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Bases for the Matching Lattice of Matching 
Covered Graphs 

Cla.udio L. Lucchesi· and Marcelo H. Carvalhot 

Abstract. This article contains a brief introduction to the theory of IiiAtching 
covered graphs: ear-decompositions, the matching lattice and the most iDi~ 
results of the theory. In its last section we prove that the matching latti~ of 
any matching covered graph has a basis consisting solely of perfect matchings and 
we present a conjecture relating the minimum number of double ears of any ear
decomposition of a matching covered graph and the number of bricks and bricks 
isomorphic to the Petersen graph in any brick decomposition of the same graph. 

1 Ear-DecOInposition 

We consider simple graphs, i.e., finite graphs without loops and multiple edges. 
We denote respectively by E(G) and V(G) the set of edges and vertices of a graph 
G. A matching is a set of edges no two of which-have a vertex in common. A 
matching is perfect if its edges match up all vertices. Recall the basic theorem 
of Tutte [11] which asserts that a graph G has a perfect matching if and only if 
C1(G - X) ~ lXI, for each set X of vertices of G; here, c1(H) denotes the number 
of odd components of a graph H. If equality holds in the above inequality then 
X is called a barrier. If G has a perfect matching then clearly each vertex of G 
constitutes a barrier; the empty set is also a barrier. Those barriers, containing 
at most one vertex, are said to be trivial. 

A connected graph is matching covered if each of its edges lies in some perfect 
matching and bicritical if deletion of any two of its vertices yields a graph having a 
perfect matching. It is easy to see that a connected graph with a perfect matching 
is (i) matching covered if and only if no barrier spans an edge and (ii) bicritical if 
and only if it has only trivial barriers. 

A 3-connected bicritical graph is called a brick. Three bricks playa special role 
in the theory of matching covered graphs: K 4 , the complete graph on 4 vertices, 
C6 , the triangular prism, and the Petersen graph. 

Let H be a subgraph of graph G. A path P in G-E(H) is an ear of H if (i) both 
ends of P lie in H and (ii) P is internally disjoint from H. An ear is odd if it has odd 
length. Henceforth, by an 'ear' we shall mean an 'odd ear'. An ear-decomposition 
of a matching covered graph G is a sequence K2 = Go C G1 C ... C Gr-l = G 
of matching covered subgraphs of G, where for 0 ~ i ~ r - 2, the graph Gi+1 is 
the union of Gi and one or two vertex-disjoint ears of Gi, called single and double 
ears, respectively. Integer r is called the number of ears of the decomposition. A 

·Projeto Tematico FAPESP, Bolsa de Pesquisa CNPq 

t Bolsa de Doutorado CAPES - PICD - UFMS 



220 Claudio L. Lucchesi and Marcelo H. Carvalho 

subgraph H of matching covered graph G is nice (relative to G) if G - V(H) has 
a,perfect matching. 

PrOP9J1ition 1 Let Go = K 2 ,"', Gr - 1 = G be an ear-decomposition of matching 
covered graph G. There exists a perfect matching M of G such that for each i, the 
restn'ction M n Ef(h~ of M to Gi is a perfect matching of Gi (and M \ E( Gi) is 
a perfect matching of V - V(Gi)). 

Proof. If r = 1 then the assertion is trivially true. If r 2: 2, then, by induction 
hypothesis, Gr - 2 has a perfect matching M' satisfying the required properties of 
M with respect to each term Gi of the sequence, (0 ~ i ~ r-2). By definition, Gis 
obtained from Gr - 2 by the addition of one or two (odd) ears. Thus, G - V(Gr - 2 ) 

has a perfect matching, say, Mil. Therefore M := M' U Mil has the asserted 
properties. The validity of the Proposition follows by induction. 0 

An immediate consequence is that each term Gi of an ear-decomposition of match
ing covered graph G is nice (relative to G). 

The following theorem was proved by Lovasz and Plummer [5]. 

Theorem 2 Every matching covered graph has an ear-decomposition. 0 

One of the open questions about ear-decomposition of matching covered graphs 
is the minimization ofthe number of double ears. In section 3 we solve this question ' 
for bricks, and propose a conjecture for the general case. 

Ear-decomposition constitutes a nice way of finding independent incidence vec
tors of perfect matchings. If the number of double ears is sufficiently small then 
it is possible to get a basis for the matching lattice of a matching covered graph 
formed only by incidence vectors of perfect matchings. 

2 The Matching Lattice 

This section constitutes a brief summary of parts of a report by Murty [7]. That 
report is partly based on an article by Lovasz [4]. For a better understanding of 
that article and a more complete explanation of the theory of matching covered 
graphs we strongly suggest the report by Murty [7] . 

From the early years of Linear Programming, a fruitful interaction between 
combinatorics and polyhedral theory began to develop, resulting in the branch of 
combinatorics which we now call Combinatorial Optimization. This interaction 
has been especially helpful for the advancement of matching theory. Edmonds [1] 
led the way in these developments by characterizing the polytope generated by 
the incidence vectors of perfect matchings of a graph. Lovasz [4], building on the 
theory of the matching covered graphs, gave a complete characterization of the 
matching lattice. In this section we will describe the main results concerning the 
theorem of Lovasz that characterizes the matching lattice. 
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Let G be a graph. We consider the space RE of all real valued functions on the 
edge set E of G. Each member of RE may be viewed as a labeling of the edges of 
G by real numbers. For a subset A of E, the incidence vector XA of A is defined 
by xA(e) = 1, if e E A, and xA(e) = 0, otherwise. If w is any function in RE, and 
C is any subset of E, then Ee€C w(e) is denoted simply by w(C) . 

We are interested in studying various subsets of RE generated by the incidence 
vectors of perfect matchings of a graph G. If e is an edge that is in no perfect 
matching of G, then all the vectors of interest would have a zero corresponding 
to e. For this reason, we restrict ourselves to graphs in which every edge is in 
some perfect matching. Without loss of generality we also require the graph to be 
connected. Recall that a connected graph in which every edge lies in some perfect 
matching is called matching covered. The set of all perfect matchings of a graph 
is denoted by M . 

The lattice generated by the incidence vectors of perfect matchings of G, called 
the matching lattice of G and denoted by Lat(M), is defined by 

Lat(M) := {WE ZE : w = E QMXM , QM E z}. 
M€M 

Given a graph G and w E ZE, we would like to be able to decide whether 
or not w is in Lat(M). There is an obvious necessary condition, which requires 
the notion of cut. For subset S of V(G), a cut V(S) is the set of edges having 
one end in S, the other in V(G)\S. Set S is called a shore of V(S). Clearly, for 
any perfect matching M and any vertex v, we have XM (V (v)) = 1. Therefore, 
if w = EMEM QMXM , then, for any vertex v, equality w(V(v» = EMEM QM 

holds. Thus we have: 

Lemma 3 A necessary condition for vector w to belong to Lat(M) IS that 
w(V(u)) = w(V(v)), for all u, v in V. 0 

Each edge-weighting of G induces a natural vertex-weighting of G, where the 
weight of a vertex v is simply the sum of the weights of the edges incident with v. 
The above lemma says that an edge-weighting w of G is in Lat(M) only if, in the 
vertex"-weighting induced by w, all the vertex weights are the same. For bipartite 
graphs, it is not difficult to show that this condition is also sufficient [7]. 

Theorem 4 Let G be a bipartite matching covered graph, · and let w E ZE. Then 
w is in Lat(M) if, and only if, w(V(u)) = w(V(v)), for all u, v in V . 0 

However, in general, the condition of Lemma 3 is not sufficient for a vector to 
belong to Lat(M). Let 1 denote the vector whose coordinates are all equal to 1. 

Lemma 5 For the Petersen graph, the vector 1 satisfies the condition of Lemma 
9, but it is not in the matching lattice. 
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Proof. Let C be a fixed pentagon in the Petersen graph. It is easy to see that 
every perfect matching of the graph meets C in zero or two edges. Thus, XM (C) == 
o (mod 2), for any ME M. Hence, if W is any integral linear combination of XM, . 
congruence w(C) == 0 (mod2) holds. However, 1(C) = 5 == 1 (mod2). Therefore, 
1 cannot be in the matching lattice for the Petersen graph. 0 

To describe the matching lattice of a general matching covered graph, we require 
the notion of a tight cut. A cut '\7(8) is tight if 1M n '\7(8)1 = 1 for every perfect 
matching M of G. For each vertex v of G, cut '\7 ( {v}) is tight; these tight cuts are 
called trivial. 

Let '\7(8) be a non-trivial tight cut of G. The two graphs G i and G2 obtained 
from G by contracting the two shores 8 and G - 8, respectively, are called the 
cut-contractions of G with respect to '\7(8). If a matching covered graph has a 
non-trivial tight cut then it is possible to obtain smaller matching covered graphs 
by contracting the shores of the cut. The following result is easily proved. 

Lemma 6 Let G be a matching covered graph, '\7(8) a non-trivial tight cut of G. 
Then the cut-contractions of G are matching covered. 0 

If either of the two cut contractions G i or G2 has a non-trivial tight cut, we 
can take its cut-contractions, in the same manner as above, and obtain smaller 
matching covered graphs. Thus, given any matching covered graph G, by repeat
edly applying cut-contractions, we can obtain a list of graphs which do not have 
non-trivial tight cuts (we shall refer to such graphs as undecomposable graphs). 
This procedure is known as the tight cut decomposition procedure. It is useful for 
determining the matching lattice of G because Lat(M) can be expressed in terms 
of the matching lattices of the resulting smaller graphs. 

Theorem 7 Let G be a matching covered graph, and let G i and G2 be the two 
cut contractions of G with respect to a non-trivial tight cut. Let w be a vector in 
ZE, and let Wi and W2 be the restrictions of w to E( Gt} and E( G 2), respective/yo 
Let Lat(Mt} and Lat(M2) be the matching lattices of G i and G 2 , re.spectively. 
Then w is in Lat(M) if, and only if, Wi and W2 are in Lat(Mi) and Lat(M2), 
respective/yo 0 

Thus, the matching lattice of a matching covered graph may be expressed in 
terms of the matching lattices of the graphs in the list of undecomposable graphs 
resulting from an application of the tight cut decomposition procedure. Differ
ent applications of the tight cut decomposition procedure on the same matching 
covered graph G may yield different lists of undecomposable graphs, but the lists 
cannot differ from each other significantly, as shown by Lovasz [4]. 

Theorem 8 The results of any two applications of the tight cut decomposition 
procedure on a matching covered graph are the same list of graphs except possibly 
for the multiplicities of edges. 0 
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Recall that a brick is a 3-connected graph G such that, for any two vertices u 
and v of G, the graph G - {u, v} has a perfect matching. Bricks play an important 
role in this theory. 

Since the matching lattice of bipartite graphs are well understood, it is conve
nient to distinguish undecomposable graphs which are bipartite from those which 
are not. Bipartite undecomposable graphs are called braces, and non-bipartite 
undecomposable graphs turn out to be precisely the bricks, as shown by Edmonds 
et al. [2]. 

Theorem 9 A non-bipartite matching covered graph has no non-trivial tight cuts 
if and only if it is a brick. 0 

In view of the above theorem, bricks and braces can be regarded as the building 
blocks of all matching covered graphs. 

A vector w is called matching integral if w(M) is an' integer for each ME M. 
For example, in the Petersen graph, let C be a fixed pentagon. Let w be a vector 
which takes the value 1/2 on the edges of C and the value 0 on all other edges. 
Each perfect matching in this graph has zero or two edges from C, that is, w( M) 
is 0 or 1 for each perfect matching M. Hence, w is a matching integral vector. 

For graph G, a vertex labeling is a function </J : V(G) --+ Q. An edge labeling 
induced by a vertex labeling </J is a function A : E( G) --+ Q such that, if e := (u, v) 
is an edge then A(e) := </J(u) + </J(v). A vector w is called matching orthogonal 
if w( M) 7' 0 for each M EM. Clearly, every matching orthogonal vector is 
also matching integral. Let </J be a vertex labeling which satisfies the condition 
that EtlEV</J(v) = o. Then the edge labeling induced by </J is clearly a matching 
orthogonal vector. A matching orthogonal vector which can be obtained in this 
manner is said to be node-induced. 

The following Lemma plays a fundamental role in the theory [4]. 

Lemma 10 Let G be a brick different from the Petersen graph. Then every 
matching integral vector on G can be written as the sum of a node-induced match
ing orthogonal vector and an integral vector. 0 

We have seen that the obvious necessary condition (Lemma 3) for a vector to 
belong to the matching lattice is not sufficient in the case of the Petersen graph. 
The following Theorem shows that, in this regard, the Petersen graph is the only 
exception among bricks [4]. 

Theorem 11 If G is a brick different from the Petersen graph then a vector 
wE ZE belongs to Lat(M) if and only if w(V'(u» = w(V'(v», for all u, v in V . 

o 

3 Bases for the Matching Lattice 

One of the consequences of the theory described above is that for any 2-connected . 
cubic graph without the Petersen graph as a brick, the vector 1 is in its matching 
lattice. This supports Tutte's celebrated conjecture on 3-edge colourings: 
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Conjecture [Tutte] If a cubic graph without cut edges does not contain the Pe
tersen graph as a minor, then it is 9-edge-colourable. 0 

It is well known that this conjecture implies the Four Colour Theorem [8]. Ev
idently, Tutte's Conjecture is equivalent to assert that for cubic graphs without 
cut edges that do not contain the Petersen graph as a minor, vector 1 lies in the 
Integer Cone of M, denoted Cone(M, Z)and defined as follows: 

Cone(M,Z):= {x E ZE : x = L: O!MXM,O!M E z~o}. 
MeM 

It is quite difficult to characterize vectors in Cone(M, Z). For that reason, re
searchers opted for relaxations of the Integer Cone. In one case, Seymour [10] 
proved a statement that impiies that for every cubic graph without cut edges, 
vector 1 lies in the Rational Cone of M, denoted Cone(M, Q) and defined as 
follows: 

Cone(M,Q):= {x E QE : x =L: O!MXM,O!M E Q~O}. 
MeM 

Theorem 12 [Seymour] Vector 1 lies in Cone(M, Q) of every r-graph. 0 

An ,.-graph is a graph with an even number of vertices in which every vertex has 
degree r and for every set X containing an odd number of vertices, IV(X)I ~ r. 

Another relaxation, studied by Lovasz [4], is the matching lattice Lat(M). In 
this case, a much more interesting and deeper result was obtained: 

Theorem 13 [Lovasz] In every matching covered graph G, 1 E Lat(M) if, and 
only if, G is free of the Petersen graph as a brick. 0 

Several other questions concerning the matching lattice of matching covered graphs 
have been raised. One such question is whether it is always possible to find a basis 
for Lat(M) consisting solely of perfect matchings.- Recall that a basis of a lattice £ 
is a linearly independent set al, ... ,al: of vectors in £ such that for every element 
aE £, 

It is well known that Lat(M), as any lattice generated by integral vectors, has a 
basis consisting of integral vectors [9, Corollary 4.1b, page 47]. 

The second-named author, as part of his doctoral work still in progress, and 
under the supervision of the first-named author, proved that Lat(M) has a basis 
consisting solely of (the characteristic vectors of) perfect matchings. 

We consider a matching covered graph G and an ear-decomposition 

K2 = Go C Gl C ... C G,.-l = G 
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of G. Among the r ears of that decomposition, let d denote the number of double 
ears. Thus, r - d is the number of single ears in the decomposition. We denote, 
respectively, the number of edges, vertices and bricks of G by m, nand b. Among 
the b bricks, we denote by p the number of those which are isomorphic to the 
Petersen graph. A simple counting argument shows that 

Lemma 14 r+d=m-n+2. 

The linear hull of perfect matchings of G over a field F is defined by 

Lin(M,F):= {Z E FE: Z = L OtMXM,OtM E F}. 
MeM 

The following Theorem is proved in Murty [7] . 

Theorem 15 The dimension of Lin(M, Z2) is m - n + 2 - p - b. 

o 

o 

The next result was proved by Carvalho and Lucchesi. It gives a lower bound on 
the · number of double ears for any ear-decomposition of matching covered graph 
G: each brick in the brick decomposition of G requires one double ear, Petersen 
bricks counted twice. 

Theorem 16 If G is a matching covered graph then every ear-decompositon of G 
requires at least p + b double ears. 

Proof Let Go = K 2 ,"', Gr-l = G be an ear-decomposition of G. By Proposi
tion 1, graph G has a perfect matching Mo such that, for each i, (0 ::; i ::; r - 1), 
set Mo \ E(Gi) is a perfect matching of G - V(Gi). 

For each i, (1 ::; i ::; r - 1), let Mi be a perfect matching of G formed by a 
perfect matching of Gi containing an edge of E(Gi) \ (E(Gi-d U Mo) plus the 
edges of Mo \ E(Gi). (The edge of E(Gi) \ (E(Gi-d U Mo) may be chosen to be 
the first edge of any ear which was added to Gi-l to form Gi .) 

Clearly, the sequence xMo, XM1 , ... , XMr_ 1 of incidence vectors of those per
fect matchings of G is linearly independent over any field, because each matching 
contains an edge which does not occur in any previous matching in the sequence. 
By Lemma 14 and Theorem 15, we have that 

r + d - p - b= m - n + 2 - p - b ~ r, 

which proves the Theorem. o 

Theorem 16 suggests the 'following minimax equality: 

Conjecture [Carvalho-Lucchesi] Every matching covered graph admits an ear
decomposition that uses precisely p + b double ears. 0 

We now introduce two recent important results: 
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Rl. (Carvalho-Lucchesi) Every brick different from the Petersen graph admits an 
ear-decomposition that uses a unique double ear. 

R2. (Vempala-Lovasz) Let G be a brick different from the Petersen graph, K4 
and C6 • Then there exist an edge e E E(G) such that G - e is matching 
covered and its brick decomposition has exactly one brick. 

Assertion Rl is a proof of the Conjecture for bricks. One of its consequences is 
that, in the case of bricks, it is possible to find a basis for Lat(M) formed only by 
perfect matchings. If the Conjecture is true in general, then every matching covered 
graph has a basis for Lat(M) formed only by perfect matchings. Nevertheless, 
indepe~dently of the validity of the Conjecture, the existence of such a basis has 
been proved: 

Theorem 11 [Carvalho-Lucchesi] The matching lattice of every matching cov
ered graph has a basis consisting solely of (the incidence vectors of) perfect match
angs. 0 

Lemma 10 is known as the 'Main Lemma' in the article of Lovasz [4]. R2 is a 
theorem proved recently by Lovasz and Santosh Vempala [6]. Rl is a new result. 
It is possible to prove that Rl <==> R2 and Rl ~ Lemma 10. These results are 
part of the doctoral thesis of Marcelo H. Carvalho, written under supervision of 
C. L. Lucchesi. 
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