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Auto-Oscillations in Continuous Systems 
with Impulsive Self-Support 

A. D. Myshkis 

Abstract: The surway of impulsive-continuous autono
mous systems of various types is represented, especially those 
of in which the impulsive self-suport (ISS) generates discontin
uous auto-oscillations. The main objects are: discontinuous 
dynamical systems, linear oscillator with one degree of free
dom and ISS, scalar functional differential equations with ISS, 
heat conductions and vibration of the string with energy dis
sipation and ISS. 

Key words: impulsive differential equation, impulsive
continuous system, auto-oscillations, discontinuous dybamical 
system. 

1 Introduction 

Impulsive-continuous evolution of a system consists of alternation of stages of 
continuous variation of its state and very short-term stages of its essential change. 
Similar processes arise when the studying system is subjected to impulsive outer 
action (e.g. under the controlling) or when the fast changes of the state happen 
immanently as the system parameters have reached its critical values ("transition 
from quantity to quality"). 

The impulsive-differential equations (IDEs) are used as mathematical instru
ment of mentioned subject. These equations include diff~rential equations to de
scribe stages of continuons variation of the stage, and "finite" equation to describe 
discontinuities of the 1st kind of the solution in instants of impulses. The IDEs 
theory began about 40 years ago and hundreds of papers and a lot of books [1 -
7] have been published up to now. 

The IDEs theory with given moments ti of impulses is mostly developed. This 
assumption excludes autonomous equations but allows linear IDEs, the theory of 
which is similar in many respects to the usual linear differential equations theory. 
(It is quite natural, because the linear IDE is equivalent to the linear differential 
equation with addens of delta-function type in coefficients and inhomqgeneous 
term.) Basing on these equations, the theory of nonlinear IDEs with principal 
linear part can be constructed to a marked degree also. Some obtained results 
can be extended to the case ti = ti(X), i.e. when the instants of impulses depend 
on the state of the system. 

The autonomous IDEs theory, where the moments of impulses are defined 
by reaching the critical states of a system, has been studied much weaker. At 
the same time these systems, nonlinear in principle, are quite natural both in 
theoretical and in applied aspects, so their detailed study is highly desirable. 

The theory of discontinuous oscillations is the main (but not the unique) field 
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of applications of autonomous IDEs. The example of such oscillations was already 
considered by E.Friedlaender in 1926 [8] . In 1930, realizing L.I.Mandelshtam and 
N.D.Papaleksi idea, A.A.Andronov and A.A.Witt [9] interpreted discontinuous 
oscillations as discontinuous trajectories on phase plane; the development of this 
subject see in [10] . 

The simplest model of watch was the first mathematical model of the me
chanical discontinuous oscillations; it was considered independently in 1937 by 
A.A.Andronov and S.E.Khaikin [11] with method of pointwise maps, and by 
N.M.Krylov and N.N.Bogolyubov [12] with asymptotic methods of nonlinear me
chanics. More realistic model of watch including two degrees of freedom was 
studied by A.A.Andronov and Yu.I.NeimarkJI3]. 

Autonomous systems with impulsive-continuouos evolution are connected im
mediately with the theory of discontinuous dynamical systems, which has ap
peared quite recently and has not been developed sufficiently. (The difference 
may exist only in approaches: we begin from preCise indication of phase space for 
the letter, but we start from IDE as mathematical model, whereas the phase space 
is fitted, and moreover sometimes it is fitted not uniquely for the former systems.) 
Therefore we give in Sec.2 one of the possible definitions of discontinue dynamic 
systems and indicate some of their properties. Different examples of differential 
equations (the equation of linear oscillator with one degree of freedom, the scalar 
equation with retarded argument, the partial differential equations) are considered 
in further sections, with impulsive self-support, which may generate discontinuous 
auto-oscillations, describing asymptotically stable periodic impulsive-continuous 
processes. 

2 Discontinuous dynamical systems 

The general notion of discontinuous dynamical system both for arbitrary metric 
space [14J and for IRn [15J seems to be given first by Th.Pavlidis in 1966. The 
scholar investigated some properties of stability for such systems and indicated 
their possible applications to the theory of neuron nets [16, 17J. S.Kaul gave an
other general approach to the notion of discontinuous dynamical system in metric 
space (see [4],4.7). Beginning from 1969 V.F.Rozhko extended the main concepts 
of topological dynamics (Poisson's stability, minimal sets etc.) on these systems 
in his series of papers (see e.g. [18 - 20]). K.S.Sibirskii and I.A.Chirkova intro
dused (see [21]) more general notion of discontinuous set-valued dynamical system 
in 1971; P.1. Morozanu made this [22] for discontinuous dynamical system with 
aftereffect. More concrete discontinuous dynamical systems in IRn (specifically in 
IR2) was considered in [23 - 26] a.o.; unfortunately, several papers in this field are 
difficult to get. 

The solution of Cauchy problem is built in the direction of increasing t in all 
these papers, so we really consider semidynamical systems. 

Here we give one of the possible definitions of the discontinuous dynamical 
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system in m.n. Namely, we consider IDE of the form 

:i:(t) = f(x(t» (X(t) ¢ M), 

(X(t) E M) =* x(t+) = F(x(t». 
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(1) 

(2) 

Here f E CI(m.n,m.n), Me m.n is a closed set, FE C(M,m.n). The solution 
x = cp(t; a) of IDE (1), (2) under given initial condition 

x(o) = a (3) 

is built in the following way. If a ¢ M , so cp(t; a) coincides with solution of 
problem (1), (3) on [0, tl], where. tl (= tl (a» is the lowest of values t > 0, for which 
cp( t; a) E M (cp( t; a) coincides with the mentioned solution for t > ° on all interval 
of its existence, if there are no such values t ). Then we set cp(tt; a) = F(cp(tt; a» 
and take cp(t; a) on (tl,t2] as the solution of equation (1) under initial condition 
x(tt) = cp(tt; a), where t2 is the lowest of values t > tl, for which cp(t; a) E M (if 
such t exist), etc. 

But if a E M , we take tl = 0, and after that we continue the described 
procedure. 

The following conditions are demanded to hold, in order the mentioned defi
nition to be correct (namely, the definition of the value t2 forcp(tt; a) E M has 
the proper meaning): 

C1. If a E M n F(M) and f(a) =I- 0, then the solution of problem (1),(3) has 
no common points with M for all sufficiently small t > 0. 

C2. If a E M n F(M) and f(a) = 0, then F(a) = a; 
in the latter case we accept cp(t; a) == a. 
The solution of IDE (1),(3) under initial condition x(to) = a is defined analo

gously; this solution is equal to cp(t - to; a). 
The solution cp(.; a) of (1)-(3), defined above, can have either finite or infinite 

number of discontinuity points ti, and all of them are of the 1st kind. It coincides 
with one of the solutions of equation (1) in the first case after the 'last discontinuity 
point, and therefore it is defined on some maximal interval [0, Ta), and moreover 
if Ta < 00, then Icp(t; a)1 - 00 as t - Ta-. It is Ta = 00 if solutions of (1) do not 
blow up (e.g. if If(x)1 = O(lxi) as Ixl - 00). 

Now we are considering several simple examples in which the second case takes 
place. We accept n = 2, f(x) = (-1,0) in all these examples. 

Example 1. Let M = {(Xl. X2) : Xl = O}, F(O, X2) = (1, X2). Then the solution 
cp(·;a) has discontinuity points at t = al,al + 1, ... and it is periodic as t ~ at, if 
al ~ 0. 

Example 2. Let M = ((Xt,X2) : Xl > 0,XlX2 = 1},F(xt,x2) = (Xt,X2 + 1). 
Then the solution cp(.; a) has discontinuity points at t = al - ail, al - (a2 + 
1)-1, al - (a2 + 2)-1, ... and tends to 00 as t - at, if al > 0, ala2 ~ 1. 

Example 3. Let M = {(Xl, X2) : Xl = X2}, F(Xl, X2) = (Xl. x2/2). Then the 
solution cp(·;a) has discontinuity points at t = al - a2,al - a2/2,al - a2/22, .. . 
and tends to O+as t - at; if al ~ a2 > 0. 
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Example 4. Let M = {(Xl, X2) : IX21 = 1 + xd, F(XI' X2) = (Xl, -(1 + 
xd2)sgnx2). Then the solution <p(.; a) has discontinuity points at t = al - (Ia:;il-
1), al - (la21 - 1)/2, al - (la21 - 1)/22, ... , if al > 0,1 < la21 ~ 1 + a; this solution 
is picewise constant, whereas its signes alternate on intervals of constancy and its 
values tend to ±1 as t -+ a1 having no unique limit . 

The solution <pC; a) is defined at all t ~ ° in example 1, whereas it blows up 
in example 2 on account to "accumulation of jumps", i.e. the question on further 
continuation of solution does not arise in these examples. The solution is defined 
on [0 , al) in example 3; but it is natural to continue this solution for t ~ al as 
the solutition of equation (1) under limit initial condition x(al) = 0, because of 
its limite behavior as t -+ a1. At last, the natural continuation of the solution for 
t ~ al as single-valued function does not exist apparently in example 4. 

Generalizing the example 3, let us agree in all cases, when the solution <p(.; a) 
of (1),(3) is built on the interval [O,l),O < f < 00 and the limit <p(f-;a) exists, 
to continue this solution for t ~ f as the solution of IDE (1),(2) under the initial 
condition x(l) = <p(f-;a). We note that <p(f;a) E M and F(<p(f;a)) = <p(f;a) iff 
is the limit point for discontinuity points of the solution in this situation. 

The construction of the solution of (1),(3) mentioned above, can be considered 
as its constructive definition. There is the equivalent descriptive definition. 

The function <p(·;a) : [O,Ta) -+ IRn (0 < Ta ~ 00) is called the solution of 
problem (1)-(3), when the following conditions hold: 

1. It is continuous from the left, with <p(0; a) = a. 
2. It is continuously differentiable and it satisfies equation (1) on some open 

interval with the left end t , for any t E [0, Ta) . 
3. Vt E [0, Ta) => if <pet; a) ~ M, then <p(t+; a) = <pet; a), but if <pet; a) E M, 

then <p(t+; a) = F(<p(t; a)). 
We call the solution of (1)-(3) thenoncontinuable one, if it satisfies, in addition, 

the condition 4: 
4. If Ta < 00; than <p(t; a) has no (finite) limit as t -+ Ta-. 
Theorem 1. Let f E CI(IRn,IRn), the set F E C(M,IRn) be closed, and C1, C2 

be satisfied. Then any two solutions of the problem (1),(3) coincide on common 
interval of their definition, and the noncontinuable solution of this problem exists. 

Proof. The first assertion of theorem 1 can be proved by contradiction, if we 
consider the infimum of disagreement points of two solutions. With regard to 
this, the second assertion is obtained with the help of join of all the intervals of 
existence of the solutions of (1),(3). 2 

We call the noncontinuable solution <p(.; a) : [0, Ta) -+ IRn of (1)-(3) the regular 
one, if Ta = 00, or Ta < 00 and l<p(t; a)1 -+ 00 as t -+ Ta-; otherwise, we call this 
solution the singular one. 

Theorem 2. In addition to conditions of theorem 1 let the following conditions 
be satisfied: 

C3. F(M) is a closed set. 
C4. X E MnF(M) => F(x) = x. 
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C5. The set {x : I(x) = x} is totally disconnected (i.e. it contains only the 
single-point connected components). 

Then there are no irregular solutions. 
Proof. Let <p(-; a) be an irregular solution of (1)-(3). Then the sequence 'T1 < 

'T2 < ... -+ Ta- exists such that SUPi l<p( 'Ti; a) I < 00; we can assume without loss of 
generality that 

<p('Ti;a) -+ x (i -+ 00). 

It follows from irregularity of the solution that 

3p> 0: lim l<p(t; a) - xl > p, 
t_T;;: 

and we can suppose without loss of generality that all 1<p('Ti; a) - xl < p/2. 

(4) 

The function <p(.; a) has discontinuity points in any proximity to Ta , as I is 
locally bounded; it follows hence and from (4) at once that x E M. We consider 
two following cases. 

1. Let h > 0 exist such that it can be found in any proximity to Ta discontinuity 
points 0 ofthe function <p( .; a), for which 1<p(0; a) -xl < p, 1<p(0+ ; a) -<p(0; a)1 > h. 
If 01 < O2 < ... -+ Ta is the sequence of these points, then we can assume, after 
passage to subsequence, that <P(Oi; a) -+ b, <p(0;; a) -+ c as i -+ 00. But then it is 
bE M , F(b) = c and Ib - cl :::: h. It follows from continuity of the solution from 
the left, that it is inf l<p(';; a) - <P(Oi; a)1 -+ 0 as i -+ 00, where inf is taken over all 
discontinuity points'; < Oi . It follows from here and from C3, that b E F(M) , 
and we come to contradiction with C4. 

2. Let the mentioned h do not exist. Then F(x) = x, as otherwise we can 
take any value from (0, IF(x) - xl) as h. Taking t sufficiently near to TA, we 
obtain from absence of h and from boundedness of If(x)1 for Ix - xl :S p, that the 
(discontinuous) arc of considering trajectory, which starts in {x : Ix - xl < c}, 
ends in {x : Ix - xl > p - c} , and is such that diameters of all its continuous parts 
and sizes of all its jumps are less then c exists for any c > o. 

Let us choose the sequence C1 > C2 > ... -+ 0 and denote by Ji the arc of 
trajectory, which corresponds to Ci; let us denote the set, which is obtained from 
Ji by means of supplement the segment of the line with the same ends to any 
jump with ends <p(0; a), <p(0+; a) , and of closing of the result by JI- The set JI 
is connected, and the points x E M n J: in which jF(x) - xl < Ci, form 2Ci-net on 
J:. The relation 

J':= ItJ: ~ {x: F(x) = x} 

follows from that statement. But 11J: is not an empty set, because it contains 
x . Therefore, the set J' is connected, by virtue of Zoretti's theorem (see, e.g., 
[26]) . But x E J' and, moreover, J' contains at least one common point with 
{x: Ix - xl = p}, what contradicts to C5. 

Theorem 2 is proved. 2 
Corollary. If the set M is bounded in conditions of theorem 2, and solutions 

of (1) do not blow up, then Va E IRn ::::} Ta = 00. 
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In conclusion we note that it is not difficult to alter the definition of IDE so 
that its trajectories are placed not in all IRn , but in the fixed domain. This 
situation arises while investigating the evolution of mechanical systems, which 
include impacts on immovable obstacles (see, e.g., .[28, 29]). The mathematical 
theory of billiards is the special case; being begun in 1927 by G.Birkhoff (see [30], 
Sec. VI. 6-9), it gave the impulse to many issues with very deep resu'tts. Although 
this very theory is covered formally by general theory of IDEs, it is quite specific 
and so we shall not touch it here. 

3 Linear oscillator with one degree of freedom 
and impulsive support 

The following example is considered in Sec. 5 of the book [3J. Here IDE (1),(2) 
has the form 

ii + 2AX + w2x = 0, (5) 

(x(t) = 0, x(C) ~ 0) =} (x(t+) = x(t),x(t+) = x(C) + g(x(t-))) (6) 

(we use the same notation as in [3]); here 0 < A < w, and g(.) E C(IR+,IR+) is a 
given function. 

The trajectories of IDE (5),(6) in phase plane x , x consist of twisting arcs of 
affine transformed logarithmic spirales alternating with jumps along the positive 
semi axis x . It is not difficult to verify that a simple (i.e. with one jump on 
minimal period) cycle has a jump with a top point (0, y) , iff 

y = py + g(py) , p := exp( -27rA/(W2 _ A2)1/2). 

The right-hande side of the equation for y is the Poincare's first return func
tion for this autonomous system. Any trajectory is either a simple cycle, or it 
asymptotically approaches to some simple cycle, or to origin of coordinates, or 
to infinity, if this function is nondecreasing. Not-simple cycles, and an asymp
totically approach to such cycle, trajectories with more complicated asymptotic 
behavior may exist also, if the Poincare's function is not monotone. If 9 E C 1 , 

then a simple cycle with a top point (0, y) is asymptotically stable (unstable), 
when pll + g'(py) I < 1 (> 1). 

These assertions can be applied easily to the partical cases g(y) = ~v = const 
and g(y) = (J2 + y2)1/2 - Y (i.e. x 2 (t+) = x 2(t-) + J2, J = const). 

More complicate IDE is considered in [31], where impulses for equation (5) are 
defined by relation 

([mx2(C) + kx2(t)Jl2 = Eo) =} x(t+) = x(t), x(t+) = x(C) + ~v; 

here Eo > 0 is a given critical vaiue of total energy, ~v > 0 is the co{;~tant added 
speed, and the meaning of the other notations is obvious. After introduction of 
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dimensionless variables and parameters IDE for the sy~tem in consideration takes 
the form (~ = ~(r)) 

t + 2c{ + ~ = ° (e(r-) + e(r) =I- 1), (7) 

({2(r-) + e(r) = 1) => ~(r+) = ~(r), {(r+) = {(r-) + w. (8) 

The dependence of polar angle of the first point of contact of trajectory with 
the critical circle, on polar angle of its starting point (the lowest point of the 
jump) on this circle is taken as the first return function. The investigation of this 
function results in assertions: 

Theorem 3. 'tIw E (0,2) , IDE (7),(8) has the only. simple positive (i.e. with 
~(r) > 0) cycle. 

Theorem 4. 'tic > 0,3wo(c) > ° : 'tIw E (O,wo(c)) => this cycle is (orbitally) 
unstable. 

Theorem 5. 'tIw > 0,3eo(w) > ° : 'tic > eo(w) => IDE (7),(8) has the only 
simple cycle and this cycle is positive and asymptotically stable. 

Note that conclusions on stability in theorems 4 and 5 are obtained on "ap
plied" level, since its proofs are based on an analysis of coefficients of asymptotical 
representations, the validity of which is assumed apriori. 

Computing experiment, which was carried out by V.A.Larinfor w = 3/21/ 2 , 

shows that asymptotically stable cycle of rank 2 (i.e. having two jumps on .minimal 
period) arises instead of simple positive cycle when c decreases and passes over 
value 1.018. If c decreases further and passes over value 0.528 it turns into stable 
cycle of rank 4. The picture becomes difficult to visual analyse, when c decreases 
further, but the stable cycle of rank 3 arises on" penultimate" stage. The elements 
of known A.N.Sharkovskii's sequence [32] are possible to be seen here. 

x + ax + !(x) = ° (x(t-) =I- 0), 

(x(C) = 0) => x(t+) = x(t), x(t+) = L (a, L == const > 0) 

was investigated by B.S.Kalitin in his series of papers [33-35]. 

4 Scalar functional IDE of retarded type 

Scalar functional-differential equation 

x(t) = !(x(t + lh), ... ,x(t + Om),Xt) (Xt(O) := x(t + 0), -h ~ 0 ~ 0) (9) 

with self-supporting condition 

(x(t) = 0) => x(t+) = a (= const > 0) (10) 

was considered in [36]. Here ° < h < 00, all OJ E [-h, O],! : JRm x K[-h, 0] - JR, 
where K[-h,O] is the set offunction [-h,O]- JR which are continuous from the 
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left and have no more then finite number of discontinuity points, of the 1st kind 
only. The function f satisfies the conditions: 

-6 := sup{f(UI, ... , Urn, 1/1) : VUj E [0, a], 0 ~ 1/1(0) ~ a} < O. 

The map of the set {cp : cp E K[-h, 0], cp(O) = O} in itself, defined by formula 
cp f-+ (x(',CP))n is taken as the first return function, where x(·,cp) is the solution 
of IDE (9),(10) under initial condition Xo = cP, and T is the first positive zero of 
this solution; We denote . 

fo := If(O, ... ,0,0)1, M:= M1 + ... + Mrn + hMo· 

The following theorem is proved in [35]: 
Theorem 6. Let the inequalities 

2aM ~ (fJ + 2f06 + 562)1/2 - fo - 6, h ~ a(fo + aM)-1 

hold. Then IDE (9),(10) has the only periodic solution in the strip 0 ~ x(t) ~ a 
(up to arbitrary translation in t ). This solution is simple and globally asymptotic 
stable (in natural sence) in mentioned strip. 

The smallness of retardation waS used in proof essentially, because the first 
return function was considered in uniform metric. The condition of this smallness 
is remuved in [37] where the equation 

x{t) =f(X(t+01),X(t+02), ... ,xd (11) 

(0 ~ 01 > O2 > ... -+ -00, Xt(O):= x(t + 0), -00 < 0 ~ 0) 

(with the same self-support condition (11) is considered. 
Changing the definition from [37] quite a bit, we denote by K a set of functions 

(-00,0] -+ [0, a], which are continuous from the left and have a set of discontinuity 
points without limit points. The values f(uI, U2, ... , 1/1) must be defined, if VUj E 

[0, a], 1/1 E Kj the inequalities 

-Ll ~ f(UI,U2, ... ,1/I) ~ -8,0 < 8 < Ll < 00 

must be hold, as well as the Lipschitz condition in the following form 

00 0 

If(Ul, U2, ... , cp) - f(vI, V2, ... , 1/1)1 ~ L Mslu., - v., 1 + Mo 1 ektlcp(t) -1/I(t)ldt, 
8=1 -00 

k > OJ discrete retardations Os must satisfy the condition 

Mo := sup{Ms exp(kIOsl)} < OOj 

"~l 
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3p > 0: there are no more then p of values (}IJ on ;my interval of length less then 
a/6. The following theorem is proved in [37J: 

Theorem 7. In supposition of previous paragraph, it exists TI > 0 for any e > 
O,E > e, such that if k > e,6 > e,e < a < E,tl < E,p < E,Mo < TI,Mo < TI, 
then the same assertion, as in theorem 6 for IDE (9),(10) is valid for IDE. (11),(10). 

Based on the proof it is possible to point out the explicit estimate TI via e and 
E which is apparently very far from the exact one. 

The conditions of rise and stability of non-simple periodic solution for IDEs of 
retarded type have not studied yet neither on theoretical nor on computing levels. 
It is possible, that it should be start from simplest equations of such kind, i.e. 

x(t) = -1 - kx(t - h), x(t) = 0 ~ x(t+) = 1 (k, h = const > 0). 

5 Heat conduction with impulsive support 

The following partial IDE 

Ut = au",,,, (0:5 x :5l,O:5 t < oo,J(t) =F Jo), u(O,t) = u(l,t) = 0(0:5 t < 00) 

(12) 

J(t) = Jo ~ u(x, t+) = u(x, t) + a(x) (0 :5 x :5 l), J(t) := l' u(x, t)dx (13) 

is considered in [37]. Here a, I, Jo > 0 are the given constants, 

a E C([O,I],1R+) (a(x) ¢ 0) 

is the given function. The value J(t) is proportional to the amount of heat energy 
in a rod at an instant t. 

Let us suppose that J(O) > Jo; then there is an infinite sequence t = tl (> 0) ~ 
t2 < ... of discontinuity points of the solution. The main method of investigation 
in [37] is a bilateral estimate of the solution on intervals of its continuity, as well 
as the expansion of all functions under consideration in Fourier's series in x . Such 
rather rough estimations give enough reason to suppose that the requirements in 
following theorems can be weakened essentially. 

Theorem 8. If a(x) = O(x)(x -> 0+), a(x) = O(l - x)(x -> l-), then tk -> 00 

as k -> 00 . 

Theorem 9. If in addition a2j - "I :5 0 (j = 2, 3, ... ) and 

where 

00 

L a2j_t!(2j - 1) > 0 
j=1 

aj := 2l- 1 l' a(x) sin(j7rx/l)dx, 
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then infk(tk+l - tk) > O. 
We suppose in addition that 

in theorems 10 and 11. 

00 

L 100jl < 00 

j=1 

Theorem 10. Vo:, Jo, 3! (up to arbitrary translation in t ) the simple periodic 
solution U of the IDE (12),(13) . The similar statement holds if 0: and period of 
U are given before, but Jo is fitted. 

Theorem 11. V0:3JO(0:) > 0 : VJo < JO(.o:) ~ U from theorem 10 is stable 
asymptotically (in natural sence). 

IDE of similar form that is more natural from physical point of view, is given 
in a [39J: 

Ut = auxx (x E 1R, 0 ~ t < 00, u(O, t) '" ua), u(±oo, t) = 0 (0 ~ t < 00), (14) 

u(O, t) = Uo ~ u(x, t+) = u(x, t) + bt5(x) (x E 1R). (15) 

Here a, Uo, b > 0 are the given constants, 8 is the delta-function. IDE (14),(15) 
has a solution 

k 

u(x, t) = [b/2(1l"a)I/2J ~)t - tj)-1/2 exp[x2 /4a(t - tj)] 
. j=O 

(x E 1R, tk < t ~ tk+l j k = 0,1, ... j to := 0) 

under natural initial condition u(x,O+) = bt5(x) , where tl(> 0) < t2 < ... are 
successive instants of impulses, which are defined from the equation u(O, t) = Uo. 

The behavior of differences tk - tk-l as k -+ 00 plays an important role in 
determination of asymptotic behavior of solution as t -+ 00. We obtain designating 

that Tl, T2, ... E 1R+ satisfy the recurrent relation 

k k 

L(LTs )-1/2 = 1 (k = 1,2, ... ). 
j=1 s=j 

The relation u(x, tk) -+ ua as k -+ 00 uniformly on every finite interval follows 
from the relation Tk -+ 00 as k -+ 00 j but the last relation does not proved 
yet. It is easy to prove by contradiction that, VA, p > 0, every of inequalities 
Tk < Ak1+p, Tk > Ak1- p (k = 1.,2, ... ) has infinite number of solutions. The 
direct calculation of the first 30 values of Tk shows their monotone increasing 
under approximately linear law. 
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6 Vibrations of the string with energy dissipation 
and impulsive support 

The following boundary value problem for partial IDE is considered in [40] : 

Utt = a2uxx - 2cut (0 :5 x :5 1,0 :5 t < 00, E(t) f. Eo), 

u(O, t) = u(l, t) = 0 (0:5 t < 00), 

(16) 

E(t) = Eo =? (u(x, t+) = u(x, t), Ut(x, t+) = Ut(x, C) + {3(x) (0:5 x :5 I)). (17) 

Here a, c, I, Eo > 0 are ~he given constant~, 

E(t):= l' (a2u; + u~)dx/2, 

and {3 E C 1 [0, I] is the given function, for which 

{3(0) = {3(I) = 0, l' {32(x)dx > 4Eo· 

Then, the solution of IDE (17),(17) has the infinite sequence of impulses at t = 
t1 (> 0) < t2 < ... , when the initial conditions for u ensure the existence of classical 
solution of the (17), as we shall suppose, and E(O) > Eo; the solution of (17),(17) 
is the classical solution of (17) on every rectangle [0, I] x [tk+1. tk] (to := 0). 
The method of investigation of solution of (17),(17) is similar to that in Sec.5 in 
connection with IDE (14),(15) . 

Theorem 12. If the initial conditions for u are given, and E(O) > Eo) then 

SUP~k < 00, (~k:= tk+1 - tk). 
k 

Theorem 13. Let {3' E AC[O, I] and {3" E L 2 [0, I]. Then V~ > 0,3! (up to 
arbitrary translation in t ) the simple ~-periodic solution of the IDE (17),(17) . 
Moreover, Eo is defined uniquely by the formula 

E I -2c6. Loo {[j7ra~ sinwj~]2 [ A A sinwj~ -c6.]2}( {3j )2 o = -e -- + COSWj~ - c~ - e -, 
2 l w·~ w ·~ D · 

where 

j=1 J J J 

Wj := [(j7ra/l)2 - c2j1/2, D j := 1 - 2e-c6. COSWj~ + e-2c6., 

{3j := (2/l) l' {3(x) sin(j7rx/l)dx, . 
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and (sin z) / z is considered as analytic function for all z E C. 
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