN = NY, + 
(N - n)(Xr - X,),B s. Moreover, the risk function of TN is given by 

( 4.6) I [ I] n - m I( -1 )-1 2 Rr = c Var B NY, C = C X, V. X, sn C. 
N n-m-2 
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Predictor TN in (4..5) is also the posterior mode of the posterior distribution of T 
since since Ba is the mode of the posteriori distribution of BN . Fronf.( 4..3), it fol­
lows that the distribution of BN given Ya is a multivariate t-Student distribution. 
Thus, the posterior distribution of T given Y. that is, the distribution of C'BN 
given Ys is a Student-t distribution with v = n - m - 2c degrees of freedom, with 
mean TN = c'B. and variance Ri'N given in (4.6). Thus, the credibility interval 
with symmetric probability 1 - a for the populational total T is given by 

where 0 < a < 1, tv,~ > 0 such that P[T* > tv,f] = ~, with T* ,...., t" . 

• Marginal posterior density f01' ()'iv 

To make inference on the population variance ()'iv we consider first the joint 
distribution of (BN, ()'iv) given Y., using (4.2) in case (1), which can be written 
as 

N-m-n 1 
x[l - (BN - Bs)'CdBN - B.)] - 2 -- , 

with C 1 = (N f:~V 'f' ) 2 , where the expression on the right hand side of the -m 0N- n-nl Sn 

above expression is found to be the Kernel of a Pearson type II distribution. Thus, 
integrating (4.7) with respect to BN, it follows that the posterior distribution of 
()'iv, is given by 

n-~±4 1 N-n 1 

(4..8) ( (n - m)s~) 2 - ( _ (n - m)s~ ) -2 -

;rr(<iJ.,IYs) ex: 2 1 ) 2 IG , (N - m)()N (N - m UN 

with G = {u'iv > 0 I (N - m)()'iv > (n - m)s;}. 

Denoting Z = (~=:?;i, it follows from (4.8) that 

( 4.9) ,...., B (n -m + 4 N - n) 
Z 2' 2 . 

Thus, under the squared error loss function the predictor of <iJ.v which minimizes 
the squared error loss is 

Moreover, since 
n - m s;; 

u'iv = --­
N-mZ' 
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it then follows from (4.8) that 
III 

, 2 n - m 2 [1] n - m r(~)r(~) 2 

(J'N= N_m snE Z = N_mr(N-~-2)r(n-';'±4)sn' 

with risk function given by 

[ 
n - m 2 r(N-~-4)r(~)l2 

- N_mSnr(N-~-2)r(n-';'±4) 

( n - m 2)2 r(N-~-4) [r(¥) r(N-~-4)r2(~)l 
= N_m Sn r(n-';'t4) r(N2m)-r(N-~-2)r2(n-';'±4) . 

A symmetric credibility interval with confidence coefficient "Y = 1 - a is 

[ (n-m)s~ (n-m)s~] 
(N - m)B1 _ a / 2 ' (N - m)Ba / 2 ' 

with B, > 0 such that P[Z :::; B,l = "Y, 0 < "Y < 1. Similar results can be obtained 
in case (2). In fact, in this case it can be shown that 

Z ,... B ( n - m ; 2a + 4, N ; n) . 
The alternative predictors of the population variance considered in Bolfarine 

and Zacks (1992) are derived under the normality assumption. 
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